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SUMMARY 

 

 
Our society is currently undergoing a major energy transition towards a more 

sustainable and less carbon-intensive system, characterized by an increased penetration of 

renewable energy sources, higher energy efficiency and reduced emissions of greenhouse 

gasses. In parallel, the electrification of the system (e.g. with electric vehicles and electric heat 

pumps) tends to make the load more dependent on weather conditions and human behaviors. 

Managing electricity networks under this paradigm is challenging, and the success of the energy 

transition thereby relies on the development of new flexible solutions that must operate within 

a complex and uncertain environment.  

 

This work, which is developed in the framework of the Smartwater project, aims at 

evaluating the economic feasibility of the rehabilitation of old industrial infrastructures such as 

deep mines and quarries into medium-sized pump hydro storage stations (from one to tens of 

megawatt). In the context of deregulated electricity markets, the storage profitability is ensured 

through optimized planning strategies, which are subject to uncertainties (regarding mainly 

electricity prices but also load and renewable generation when the unit is integrated into a larger 

portfolio). This task of optimal valorization of storage units is thus articulated around three 

complementary and multidisciplinary contributions:  

 

➢ Objective 1: Improving the current energy models related to the operation of 

underground pumped-hydro energy storage (UPHES) systems. Indeed, the 

operation of such technologies is significantly different from existing facilities, and is 

characterized by multiple nonlinear effects mainly arising from the complex geometry 

of the unit, and water exchanges between the porous reservoirs and their surrounding 

aquifers.   

 

➢ Objective 2: Crossing the barrier between power systems analysis and machine 

learning (a research field specialized in learning, extracting and exploiting the complex 

patterns that are hidden within historical data) to provide state-of-the-art forecasting 

tools of electrical variables. Practically, this work capitalizes on recent 

breakthroughs in Deep Learning to generate more accurate multi-step ahead 

probabilistic forecasts, where space and time dependencies, heterogeneity and high-

dimensionality are key factors. 

 

➢ Objective 3: Integrating the output of uncertainty modeling tools into a form that is 

suitable to properly feed and guide the subsequent optimization. The goal is to obtain a 

risk-aware integrated forecast-driven strategy that is able to fully valorize flexible 

resources. 
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To achieve those objectives, the manuscript is divided into 7 chapters. The 

methodologies and main findings associated with each chapter is provided hereunder. 

 

Chapter 1 describes the context and motivation of the work, with a particular emphasis 

on the objectives and contributions. 

 

Chapter 2 then presents a general overview of the current (liberalized) organization 

of the electricity sector, with an emphasis on the Belgian situation. This information will serve 

as a basis to accurately represent the market design in the subsequent optimization models. 

 

Chapter 3 focuses on the theoretical background behind deep learning, and we exploit 

this powerful framework to improve the probabilistic forecasting of electrical variables, i.e. 

the aggregated load, wind and photovoltaic power, and electricity prices. Practically, the 

developments are based on the use of enhanced neural networks, similar to those at the origin 

of breakthrough products such as Google Translate. An extensive benchmark shows the 

effectiveness of the method in comparison with state-of-the-art model in terms of both statistical 

performance and impact on the quality of decisions optimized by an agent participating in 

electricity markets. 

 

Chapter 4 investigates the potential of integrating storage units into larger portfolios in 

order to fully leverage the available flexibility. In that respect, we show that the portfolio effect 

(aggregation of technologies) results in a more efficient use of assets due to 

complementarities between the different resources. In particular, it is shown that a dynamic 

allocation of reserves (i.e. when the contribution of each unit can vary over time) fosters the 

participation in ancillary services, which results in higher economic value of the portfolio. 

  

Chapter 5 provides a framework to integrate the nonlinear effects of an underground 

pumped-hydro energy storage (UPHES) system within its day-ahead scheduling in energy 

and reserve markets. To that end, a hybrid approach combining an optimization tool with an 

advanced simulation model is developed. The results from a Belgian case study demonstrate 

that accurately considering these nonlinear effects is a key component to fully extract the 

potential of UPHES, and suggest that the proposed tool offers an effective solution for 

achieving this goal. 

 

Chapter 6 leverages surrogate-based optimization to jointly consider the tactical 

(week-ahead) and operational (day-ahead & real-time) decision levels. The objective is to 

efficiently cope with the conflicting objectives between these time horizons (e.g. a higher profit 

in mid-term reduces the short-term possibilities). The procedure is applied for a typical Belgian 

retailer, and allows to secure feasible and efficient solutions (compared to a benchmark model) 

while being computationally efficient. 

 

Finally, Chapter 7 restates the main methodological contributions, and summarizes the 

findings. Besides, perspectives and recommendations for future research are provided. 

 

Overall, the developed models have a wide scope and can be of interest for different 

Power Systems actors: (i) market players who want to maximize their profit made from their 

generation/demand/storage portfolio, (ii) system operators who, as are market facilitators, aim 

at providing accurate and transparent (probabilistic) forecast information to the electricity 

sector, and (iii) policy makers to estimate the available flexibility and potential of new storage 

resources. 
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CHAPTER 1 

 

INTRODUCTION – MOTIVATION, 

BACKGROUND, OBJECTIVES AND 

CONTRIBUTIONS 

 

 
1.1 Context and motivation 

 
In order to reduce significantly the European ecological footprint with a long-term 

perspective, the European Union (EU) leaders have established in March 2007 three ambitious 

objectives for 2020 that are known as the “20-20-20” targets. Setting such targets is indeed an 

important and functional policy mechanism for achieving specific goals. The first objective was 

to reduce by 20% the EU greenhouse gas (GHG) emissions (including CO2) from the 1990 

levels. This emissions reduction target is separated into two contributions: a single European-

wide target for large industrial installations, and one target covering emissions from households, 

buildings and smaller industrial applications (such as transport, agricultures and services), 

which is decomposed into national targets for all 28 Member States. The other two European 

targets were to raise to 20% the proportion of the total energy consumption coming from 

renewable resources, and increasing by 20% the energy efficiency.  

 

The European Union is well on its way to beat the 2020 target of reducing the GHG 

emissions, possibly even reaching -30% (with respect to 1990 levels). However, several 

countries seem unable to reach their objectives, not only regarding their emissions but also for 

the integration of renewable generation and the improvement of energy efficiency [ECR18]. 

Moreover, the current trend should be put into perspective with regard to the nuclear phase-out 

investigated in several countries. Indeed, as exemplified in Germany [CEW17], replacing this 

low-carbon technology leads to a transition period that can hinder the reduction of GHG 

emissions. 

 

The conclusions for Belgium are equally contrasted. As represented in Figure 1.1, the 

Belgian target for the reduction of GHG emissions (i.e. 15% less compared to 2005 levels) was 

already fulfilled in 2011, and has been further improved since then. Nevertheless, the uncertain 

situation regarding a nuclear phase-out (representing currently 40% of the Belgium installed 

power capacity [Elia17,a]) prevents having a clear vision for the future. Moreover, the current 
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trend indicates that the objective to cover 13% of the total consumption in 2020 with renewable 

energy is not expected to be reached (Figure 1.2), and the objective of 20% is even deferred to 

2030. Finally, Belgium is not on track to attain the goal to reduce the total primary energy 

consumption to 43.7 Million tons of oil equivalent (Mtoe). It can be observed in Figure 1.3 that 

such energy savings are more complicated to control (more volatile) due to the strong 

correlation with the economic situation. 

 

 
Figure 1.1 – Greenhouse gas emissions [ECR18]. 

 

 
Figure 1.2 – Share of renewable energy [ECR18]. 

 

 
Figure 1.3 – Energy efficiency [ECR18]. 

 

In October 2014, EU leaders have built, on basis of 2020 objectives, the 2030 Climate 

and Energy Targets. These goals can be summarized as follows [EUCO14]: 

- Reduction of 40% of the greenhouse gas emissions (compared to 1990 levels); 

- Increase the share of renewable generation to 27%; 

- Increase the energy savings to 27%. 
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These targets are nonetheless contested and deemed as not compatible with the goals set 

within the Paris Agreement (12 December 2015) to limit the temperature rise to 1.5°C [United 

Nations15]. In this respect, environmental groups (Climate Action Network, Greenpeace and 

World Wildlife Fund) have called for stronger targets to be applied urgently, i.e. 55% reduction 

of GHG emissions, 45% of renewable generation and 40% of energy savings [EPRS14]. Overall, 

these considerations fall within a larger framework to ensure that Europe can achieve a full 

decarbonisation by 2050, and it is essential that the roadmap towards this central unifying 

objective is smartly balanced. 

 

It should be noted that these targets encompass all energy sectors. In this way, the overall 

share of renewable energy in the total energy mix includes not only generation of electricity 

(from wind, photovoltaic, hydro, etc.) but also heat from renewable energy sources (solar and 

geothermal heating, etc.) and use of biofuels for the transport sector. Currently, the share of 

electricity in final energy consumption is around 20%, whereas 50% are associated with heat 

consumption and 30% comes from transportation [FROnT18, Schäfer 05]. However, in Belgium, 

the electric consumption is projected to increase by 50% with respect to 2018 levels [Elia17,b] 

due to electrification in transportation (expected development of electric vehicles after 2020) 

as well as in the heating and cooling sectors (expected development of electric heat pumps after 

2030), which will make the load more dependent on weather conditions and human behaviors. 

 

In this dissertation, the focus will be given to the electrical sector whose main challenge 

in the following years will be to efficiently accommodate renewable generation sources (to 

ensure the low-carbon transformation), while guaranteeing the security of supply and keeping 

fair and competitive prices for end-users. 

 

 

1.1.1 Renewables in power systems: challenges 

 

The introduction of this renewable generation in power systems, bolstered by their 

technological maturity and political willingness to promote a low carbon society, is not without 

consequences. In this way, the increasing contribution of intermittent power is progressively 

redesigning the historical structure of the electricity sector, arising stability issues for both 

transmission and distribution systems, which are here summarized in four aspects. 

 

Firstly, renewable sources, such as solar and wind, are highly volatile and partially 

unpredictable. This strongly complicates both the long-term planning (e.g. grid expansion 

plan, determination of the optimal energy mix, etc.) and the operational control of power 

systems due to the nature of electrical energy. Indeed, a continuous equilibrium (balance) 

between the total generation and consumption needs to be respected for ensuring the frequency 

stability of the electrical grid (thereby preventing involuntary load shedding and blackouts). 

The stochastic behavior of the renewable generation (in addition to the load uncertainty) leads 

to growing needs of flexibility (i.e. ability of generation/consumption/storage resources to 

adjust their output power when required).  

 

Secondly, this energy transition takes place in a liberalized environment, and, in 

order to foster the integration of renewables (which are still not competitive financially with 

conventional technologies), financial levers are implemented by national (political) authorities. 

For instance, Belgium has set up a mechanism of green certificates in order to pay the energy 

generated by systems emitting little or no CO2. Such financial incentives granted to the 

renewable generation for ensuring their profitability has biased the standard law of supply and 
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demand, and has progressively driven down the electricity prices to the point of dropping below 

the profitability threshold of some conventional plants (e.g. open cycle and combined cycle gas 

turbines). This situation led to the progressive mothballing or even closure (and dismantling) 

of these power generators, which used to assume fundamental roles for maintaining the system 

stability. Indeed, such large units significantly contribute to the grid inertia (frequency stability) 

thanks to the large rotating machines alleviating the sudden frequency deviations. Then, they 

also enhance the network resilience to perturbations (e.g. transient effects during the start-up of 

industrial processes) by increasing the short-circuit power throughout the grid. Finally, 

conventional units are generally highly dispatchable1, thereby constituting the main source of 

operational flexibility in traditional power systems to alleviate both frequency and voltage 

deviations. Renewables have thus a twofold conflicting impact on the flexibility means within 

the system (they increase the need of adjustable resources due to their volatile nature, while 

reducing the existing inertia and stability resources by replacing flexible conventional 

generators in the energy mix). Hence, a more flexible use of renewable generation will need to 

be developed, which can be achieved with new control strategies of the power electronics 

converters located at the interface between the renewable generator and the electrical network. 

Up until now, these converters are mostly used to continuously extract the maximum amount 

of power (maximum power point tracking (MPPT) control) based on weather conditions, but 

these power converters can offer a larger panel of opportunities to improve the grid operation 

(synthetic inertia, bidirectional (upward and downward) reserves if they are operated below 

their maximum power point, voltage control, congestion management and power quality 

improvement) [Clastres10, Renner18, Van de Vyver14]. 

 

Thirdly, most renewable technologies are characterized by an installed power varying 

from several kilowatt (for photovoltaic residential installations) up to a few megawatt (for wind 

farms). It is therefore not technically suitable to connect these sources to the transmission grid 

(at the exception of the largest wind parks). These renewable-based generation systems are 

thus erratically installed throughout the distribution network in a fully decentralized way. 

Originally, distribution systems were not designed to host such an amount of generation since 

the power generation was then exclusively realized by large centralized power plants (e.g. 

nuclear and thermal units). The power was then transported along the transmission grid over 

the country with different connection points with the local distribution systems. The latter were 

thus dimensioned with the single objective of ensuring a secure and efficient supply of 

electricity to the different end-users. Modern distribution networks are consequently subject to 

new difficulties. Contrarily to the transmission systems that are equipped with metering devices 

and state estimation tools for identifying in real time or even anticipating the potential problems 

as well as different mechanisms to quickly solve such issues, the distribution systems are not 

equipped with such technologies. These could thus suffer to overcome voltage violations and 

line congestion problems (both associated with detrimental effects on the electrical equipment) 

that occur more frequently, although over limited periods of time. 

 

Fourthly, due to the intermittent nature of renewable energy sources, back-up 

solutions are needed to cover the energy demand at times of low availability of renewables. 

The energy transition therefore necessitates to carefully design the future energy mix (along 

with the network infrastructure) so as to ensure both the long-term system adequacy, i.e. 

sufficient generation capacity to cover peak demand, and the efficient management of 

generation surplus (to avoid curtailment of renewable generation), all without oversizing the 

global system. 

 
1 Dispatchable power plants can adapt their output power in accordance with an external signal.  
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1.1.2 Solutions for a better integration of renewable energies 

 

Overall, the energy transition is accompanied by a great need of new additional sources 

of flexibility, and it is indispensable to find alternatives less expensive than simply reinforcing 

the existing infrastructure. In this way, the efficient and reliable operation of future power 

systems (integrating a large share of renewable energies) can be achieved by a combination of 

different solutions. 

 

The first one is to increase the interconnection capacity between countries in order to 

create a global (European) system more resilient and secure. In addition to reliability 

considerations, creating a more interconnected grid has also positive economic effects by 

mitigating the electricity price volatility across countries, while minimizing the need of 

aggregated flexibility by taking advantages of opposite effects between neighboring areas. This 

expansion of the cross-border capacity is actually one of the solutions chosen by Elia, the 

Belgian transmission system operator (TSO) through HVDC tie lines with Great-Britain (i.e. 

NEMO project) and Germany (i.e. ALEGRO project). 

 

Then, it is important to diversify the types of technologies in order to minimize the 

positive dependency between the energy produced by the different sites. For instance, the 

energy generated by photovoltaic (PV) panels can adequately complement wind energy since 

the wind speed tends to increase in winter and during the night when there is no PV generation 

(negative dependency).  

 

Another possibility is to encourage the implementation of more active networks whose 

principle is to adapt the consumption to the generation (i.e. demand-side management). This 

involves increasing the involvement of end-users, then referred as prosumactors2, by exploiting 

their deferrable loads with the implementation of new dynamic pricing schemes that allow them 

(typically though cooperatives or aggregators) to adopt a behavior in line with the network 

needs. Such mechanisms necessitate the prior installation of metering devices recording the 

energy exchanges with an appropriate time resolution (such as 15 minutes) in order to 

adequately associate the dynamic prices to the actual period of consumption and/or generation. 

In this context, higher penetration of electric vehicles and electric heat pumps can potentially 

lead to greater demand peaks, but (with adequate incentives that do not lead to uncontrolled 

synchronization effects) may also provide services to the electricity grid by reasonably charging 

up in case of electricity surplus and feeding electricity back into the grid in case of scarcity. 

 

Aforementioned solutions may prove to be expensive and/or slow to deploy in the 

current context, and overall insufficient to tackle future challenges. In that context, the 

integration of electricity storage may bring an interesting contribution to compensate the 

lack of available flexibility. Different technologies (pumped storage hydro, batteries, 

compressed air, etc.) can be investigated, varying along three dimensions, i.e. two pertaining to 

time (response speed and storage horizon), and the energy capacity. First, different dynamics 

(speed at which the stored energy is accessible) are required for solving not only transient issues 

resulting from the temporal discrepancies between generation and consumption, but also the 

more structural problems (such as electricity shortages). Then, one should carefully consider 

the time horizon during which the energy can be stored without significant losses (e.g. ultra-

short-term storage like supercapacitors, daily storage as in batteries, or inter-seasonal storage 

 
2 prosumactors is a contraction of prosumers (end-users having their own generation asset), and actors (end-users 

who are actively contributing to the system through an energy management system). 
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as in large pumped storage hydro stations). Finally, different storage sizes are useful to 

adequately address the needs of the different actors of the electricity system (from small devices 

offering local solutions for, e.g., micro-grids or peer-to-peer energy trading3, up to centralized 

storage utilities designed to efficiently participate in wholesale markets). In complement to 

these electricity-to-electricity solutions, promising technologies such as power-to-gas or power-

to-heat also are also offering interesting alternatives. 

 

An appropriate option regarding storage technologies is offered by pumped storage 

hydropower (PSH) plants due to their ability to quickly and cost-effectively respond to a 

mismatch between generation and consumption. These stations can indeed store a large amount 

of energy with low operating costs. Besides, recent progress in power electronics have enabled 

PSH units to operate with a reliable variable-speed feature in both pump and turbine modes, 

consequently fostering their ability to adjust their output power at the request of the plant owner. 

This favorable environment is currently leading to the development of new technologies such 

as underground PSH units [Alvarado15, Pujades17], in which the lower reservoir is located into 

the ground taking for instance profit of end-of-life mines or quarries that are exploited as natural 

basins for saving civil engineering expenses. These stations have indeed very limited impacts 

on landscape, vegetation and wildlife, and are not limited by topography so that more sites can 

be exploited [Alvarado15]. Such a solution is therefore fully investigated in the Walloon Region 

through the Smartwater project that aims at evaluating the feasibility of the rehabilitation of old 

industrial infrastructures into small to medium-sized PSH stations (from one to tens of 

megawatt) connected to the distribution network [Smartwater18]. The present PhD thesis, 

which has been prepared in the framework of the Smartwater project, contributes to 

provide an answer to this question, by quantifying the profitability of small-to-medium 

PSH stations, as it will be further detailed in the next section. 

 

 

1.1.3 Integration of Pumped Storage Hydro units: economic challenges 

  

Currently, the main component of the profitability of PSH is linked to the valorization 

of flexibility, i.e. typically by participating in electricity markets related to the transmission 

grid. Indeed, in a liberalized environment where generation and retail are decoupled from the 

transmission and distribution of electricity, the system operator generally does not have its own 

resources. The efficient operation of the system is therefore at a large extent apportioned to 

market participants. In particular, the latter are financially incentivized (by the market design) 

to improve their ability to address the different sources of uncertainty within their portfolio for 

securing the success (optimal profitability) of their operational planning strategies. It is thus of 

general interest to improve portfolio management of electricity market participants, especially 

as it can also contribute to the emergence of new actors investing in renewable energies. They 

can indeed rely on robust tools for managing risk in electricity markets, which will overall 

accelerate the energy transition. In that regard, PSH units represent promising solutions for 

market participants to smooth the inherent uncertainties of load and renewable generation. 

 

However, these small-to-medium PSH units are connected to distribution systems, and 

no electricity market designed to address the challenges arising within the distribution system 

is available (but seems vital for solving the issues progressively emerging in an already ageing 

network). But, even in the favorable case of an adequate market implementation in distribution 

 
3 Peer-to-peer (p2p) is a trading mechanism that allows consumers and producers to directly make deals, typically 

through a trading platform, on their own terms (regardless of their size), without a middleman (retailer). The users 

can set their own terms regarding the price, the energy source, etc. 
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systems, the natural location of the PSH unit conditions the contribution to local services such 

as congestions or voltage issues (no need of flexibility if there is no problem in the area). The 

location may also prevent the site to be coupled with an industrial company (that could exploit 

the flexibility from storage to improve its energy profile so as to be more adapted to the system 

needs). Overall, these potential additional revenues for ancillary services are not investigated 

in this thesis. 

 

Even in the context of providing flexibility to the transmission system, operating a 

storage unit alone is not optimal due to their limited energy capacity, which prevents them to 

provide energy for a sufficiently long period of time (typically limited to a few hours) [Al-

Awami11, Archer07, Castronuovo04, García-González08]. In this way, any flexible unit offers a 

real added value when it is included within an existing generation/consumption portfolio. 

Within this trend, electricity markets are observing the increasing development of virtual power 

plants (VPPs), i.e. aggregation of assets from different technologies (gathering capacities from 

consumers, generation, and storage) that are jointly co-optimized as a single entity in a multi-

market environment with the objective to maximize their expected profit. This solution entails 

several assets by taking advantage of the specificities of different units. For instance, most 

thermal plants often have fast-ramping capabilities, which can be useful for coordinating wind 

generation [García-González08]. However, such units are restrained by minimum up/down 

times and are thus exposed to the risk of operating at low-profitability or even at loss during 

some periods in order to take advantage of temporary high prices. It can thus turn out to be 

profitable to wipe out their contribution at convenient times, which can be efficiently achieved, 

for instance, by storage units. Moreover, the mixing of several technologies also contributes to 

reduce the dependence on one form of energy, which can potentially reduce the global 

prediction error. Then, the aggregation of several units mitigates the risk due to contingencies 

such as the loss of a generating unit, by decreasing the volatility of the expected profit over 

time. Finally, it allows VPP to benefit from a pool of flexibility for taking advantage of furtive 

extreme prices and participating in the potentially more lucrative ancillary services. 

 

Overall, managing the portfolio of market players (such as virtual power plants) under 

the liberalized framework is hard, and gives rise to challenging optimization problems, with the 

following characteristics: 

- they have a multi-stage structure (corresponding to the sequential clearing of electricity 

markets at different time horizons); 

- they are dynamic (in the sense that they optimize over a given future time horizon); 

- they have a mix of integer and continuous decision variables (to adequately model the 

technical processes of the different assets); 

- they must be solved under uncertainties (regarding mainly electricity prices as well as 

load and renewable generation); 

- they lie at the frontier of game theory (due to the competitive framework in which the 

actions of a player can influence the market clearing).  

 

 

1.2 Objectives 
 

In light of this exciting environment, this thesis aims at developing mathematical tools 

dedicated to the improvement of the scheduling strategies of market players (virtual power 

plants). Specifically, to adequately account for the relevant revenue streams of actors with 

flexible resources, the work will encompass both medium-term (week-ahead) and short-term 

(day-ahead) perspectives. Indeed, in the current regulatory framework, part of the flexibility is 
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acquired by the system operator in mid-term, and this decision stage is therefore essential to 

ensure the optimal management of the portfolio. 

 

Overall, our contributions relate to two main research areas: 

 

(1) the uncertainty modeling in order to properly represent the future state of the 

stochastic decision environment. 

 

The objective is to cross the barrier between power systems analysis and machine 

learning (a research field specialized in learning, extracting and exploiting the complex patterns 

that are hidden within data) so as to provide state-of-the-art predictive tools. Market players 

must indeed operate within a complex, uncertain environment, and consequently need to rely 

on accurate multivariate and multi-step ahead probabilistic predictions that adequately 

quantify the level of uncertainty associated with each variable over the prediction horizon. 

 

Regarding the day-ahead perspective, the purpose is to directly generate forecasts with 

the highest degree of precision (reduction of the uncertainty space to facilitate the task of the 

subsequent optimization tool). However, for the medium-term horizon (week-ahead or month-

ahead), the accuracy of the forecasting models can be questionable (especially for volatile 

variables such as renewable generation), and the objective will rather be to provide a small 

number of time trajectories (scenarios), representative of the statistical behavior of the 

available historical dataset. 

 

  The scientific contributions regarding this part dedicated to data analytics are: 

 

- J.-F. Toubeau, J. Bottieau, F. Vallée and Z. De Grève, “Deep Learning-based 

Multivariate Probabilistic Forecasting for Short-Term Scheduling in Power Markets,” 

in IEEE Transactions on Power Systems, vol. 34, no. 2, pp. 1203-1215, March 2019. 

 

- J.-F. Toubeau, J. Bottieau, F. Vallée and Z. De Grève, “Improved Day-Ahead 

Predictions of Load and Renewable Generation by Optimally Exploiting Multi-Scale 

Dependencies,” in IEEE Innovative Smart Grid Technologies, Auckland, New-

Zealand, 2017. 

 

- J. Bottieau, F. Vallée, Z. De Grève and J.-F. Toubeau, “Leveraging Provision of 

Frequency Regulation Services from Wind Generation by Improving Day-Ahead 

Predictions using LSTM Neural Networks,” in IEEE Energycon, Limassol, Chyprus, 

2018.  

 

(2) the decision-making (optimization) procedure under uncertainty.  

 

The objective is to capitalize on the impressive amount of work recently realized in 

stochastic optimization, as well as its application on bidding strategies in electricity markets 

[Amin Tajeddini14, Conejo02,b, Kazempour15, Mashhour11, Pandzic13,b]. In this way, as a first 

step, a generic procedure for the stochastic day-ahead scheduling (economic valorization 

with an objective of profit maximization) of virtual power plants with diverse technologies 

(conventional and renewable generation, storage units as well as controllable loads) is 

developed. The complexity of the resulting problem (joint participation in energy and ancillary 

services markets) necessitates to appropriately define the modeling equations (with unavoidable 
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simplifications in the design of the complex properties related to the different utilities) in order 

to obtain a compact (and thus tractable) mathematical formulation that can be reliably solved. 

 

From this starting formulation of reference, the purpose is then to integrate all relevant 

nonlinear characteristics of pump-storage hydro stations with a high time resolution 

within a computationally efficient approach. Indeed, the operation of these small to medium-

sized units is governed by multiple nonlinearities arising from turbine and pump performance 

curves, head effects4 as well as groundwater exchanges between reservoirs and their 

surrounding aquifers. Accurately considering these nonlinear effects is in this way a key 

component to extract the full economic potential of these underground stations. 

 

Then, benefiting from the knowledge developed when implementing the short-term 

decision tool, the mid-term horizon is next considered. In that case, the tractability of the 

problem is strongly jeopardized due to the addition of a supplementary decision stage, and 

requires to couple time horizons with possible conflicting objectives. Indeed, the mid-term 

decisions infer constraints on the short-term management through the obligation to uphold these 

longer-term commitments (e.g. the reserves that were contracted in mid-term must be provided 

in real-time when requested by the system operator) and disregarding this dependence may lead 

to suboptimal or even unfeasible solutions. 

 

  The scientific contributions regarding this part dedicated to optimization in                         

v electrical markets are: 

 

- J. F. Toubeau, Z. De Grève and F. Vallée, “Medium-Term Multimarket Optimization 

for Virtual Power Plants: a Stochastic-Based Decision Environment,” in IEEE Trans. 

Power Syst., vol. 33, no. 2, pp. 1399-1410, March 2018. 

 

- J.-F. Toubeau, S. Iassinovski, E. Jean, J.-Y. Parfait, J. Bottieau, Z. De Grève, and F. 

Vallée, “A Nonlinear Hybrid Approach for the Scheduling of Merchant Underground 

Pumped Hydro Energy Storage,” in IET Generation, Transmission & Distribution, in 

press.  

 

- J.-F. Toubeau,  Z. De Grève, P. Goderniaux, F. Vallée and K. Bruninx, "Chance-

Constrained Scheduling of Underground Pumped Hydro Energy Storage in Presence 

of Model Uncertainties," in IEEE Transactions on Sustainable Energy, in press. 

 

- J.-F. Toubeau, Z. De Grève, F. Vallée, “Technical Impacts on Distribution Systems 

of Medium-Sized Storage Plants Participating in Energy and Power Reserve 

Markets,” in 24th International Conference & Exhibition on Electricity Distribution, 

CIRED 2017, Glasgow, Scotland. 
 

It should be noted that such (mid to short-term) scheduling procedures can also be used 

to interact with long-term studies (planning stage). In particular, once the sizing of a unit 

(regardless of its technology) is theoretically optimized (with the required assumptions to obtain 

a tractable methodology), it is interesting to take these constraints into account in a more 

sophisticated operational strategy. In this way, a feedback from the shorter term operation can 

bring valuable information (regarding realistic scheduling decisions), and the sizing of the unit 

 
4 The head effect is the height variation between water levels within the reservoirs, which gives rise to significant 

impacts on the operation of PSH stations.  

http://applications.umons.ac.be/docnum/c7b423fd-d183-486c-9cec-966066b9b364/8841E761-DA24-4562-B5F4-B2A46E1B9A6F/IET_Toubeau_UPHES.pdf
http://applications.umons.ac.be/docnum/c7b423fd-d183-486c-9cec-966066b9b364/8841E761-DA24-4562-B5F4-B2A46E1B9A6F/IET_Toubeau_UPHES.pdf
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can be adjusted if necessary. However, this relationship between planning and operational 

levels goes beyond the scope of this work. 

 As tacitly underlined in the description of both fields of study, the tools are developed 

with the willingness to exploit with a general vision the complementarities between the way the 

uncertainty is characterized, and how it is integrated in the stochastic decision procedure. 

 

 

1.3 Outline and scientific contributions 
 

Chapter 2 aims at providing a general overview of the current organization of the 

electricity sector, with an emphasis on the Belgian situation. The objective is not to give a deep 

description of the different mechanisms (such as the mathematical subtleties of market clearing 

algorithms or the enumeration of the procedures faced by large power plants when generating 

power), but rather to inform on the different consequences and challenges arising from the 

liberalized market structure. The scope of the description is voluntarily wider than the specific 

context associated with the market-related optimization tools developed in the following 

chapters. Indeed, the objective is to provide a larger vision of the current situation, by coupling 

the perspectives of both electrical and politico-economic worlds. The knowledge of these 

technical and regulation considerations is indeed indispensable to be fully aware of the issues 

related to the massive penetration of renewable energies or the potential repercussions of the 

integration of new solutions such as peer-to-peer energy trading or micro-grids. 

 

Our main contribution with regard to this chapter is the gathering of information 

concerning past, current and future evolutions of the market rules, and to condense it in a more 

structured, simplified document. 

 

Chapter 3 assembles our work in the context of day-ahead probabilistic forecasting in a 

multivariate environment with heterogeneous data of different nature. Indeed, in the current 

competition framework governing the electricity sector, complex dependencies exist between 

electrical and market data. The objective is therefore to provide forecasts under the form of 

intervals or densities (that can thereafter be used in stochastic optimization frameworks such as 

robust [Sun17], interval [Yu05] or chance-constrained [Wu14] approaches), but also under the 

form of time-dependent trajectories for scenario-based stochastic programming [Conejo10]. To 

that end, this work capitalizes on recent breakthroughs in Deep Learning (which are based 

on the use of neural networks with an improved memory management, similar to those 

exploited by major technology companies for products such as Google Translate or the speech 

recognition applications in smartphones) to generate more accurate multi-step ahead forecasts. 

Then, a copula-based sampling strategy (from the predictive densities) is implemented to obtain 

scenarios that embody both temporal information of individual variables (e.g. autocorrelation 

structure, regime switching, etc.) and cross-variable dependencies (statistical relationships 

between uncertain variables). 

 

The main contribution of this chapter is to exploit and adapt new recurrent neural 

networks architectures with rich dynamics to increase the predictive capability of (both 

deterministic and probabilistic) forecasts. Then, two different models for characterizing the 

prediction uncertainty are compared, i.e. a parametric method assuming a Gaussian assumption 

of errors, and a non-parametric approach (that makes no assumption on the underlying 

probability distribution of variables). The value of the forecasts is then compared with other 

neural network approaches (all implemented ourselves in the same software) not only in terms 

of statistical performance, but also regarding the practical impact of the quality of decisions 
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optimized within a stochastic optimization tool (dedicated to the day-ahead multi-market 

scheduling of electricity aggregators). 

Chapter 4 presents the scenario-based stochastic optimization framework on which 

relies the day-ahead decision-making of a virtual power plant participating in both energy and 

ancillary services markets (whose structures are previously described in chapter 2). The main 

objective of the formulation is to properly account for all sources of uncertainties, in particular 

the time-varying amount of energy that will be called on for ancillary services. The purpose is 

indeed to overcome limitations faced by resources such as storage units and demand response 

strategies that cannot guarantee the provision of services for long periods due to their limited 

energy capacity.  

 

The principal contribution is the joint inclusion of both technical and economic effects 

arising from the uncertain real-time activation of allocated reserves. Specifically, the 

formulation takes into account both revenues from the actual provision of reserves and the 

variable cost structure of all considered technologies. This allows to obtain a cost-optimal 

allocation of assets to the different ancillary services over the scheduling horizon. 

 

Chapter 5 builds on the previous scenario-based stochastic formulation to properly 

model the nonlinear effects associated with pumped storage hydro units (head 

dependencies, groundwater exchanges) that cannot be easily modeled analytically (and 

even less easily solved). This computational problem is addressed using a hybrid approach 

combining an optimization tool with an advanced simulation model of hydro plants so as to 

adequately account for intricate dependencies among hydrogeological and electrical parameters 

within the decision procedure. Thanks to the knowledge accumulated within the Smartwater 

project, simulation model of PSH units takes as inputs realistic models coming from the worlds 

of electro-mechanics (for operation of hydraulic and electrical machines) and hydro-geology 

(for water exchanges between reservoirs and surrounding aquifers). 

 

 Compared to the existing literature, the proposed hybrid formulation takes into full 

consideration all nonlinearities inherent in the operation of PSH stations within a 

computationally efficient environment. The principle of this hybrid approach can be extended 

to easily integrate other sources of nonlinearity (e.g. state-space model of the thermal behavior 

of buildings with heat pumps supplying operational flexibility to the grid) without significantly 

affecting the simulation time since different simulators can be run in parallel. 

 

Chapter 6 focuses on the medium-term (typically one week up to one month) 

optimization of a portfolio manager. At this stage, the decisions infer important constraints on 

the short-term management through the obligation to uphold these longer-term (tactical) 

commitments. Up until now, the mid-term decisions of VPPs were usually taken by making 

simplifying assumptions concerning the short-term operation (neglect inter-temporal 

constraints of units, integrate a very limited number of stochastic parameters in the formulation, 

etc.) in order to rely on a single mathematical tool. Here, a different vision is tested. The 

principle is to better account for dependencies with the short-term horizon by including in the 

mid-term formulation a detailed description of the underlying daily decision-making 

procedures. The proposed formulation is modular and flexible so as to comply with any 

portfolio configuration and to follow evolutions of the market regulation policy.  

 

The main asset of the method is to jointly consider tactical and operational decision 

levels so as to cope with the conflicting objectives between the different time horizons. This 

allows taking adequate mid-term decisions based on accurate feedback coming from the short-
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term simulation. In order to hedge against intractability of the resulting problem regarding both 

time and computer memory requirements, this work proposes to firstly learn (as a pre-

processing task) the intricate relationship between mid-term decisions and the resulting 

profit that can be generated in short-term. Practically, this relationship is established by 

training a surrogate model of adequate complexity. Then, the medium-term decision process 

can be solved using the pre-determined model without having to simulate the optimal short-

term VPP scheduling problem (surrogate-based optimization). A second contribution of this 

work consists in the implementation of a new method for dealing with mid-term uncertainty in 

order to include a large number of stochastic variables (e.g. up to ten) into the formulation, 

while conserving a limited but statistically representative set of scenarios. The principle is to 

encompass all dependencies into the same statistical model thanks to non-parametric copulas. 

 

Finally, chapter 7 restates the main methodological contributions, and summarizes the 

important findings. Additionally, some perspectives and recommendations for future research 

are formulated. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

15 

 

 

 

CHAPTER 2 

 

GENERAL FRAMEWORK OF ELECTRICITY 

MARKETS – APPLICATION TO THE 

BELGIAN CASE 

 

 
2.1 Introduction 
 

The 4th September 1882 marks an important milestone in the history of electricity. 

Indeed, on this date, Thomas Edison put into operation the first power plant designed for electric 

lighting at Pearl Street in New-York City. Whereas it could supply (in DC current) up to 600 

kW (i.e. a power then equivalent to 7200 lamps), Edison only had 400 lamps to worry about 

that first day. The power plant consisted in 6 dynamos of a power of 100 kW each, called Jumbo 

dynamos (as a reference to the elephant Jumbo, the biggest elephant in captivity at that time, 

which became famous worldwide after having been bought 10.000 $ from the London zoo in 

1882 by the American showman P.T. Barnum in order to make it the centerpiece of its circus). 

Each Jumbo dynamo of Edison’s power plant was directly connected to a high-speed steam 

engine, which represents a turning point compared to traditional systems composed of ropes or 

belts for transmitting power between engines and dynamos.  

 

The technique of Edison was then quickly improved so that the generation costs were 

significantly lessened around 1900. Consequently, the electricity prices were reduced and 

numerous new applications were developed. Among others, one can cite the electric iron 

(1893), radiators and toasters (1895), television (1926), fridges (1930) or microwaves (1960). 

Moreover, as a result of the success of its exhibition in 1879, where he presented with his partner 

J.G. Halske the world-first electric train in which power was supplied through rails, Werner 

von5 Siemens built an electric tramway of 2.5 km in Berlin at his own expense in 1881. The 

most visionary spirits of the time had therefore the idea of combining both generation and 

transportation systems, creating in this way the first electrical grids.  

 

It is worth noting that towards the end of 19th century, the emergence of AC current 

spread throughout Europe and North America. Such a technology allowed indeed to increase 

 
5 Born with the name of Werner Siemens, he was ennobled in 1888 following its industrial career. He became 

then Werner von Siemens. 
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both the quality and efficiency of generation while facilitating transmission of energy thanks to 

an easy transition between voltage levels6. In this way, the high voltage electrical network 

(backbone structure of the system) is useful to transport significant amount of power while 

limiting the power losses (Joule effect). But, it is also necessary to have multiple decreasing 

voltage levels so as to efficiently integrate small and medium-sized generation technologies and 

safely supply end-users of varying sizes (large industrial clients to households). Then, the AC 

three-phase structure allows economizing conductors (for the same mass of copper, more 

energy can be transported with three-phase networks), while accommodating generation 

technologies (the rotating magnetic field with constant direction and magnitude simplifies the 

design of electrical machines). 

 

In Belgium, the first electrical power plant was constructed in 1885 (i.e. 3 years after 

Edison’s plant) in Brussels. The first local implementations of electrification systems for 

transportation as well as public lighting were observed in the following years. The first clients 

were municipalities that progressively began to light public buildings as well as their streets 

with the aim of improving the security of citizens. Convincing the residential households turned 

out to be more complicated and the first electrical companies resorted to promotional means 

that look rather surprising nowadays. Indeed, potential customers were offered the installation 

of the electrical equipment combined with one year of free consumption. The distribution of 

electric power was then totally uncoordinated at the Belgian level and municipalities entrusted 

to private distributors the supply of electricity to end-users.  

  

In 1956, the company Ebes is created by merging four electrical societies. In the 

meantime, Intercom, which was originally founded in 1901, became one of the biggest energy 

company in Belgium (due to several mergers). Moreover, the merging of other energy 

companies led to the creation of a third private group specialized in the generation and supply 

of energy, Unerg. The transmission system was then highly fragmented among several 

participants and the system regulation was far to be optimal. In order to address this issue, and 

with the aim of increasing the service delivery while achieving economies of scale, the general 

meetings of Ebes and Intercom approved the 10th July 1990 the grouping of both energy 

companies into one private company, to which Unerg will gather soon afterwards. On this 

occasion, Ebes is renamed Electrabel.  

 

Consequently, the structure of the electricity market was boiled down to the interaction 

between two close actors. The first one (i.e. Electrabel after that Ebes, Intercom and Unerg have 

merged) was responsible of optimally operating both transmission and distribution systems, and 

had to that end the control of the whole generating fleet within its control area. Notwithstanding 

the monopoly of the wholesale electricity prices then held by Electrabel, this situation allowed 

an efficient communication between the different competences (e.g. maintenance and 

development of the grid, real-time operation …).  In this way, Electrabel could operate the grid 

with a long-term vision and was able to invest in the best generation units with regard to 

technical, financial and environmental constraints, while preserving the safe and reliable 

operation of the grid. Then, the second actor was in charge of the supply and distribution of 

electricity. This was ensured locally by the intercommunal localized in the considered area. In 

this way, each area was characterized by a different supplier, which had a monopoly concerning 

the retail electricity market. The prices could thus vary among the different zones, even within 

the same province. 

 
6 Currently, high voltage direct current (HVDC) is emerging as an alternative. Such lines have lower losses but 

require more expensive power electronics (in substations), and it is difficult to make connections in the middle of 

the line [EPRS16]. 
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Hence, in order to break down such a monopoly (vertically integrated structure where 

the same company produces, transmit and sells the electricity at a single imposed price), the 

European Union decided by means of three legislative packages (1996, 2003 and 2009) to 

deregulate electricity markets in order to create an unbundled structure with more competition. 

The main drivers7 for this change towards a liberalized and internal energy market were 

originally to ensure fair prices, develop renewable energies and improve security of supply 

thanks to the introduction of competition at both generation and supply levels [EPRS16].  

 

The European Directives were converted by the Member States in national legislation. 

In Belgium, this was translated into the creation of Elia, the current transmission system 

operator (TSO), which was assigned with the task of managing the transmission system 

(through a regulated monopoly). Elia was then legally forbidden to own any generation unit 

and the production of electricity was opened to competition. However, Electrabel had preserved 

its whole generating fleet and it was rather complicated at first for new participants to compete 

with this company deeply rooted in the Belgian electrical energy landscape. 

 

Overall, the liberalization of electricity sector can be summarized as follows [Brijs17]: 

- generation and retail activities are fully decoupled from the transmission and 

distribution of electricity;  

- introduction of competition at both generation and retail levels; 

- organization of energy and ancillary services markets as tools for market players and 

grid operators to ensure the safe and efficient operation of the grid; 

- installation of regulated monopolies for the transmission and distribution of energy; 

- apparition of regulators to monitor both regulated and market-related activities. 

 

The consequences and challenges arising from the deregulation of the electrical sector, 

within the context of transition towards a low-carbon economy (development of renewable 

energy sources, improved energy efficiency and electrification of transportation and heating 

sectors), constitute the main subject of this chapter. In Europe, although a growing interest in 

harmonizing the market rules (and to obtain convergent prices across the different countries), 

many areas have their own (minor) subtleties and there exists almost as many regulation policies 

as countries [ECR15]. The objective is therefore to make the link between the Belgian case 

and the other European regulation mechanisms.  

 

First, an overall overview of the market mechanism is presented in Section 2.2 in order 

to introduce the different actors and interactions between them. Then, the operation of the 

wholesale energy markets is studied in Section 2.3, whereas Section 2.4 focuses on the 

functioning of the retail market. The ancillary services designed to ensure the grid frequency 

stability while maintaining voltage at suitable levels and preventing major line congestions are 

described in Section 2.5. The mechanisms incentivizing market players to maintain the system 

balance are introduced in Section 2.6, whereas the strategic reserve to ensure capacity of supply 

during winter months is described in Section 2.7. The impacts issuing from the penetration of 

renewable-based generation in the current framework of electricity markets are presented in 

Section 2.8, and the relationship between electricity and other energy markets constitutes the 

core of Section 2.9. 

 

 
7 Beyond the techno-economic motivation, European Union believed that economic integration goes hand in hand 

with political integration (so as to create a strong federal Europe and avoid the destructive wars of the past). In this 

way, natural gas and electricity simply followed past examples of integrated European markets such as steel and 

coal (with European Coal and Steel Community (ECSC) 1952) or atomic energy (with Euratom in 1957). 
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2.2 General overview of electricity markets 
 

With the liberalization of the electricity sector, the system is now composed of the 

physical infrastructure (electricity generation, transport and utilization), and of an organized 

electricity market. The physical grid, as represented in Figure 2.1, is commonly subdivided into 

the transmission system (to carry the electrical energy generated by big power plants over long 

distances) and distribution systems (to source the energy to residential and industrial 

consumers). The electrical flows in the system cannot be guided, and follow the path of least 

resistance (Kirchhoff's law), so that end-users are supplied with electricity from mixed sources. 

 

 
Figure 2.1 – Organization of the physical electrical network. 

 

In order to ensure the security of supply and a stable power grid operation, a continuous 

balance between the total generation and consumption (including grid losses due to Joule effect) 

has to be maintained over the electrical system. Indeed, in case of lack of supply, the missing 

electricity is taken from the inertia of the rotating machines that are synchronized with the grid. 

These generators are then decelerating, which leads to a decrease of the network frequency, 

fixed to 50 Hz in Europe8. Likewise, a rise in frequency is observed when the generation 

exceeds the global demand. Such speed variations can be damaging for the machines if the 

rotating speed goes outside its operational limitations. The different units dispose thus of a 

security system, that continuously monitors specific parameters such as the frequency and the 

voltage level, and automatically disconnects the unit when an undesired value is detected. 

Consequently, if a frequency imbalance is not immediately alleviated, the electrical grid faces 

a domino effect of disconnections of generators, which importantly jeopardize its stability. In 

this way, a failure to restore the balance could ultimately lead to a blackout (system collapse), 

typically when the frequency drops below the critical value of 47.5 Hz. 

 

However, due to legal obligations, the Belgian TSO (Elia) cannot possess its own 

generation means and is thus not able to ensure directly by itself the stability of its network. 

Neither can the TSO have large storage units for compensating the imbalances within its control 

area. For this reason, the task of maintaining the grid balance is attributed to other entities, 

 
8 The North-American grid as well as the southwestern part of the Japanese grid are operating at the frequency of 

60 Hz. Electrical devices launched on the Japanese market can thus be switched between both 50 and 60 Hz. 
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commonly known as Access Responsible Parties (ARPs), which take the responsibility to 

compose a balanced portfolio on a quarter-hourly basis. As the balancing area of each ARP 

depends exclusively of its own portfolio, there is no geographical logic in the repartition of the 

total control area (Belgian Elia grid) among ARPs. In this way, for residential households, this 

role is ensured by their electricity supplier and the management of a given part of the 

distribution grid (such as a street) can be shared between several ARPs, each one being 

responsible for different clients. In this way, the total energy exchanged at the Elia grid access 

points (interface between transmission and distribution levels where the energy exchanges are 

measured) is distributed among different ARPs.  

 

Each ARP is thus responsible of the continuous energy balance within its portfolio, 

which can be composed of its own generation, its own consumption, but also of the electricity 

traded with other ARPs. Indeed, in order to help ARPs in their balancing task, different 

opportunities, referred to as electrical energy markets (Section 2.3) are at their disposal for 

exchanging energy (at different time horizons, from years ahead up to close to real-time).  

 

Access Responsible Parties can also import or export electricity via tie lines with 

neighboring countries. Practically, the auctioning of this cross-border capacity, which allows 

ARPs to acquire the right to import or export electrical energy aims at providing a transparent 

market based method for congestion management. 

 

The electrical energy exchanged in the wholesale market has still to be supplied to end-

users connected to the network. This is carried out via the retail market in which retailers, which 

have purchased and/or self-generated the electricity, sell the latter to their clients (Section 2.4). 

The final price covers not only the electrical energy actually delivered, but also grid fees (from 

both transmission and distribution levels) and taxes and levies (e.g. to support renewable 

energies or any other policy target, protect the more vulnerable consumers, etc.). The task of 

predicting the right amount of electrical energy that will be necessary to supply end-users for 

each period of the day belongs therefore to the ARP responsible for the retailer portfolio. 

 

However, in case of real-time imbalance (after closure of energy markets) between total 

load and generation within a control area (imbalance resulting from the sum of the net 

imbalance position of all ARPs), the TSO is responsible of restoring the balance (Section 2.5). 

To that end, the TSO needs to call on balancing services that are classified into different 

products with regard to their response speed (Figure 2.2). First, the frequency containment 

reserve (FCR), or primary reserve, is automatically activated in a decentralized way to stabilize 

the grid frequency after a disturbance (alleviating momentary frequency deviations). In this 

way, when an imbalance occurs, it is thus almost mitigated through the contribution of primary 

reserves from the whole European interconnected transmission system. Then, the automatic 

frequency restoration reserve (aFRR), or secondary reserve, aims at restoring the balance in the 

control zone, thereby relieving the activated FCR within the system. However, if the problem 

persists, the system operator requests the activation of the manual frequency restoration reserve 

(mFRR), or tertiary reserve, which remains online until the situation is resolved.  

 

These reserves were historically provided by conventional power plants due to their 

ability to efficiently modify their output power (hydropower is the most flexible technology, 

gas and, to a lesser extent, coal have also good ramping capabilities, while nuclear is the least 

flexible source). However, the current context is driving the emergence of new actors. The most 

popular ones are currently storage units, demand response strategies (deferrable loads), and 

modulation of the output power of renewable energies through power electronic devices.  
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Figure 2.2 – Activation procedure of balancing reserves [Swissgrid10]. 

 

The procurement of balancing capacity is performed in mid-term (in Belgium, the 

FCR and aFRR is attributed following a weekly procurement procedure, while the remaining 

mFRR volume is purchased via a monthly purchasing cycle), and is remunerated at a fixed price 

throughout the contractual period. The balancing energy can then be requested in real-time 

when necessary for facing residual grid imbalances. The price related to this activation 

covers both the start-up costs (if relevant) and the energy effectively supplied. The flexibility 

remuneration encompasses therefore two contributions: payment for the availability and for the 

actual provision of the reserve. Finally, the TSO carries out a posteriori analysis to check 

whether the reserves are correctly activated and to evaluate the efficiency of the balancing 

service operation. 

 

Whereas the fixed costs related to the availability of the reserve (capacity) are included 

in the grid fees (which are ultimately reflected in the electricity bill of end-users), the variable 

costs resulting from the real-time activation of the reserve are covered by the ARPs who were 

not able to fulfill their balance position. This mechanism, known as imbalance settlement, acts 

as a financial incentive for market players not to deviate from their schedule (Section 2.6). 

 

It should be emphasized that the activation of FRR (aFRR and mFRR) is neutralized on 

the balancing perimeter of the ARP so that the participation to these balancing services cannot 

lead to portfolio imbalances (that have to be financially compensated). The contribution of 

FCR, however, is more complex to measure (due to its decentralized and automatic activation) 

and is assumed to be symmetrical in time (same amount of upward and downward reserves 

activated throughout the day). Consequently, the contribution of FCR is not offset from the 

ARP’s portfolio. 

 

The balancing services, along with the voltage control, congestion management and 

black start capabilities9, are referred to as ancillary services. 

 

For complementing the electrical energy and ancillary services markets, capacity 

remuneration mechanisms have been introduced in an increasing number of European countries 

in order to guarantee the stability of the electrical system in case of demand peaks [EPRS16]. In 

 
9 The black start services are used to re-energize the transmission system (in case of black-out) and provide start-

up power to generators which cannot self-start. Black start service providers are thus generators that are able to 

restart without electricity. 
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Belgium, it materialized with the strategic reserve (Section 2.7), which was designed to cover 

the structural shortage10 in electricity generation during the winter period and consists in a 

reserve of power coming from both off-market power plants and demand-side management 

offers [Elia14]. Overall, the strategic reserve is a capacity-based payment designed to minimize 

the interferences with energy and balancing markets. In this way, this mechanism differs from 

balancing reserves, which are used to offset the sum of residual imbalances of ARPs in real 

time. Hence, even in period of shortage when the strategic reserve is activated, the TSO can 

still face residual imbalances and have to resort to the balancing market. The advantage of the 

strategic reserve can be summarized in three contributions. Firstly, it participates to the security 

of supply of the country during situations of scarcity and prevents thus the extreme solution of 

shedding grid users (who are not remunerated during this forced outage). Secondly, this 

strategic reserve preserves the balancing reserves that are not intended to address such structural 

deficit in generation. Finally, it avoids the mothballing or dismantlement of fully functional 

power plants by giving them remuneration for the provision of the strategic reserve. 

 

The balancing and strategic reserve markets are designed with the underlying objective 

to minimize interactions with electrical energy markets so as to avoid that market participants 

intentionally contributes to weaken the network stability in order to take advantage of this 

situation on balancing and capacity markets. 
 

Finally, each ARP must compensate the active electrical losses (power dissipated as heat 

in transformers and conductors) on the federal grid related to all its network connection points. 

In order to distribute the contribution associated with each ARP in a transparent and non-

discriminatory way, the financial compensation is expressed as a percentage of net offtakes of 

each ARP portfolio. From the 1st of January 2018, the applicable percentages are [Elia18]: 

- Peak hours (weekdays from 8h00 until 20h00): 1,30%; 

- Off-peak hours (weekdays from 20h00 until 8h00 and weekends): 1,20%. 

 

The general structure of liberalized electricity markets with the different interactions 

among participants is summarized in Figure 2.3. 

 

 
Figure 2.3 – General overview of electricity markets [Elia13]. 

 
10 The structural shortage of a control area is evaluated on the basis of the statistical computation of the Loss of 

Load Expectation (LOLE), which reflects the number of hours during which the total generation will not be able 

to cover the load, taking the interconnections into account for a statistically representative year. 
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Transmission System operator (TSO) 

The transmission system operator is responsible for managing both economic and 

technical aspects related to the transmission system, namely: 

- Build and maintain the electrical grid; 

- Assure the non-discriminatory (equal) access to all customers; 

- Guarantee the security and quality of power supply; 

- Control and manage the energy balance, while preventing voltage violations and line 

congestions; 

- Promote efficient and transparent electricity markets. 

 

In Belgium, the transmission system is managed by Elia, which is responsible for the 

totality of 380-220-150 kV network as well as for 94% of the high voltage network (70-30 kV). 

The connection to the grid depends on the installed power. Typically, if the maximum power is 

lower than 25 MW, the unit must be connected to the distribution network, whereas clients 

(generation or consumption) with an installed power equal or greater than 25 MW are connected 

on the Elia grid. 

 

It should be noted that interconnections between European electricity grids enable cross-

border electricity exchanges, while allowing countries to help each other in case of need. This 

collaboration between TSOs is managed by the European Network of Transmission System 

Operators for Electricity (ENTSO-E). 

 

Distribution System Operator (DSO) 

 Distribution companies (such as Ores for 197 municipalities in Wallonia) are 

responsible for the safe and reliable operation of the distribution network. Their role is also to 

connect end-users, install electricity meters and communicate the metering to the suppliers. 

Similarly to the transmission system, the costs associated with the management of the network, 

known as grid fees, are passed on to the final clients (both consumers and producers).  

 

Generation companies (producers) 

 In the liberalized electricity market, the objective of power producers is to maximize 

their profit by selling their energy to end-users. In Belgium, generation units (such as nuclear, 

gas-fired, coal-fired, combined heat and power units, etc.) that are directly connected to the Elia 

grid or with a nominal capacity higher than 25 MW must sign a CIPU (Coordination of the 

Injections of Production Units) contract with Elia. The purpose of such a contract is to inform 

Elia of the scheduling of the generation fleet. This starts from one year-ahead with information 

regarding the availability of power plants to the short-term (day-ahead and intraday) 

communication of the quarter-hourly scheduling of each generation unit. Moreover, this 

contract provides a legal framework so that Elia can use the capacity that is not used by 

generators, thereby providing additional flexibility to the power system that can be employed 

to either complement the FCR, aFRR and mFRR reserves, or for voltage control, congestion 

management or black start purposes. 

 

End-users (households and companies) 

 The end-users (or consumers) are distributed throughout the system, and can be of any 

size from residential households (connected in the low voltage network that buy electricity in 

the retail market) to major industrial actors (connected to the high-voltage grid that can directly 

participate in the wholesale electricity markets). Up until now, the aggregated demand was 

typically considered as inelastic, i.e. independent to price variations, but the large-scale 
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integration of volatile renewable generation is opening the door to demand-side management 

(such as deferrable loads). 

 

Storage utilities 

In Belgium, there is no legal status for storage units. These are thus alternatively 

considered as electricity consumer (in charging mode) and generator (in discharging mode). A 

significant consequence is that such utilities have to pay grid fees and taxes for both offtakes 

and injections towards the network, which significantly reduce their profitability. 

 

Retailers 

The retailers buy electrical energy on wholesale markets, and then sell this energy 

(= supplier) to end-users that are not participating to the wholesale market. All suppliers 

compete in the retail market to sell electricity to final consumers, who can freely choose their 

supplier based on the different offers (fixed-price or variable-price, deal over one year or several 

years, traditional or green generation mix, etc.).  

 

The electricity market liberalization has led to the differentiation of the final price into 

different components: energy commodity, grid fees as well as taxes and levies. The suppliers 

can only compete on their price offer regarding the energy component.  

 

Access Responsible Parties (ARPs) 

All market players participating to the wholesale market (and/or ancillary services) must 

sign an ARP contract with Elia. All others parties (consumers and producers) must therefore be 

represented by an ARP that exchanges the energy in their stead. In many other countries, ARPs 

are often referred to as Balancing Responsible Parties (BRPs). 

 

Regulator 

The electricity markets are controlled by an independent organization called a regulator, 

which is entrusted to ensure transparency and competitiveness of electricity markets, with the 

driving goal of serving the public interest. The regulator determines or approves the electricity 

market rules and monitors the operation of the market. The objective is to ensure fair prices 

concerning the different products and services. If needed, it also investigates the suspect cases 

of abuse (when market power is exercised). The (federal) Belgian organism in charge of the 

regulation of the Belgian transmission system is called the CREG (Commission of Regulation 

of Electricity and Gas), while the entity at the European level is the Agency for the Cooperation 

of Energy Regulators (ACER). 

 

 

2.3 Wholesale energy markets 

 

In a liberalized market, the energy can be freely traded between ARPs. Two types of 

electrical energy exchanges are coexisting, i.e. over-the-counter (OTC) markets and “power 

exchanges”. The characteristics and the different products associated with these two wholesale 

markets are summarized in Table 2.1. In OTC markets, the participants negotiate one with 

another without a central physical location. In this way, two dealers (ARPs) can directly trade 

electricity volumes and prices without others knowing the details of the transaction. Such 

exchanges have thus little transparency, and are subject to fewer regulations than traditional 

markets. The main advantage of such contracts is that they can be completely customized to fit 

a customer’s requirements, giving more flexibility to the involved parties. Then, in parallel to 
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these decentralized markets, “power exchanges” offer (fully electronic) anonymous platforms 

for trading energy with higher levels of security and liquidity (due to the many participants). 

 
Table 2.1 

Main characteristics of wholesale electricity markets. 

 OTC market Power Exchanges 

Characteristics 

• Bilateral 

• Not anonymous 

• Standard or customized products 
 

 
 

• Multilateral 

• Anonymous 

• Standard products 
 

 
 

P
ro

d
u

ct
s Long term Forward contracts Futures contracts 

Short term Spot OTC contracts 

EPEX Spot Belgium: 

Day-ahead market 

Intraday market 

 

Electrical energy markets are differentiated according to their time horizon, starting 

years before the actual delivery until even after the supply of energy. An overview of the 

temporal ordering of electricity markets, with a particular emphasis on “power exchanges”, is 

shown in Figure 2.4.  

 

 
Figure 2.4 – Rationale of wholesale energy markets. 

 

Next to forward (over-the-counter) trading, the futures market allows exchanging 

energy long before actual delivery, thereby ensuring to both buyer and demander to fulfill their 

basic need for a long period.  

 

Then, every day at 12h00, the (spot) day-ahead wholesale market is cleared through an 

auction mechanism at the end of which both clearing price and volume are obtained for the 24 

hours of the next day. At 14h00 the day before the physical delivery, i.e. after that the day-

ahead market results are unveiled (typically around 13h05), each ARP must provide Elia with 

nominations, i.e. the balanced schedule on a quarter-hourly basis of its power injections and 

offtakes in order to help Elia predicting the volume and distribution of power exchanges on its 

network at different times. Such nominations are essential, since the market is cleared without 
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accounting for grid constraints within the Belgian market zone11, which can lead to voltage 

violations or line congestions. The nominations allow thus anticipating potential problems, and 

to take the appropriate measures. Indeed, the transmission capacity constraints are checked in 

a second stage (with the information from nominations) by the TSO, with potential re-

dispatching actions to prevent future congestion. In Belgium, this re-dispatching affects 

currently 0.08% of the annual electricity production, and increases the operating cost by 

approximately 0.3%, i.e. 2.9 million Euros per year [Van den Bergh15,a]. 

 

At the same time (14h00 the day before delivery), the intraday market is opened up and 

allows market players to face forecast errors by exchanging energy until close to real-time. 

 

 

2.3.1 Long-term markets 

 

Long-term markets run from years before delivery up to the day-ahead. Such forwards 

(customized products traded bilaterally over-the-counter) and futures (standardized products 

traded on “power exchanges”) are contracts to exchange a fixed amount of electricity at a certain 

time in the future for a price agreed when the contract is made.  

 

Long term markets provide security for market players who can sell or buy their base 

load well in advance, typically from one to three years. This market is thus perfectly suited for 

inflexible plants with a steady output power such as nuclear plants and run-of-the-water hydro 

units but also for large consumers12 eager to pay a regular price for their base consumption. 

Globally, the benefits of the long-term markets can be summarized in three respects 

[Ausubel10]. First, the long-term markets address risk by allowing the participants to secure 

long-time prices and quantities, limiting interactions with the much more volatile spot market13. 

Secondly, the participants having a more balanced position when entering the spot market will 

be less attempted to distort bids for ensuring the acceptance of their offers14, which improves 

the market power. Thirdly, the long-term markets facilitate investments in new resources. 

 

The available products can be divided into base, peak and off peak profiles, and allow 

exchanging a fixed amount of energy during the whole contractual period that can cover either 

a day, a week, a month, a quarter (3 months) or a year. One of the most commonly traded 

electricity products is the baseload future for one year, which corresponds to the delivery of a 

fixed amount of energy for each hour of the year. The futures prices mostly depend on fuel 

prices, due to their significant contribution in the marginal costs of conventional generation. 

 

The Belgian power futures can be traded on the ICE Endex and the European Energy 

Exchange (EEX). As an example, the total volume of monthly futures (divided into temporal 

products) exchanged on the EEX platform during 2014 and begin of 2015 is illustrated in 

Figure 2.5. 

 
11 A market zone, or bidding zone, generally corresponds to a Member State, although there exists some exceptions 

(Germany and Austria jointly constitute only one market zone, whereas countries such as Norway and Sweden 

contain multiple bidding zones). 
12 Only large industrials directly connected to the transmission grid are allowed to participate to electricity markets. 

The purchase of electricity for other clients is usually carried out by their electricity supplier. 
13 The day-ahead market prices can go beyond 80 €/MWh in case of high demand, and drop to zero (or even below) 

in cases of low demand. 
14 The market participants that are under the obligation to sell (or purchase) a large quantity of energy in order to 

be balanced are likely to make offers at the maximum (or minimum) market price for ensuring to be cleared by 

the market algorithm, which can distort the traditional law of supply and demand and negatively impact prices.  
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Figure 2.5 – Volumes exchanged in the EEX Power futures [EEX15]. 

 

The importance of such long-term markets was demonstrated during the California crisis 

of 2000-2001. This crisis was indeed characterized by insufficient forwards or futures 

contracting, and a situation of supply scarcity. Therefore, during this period, the balance 

between supply and demand was distorted such that prices shot up. The producers took 

advantage of the situation by exacerbating even more the high prices. The electricity suppliers 

who did not dispose of their own generation means faltered to bankruptcy, and the market 

ultimately collapsed. 

 

 

2.3.2 Day-ahead market 
 

On the day-ahead “power exchange”, the electricity is traded at 12h00 for the 24 hours 

of the following day. The day-ahead market (DAM) consists in an anonymous trading platform 

where the cleared price (MCP) and volume (MCV) are set by the intersection of the demand curve and 

the supply curve as represented in Figure 2.6.  

 

 
Figure 2.6 – Determination of the day-ahead market clearing price (MCP) and volume (MCV). 

 

The demand curve is a monotonically decreasing function where demand bids are 

ranked with respect to their price offer from the buyer that accept to purchase at the highest 

price to the lowest offer. Similarly, the supply curve is a monotonically increasing function 

where the sale bids are classified from the most competitive price offer to the one associated 

with the highest price. Under normal circumstances, the contracts are published no later than 

13h05 (i.e. the clearing procedure is completed 1 hour after the market closure). 

 

Practically, the market clearing procedure aims at maximizing the social welfare of all 

participants by matching the offers from producers and bids from consumers so as to obtain the 
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clearing prices and volumes for each time period of the horizon. As represented in Figure 2.7, 

maximizing the social welfare amounts to find the equilibrium between the maximization of 

producers and consumers surplus. 

 

 
Figure 2.7 – Definition of social welfare. 
 

In Belgium, the market operator is EPEX SPOT Belgium (or Belpex). The energy 

exchanged on this platform represents currently around 30 % of the total yearly consumption 

(~ 83 TWh), whereas it was only 20 % in 2013. 

 

The ARPs who do not wish to participate themselves in the wholesale market may 

delegate this task to traders. This situation is referred to as indirect participation on the Belpex 

spot market. This is an excellent solution for ARPs with less trading experience since 

operational trading activities are taken care of by a service provider who trades on the ARP’s 

behalf [Belpex15]. 

 

The Belgian market zone is implicitly coupled with other European market zones 

through a mechanism known as market coupling. The principle is to match the highest 

purchase bids with the lowest sales offers, regardless of the bidding zone in which they have 

been introduced, while accounting for the available cross-border capacities. The energy and 

interconnection capacity are thus traded together, and the market participants have 

automatically access to transmission capacity by submitting orders to the “power exchange”. 

This mechanism results in a price harmonization between the coupled market zones when 

sufficient capacity is available. In this regard, market coupling represents a major step towards 

an integrated European market that increases the overall welfare for society. 

 

The coordination between market zones is essential since electricity flows cannot be 

imposed by commercial trades but are subject to the law of physics (Kirchhoff's law). In this 

way, when France imports electrical energy from Germany, part of the exchanged power will 

flow across Belgium instead of following the transmission lines existing between both 

countries. The impact of all transactions therefore needs to be considered on the available 

capacity at each border. 

 

Figure 2.8 shows the aggregated net positions for 2016 for the different market zones 

across Europe (from 2015 to 2016, the net positions changed slightly). The negatives numbers 

show the total electricity imports whereas exports are associated with positive values. It can be 

seen that the Belgian importations are more than 6 times higher than the exportations. 

 



CHAPTER 2     GENERAL FRAMEWORK OF ELECTRICITY  

     MARKETS – APPLICATION TO THE BELGIAN CASE 

28 

 
Figure 2.8 – Aggregated net positions in Central Western Europe region, with imports (negative values) and 

exports (positive values). 

 

In Central Western Europe (CWE), the Flow-based market coupling model is used 

since 2015. We refer the interested reader to [Elia15] for more detailed explanations concerning 

the whole methodology. 

 

 It should nonetheless be mentioned that the market participants have access to different 

products to optimally manage their portfolio in day-ahead. Firstly, they can rely on limit 

orders, which are characterized by a specific volume and price that are offered for a particular 

one-hour segment of the day. A buy limit order is executed (matched by the market) if the final 

market clearing price is lower than the offered price, whereas a sell limit order is in-the-market 

only if its price is higher than the clearing price. Beyond this basic product, market players can 

also resort to more complex products, known as block orders. Block orders are currently of 

four types, namely regular orders, profile orders, linked orders and exclusive orders. The last 

two are often referenced to as smart orders due to their even more complex nature. 

 

Regular blocks orders, as illustrated in Figure 2.9 (a), link a number of consecutive hours 

characterized by the same volume and the same price for each selected hour. If one of the 

selected hours of the order cannot be matched, then the whole block order will not be matched. 

Profile block orders, however, as represented in Figure 2.9 (b), allow users to submit a block 

order for several non-consecutive hours of a delivery day as well as to submit different volumes 

for each selected hour. 

 

 
Figure 2.9 – Regular block order (a), and profile block order (b). 
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It is also possible to define links between block orders (linked block orders), which 

means that the acceptance of one block order (daughter block) depends on the acceptance of 

another block order (mother block). In this way, several block orders can be linked together, 

thereby creating a family, which allows to explicitly consider technical and economic 

constraints of units. For instance, as represented in Figure 2.10, a first block may include the 

start-up costs of a generation unit, and daughter blocks accounting for fuel costs may be linked 

to this first block. 

 

 
Figure 2.10 – Illustration of linked block orders. 
 

  Finally, an exclusive order is defined as a set (currently limited to maximum 24) profile 

block orders where at most one block among the whole set can be accepted. 

 

All these block orders couple (link) hourly periods between them, and introduce non-

convexities in the search space (market clearing procedure), which considerably increase the 

complexity of finding an optimal solution (which is typically obtained and revealed at 13h05). 

 

After the clearing of the day-ahead market (and the notification to market participants 

of which orders are accepted and which are off-the-market), each ARP has to submit a balanced 

portfolio at 14h00 to the TSO (the so-called nominations). These nominations give the planned 

generation or consumption for every connection node to the transmission grid (which contrast 

with trading which is performed at the portfolio level). Moreover, the nominations have a 

quarter-hourly time resolution whereas energy exchanges have an hourly time step.  

 

 

2.3.3 Intraday market 
 

The intraday market opens up at 14h the day before delivery, and enables market 

participants to exchange energy up to five minutes before delivery. The ARPs can thus meet 

any unexpected changes in their electricity portfolio (due to forecast errors and unexpected 

events), and subsequently correct their day-ahead nominations. For instance, if an ARP faces 

an unexpected power plant outage after the day-ahead market closure whereas the unit was 

committed to be online between 18h00 and 20h00, the ARP can buy energy on the Intraday 

market until 17h55 for the 18h-19h period, and until 18h55 for the 19h-20h period. 

 

The Intraday market is an organized (transparent and anonymous) platform, where 

participants can continuously submit generation and demand bids so that the market is also 

cleared continuously. Practically, it consists in an open order book where the participants can 

see all the other (anonymized) orders. In this way, one market player can bilaterally accept the 

bid of another market player, which results in different prices for each trade.  
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The principle is that the demand bid with the highest (more competitive) price is 

matched with the selling offer with the lowest price, provided that the demand price exceeds 

the selling price. However, the market price is settled according to the order that was submitted 

on the market first. In this way, when a participant submits on the trading platform a demand 

order with a price of 50 €/MWh, and that another participant submits afterwards its selling order 

with an asking price of 30 €/MWh, the resulting transaction price will be 50 €/MWh. In case 

two selling (or buying) orders have similar prices, the first submitted order will be automatically 

prioritized (the volumes have no impact on the prioritization). 

 

Within the objective to achieve a more efficient integrated European electricity market, 

the European Commission has established guidelines where the cross-zonal transmission 

capacity (still available after the day-ahead market) is implicitly allocated in the Intraday 

trading. This resulted in an initiative called the XBID Market Project involving the TSOs from 

12 countries (including Belgium). It allows thus ARPs to benefit not only from the available 

Intraday liquidity15 within their bidding zone, but also from the available liquidity in other areas, 

provided that there is sufficient cross-border capacity. 

 

An overview of the main specifications associated with both day-ahead and Intraday 

markets is given in Table 2.2. 

 
Table 2.2 

Overview of the main product specifications [Belpex18]. 

Specifications DAM CIM 

Instrument duration 1h 1h 

Trading window 
14 days before delivery until 12h 

the day ahead of delivery 

From 14h the day ahead of delivery 

until 5 min before delivery 

Publication time 
Usually, no later than 13:05 the day 

ahead of delivery 
Immediately  

Order type Limit orders and block orders Limit orders and block orders 

Volume bounds [0.1, →[ MWh [0.1, →[ MWh 

Fixing process Auction Continuous trading 

Price bounds [-500, 3000] €/MWh [-99 999.99, 99 999.99] €/MWh 

Price accuracy 0.01 €/MWh 0.01 €/MWh 

Elia nomination gate 

closure time 
14:00 day-ahead 14:00 day after delivery 

 

The residual real-time portfolio imbalances are taken care of by the TSO in the balancing 

market (Section 2.5), but the costs associated with this reserve activation are financially 

impacted on the unbalanced ARP (Section 2.6). 

 

 

2.4 Retail energy markets 

 

The structure of the retail market is designed such as to enable to the different customers 

to take advantage of attractive prices thanks to the competition among different suppliers. The 

simplified framework is represented in Figure 2.11. Firstly, a new customer needs a connection 

contract with the Distribution System Operator responsible of the area (e.g. Ores for Mons). 

Then, he has to choose his electricity supplier among the private companies operating in his 

area. In order to practice as an energy supplier in a given area, the interested company needs to 

 
15 The market liquidity represents the volume of activity within the market, i.e. the extent to which the 

commodity can be exchanged with stable prices. 
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sign beforehand an access contract with the DSO. It is indeed by means of this contract that the 

DSO passes on the transmission and distribution grid fees to the suppliers. 

 

 
Figure 2.11 – Operation of the electricity market at the distribution level (retail market).  

 

Currently, the billing between the supplier and its customers depends on the yearly 

consumption. Hence, for avoiding any conflict of interest, the yearly electricity meter reading 

is not carried out by the supplier but by the DSO (neutral party regarding the energy prices). 

However, the billing mechanism is expected to change in the future with the rolling out of smart 

metering devices that will allow the implementation of time-variant pricing to better align 

consumption with renewable generation. 

 

 

2.5 Ancillary services 
 

With the separation between generation and transmission tasks (issuing the electricity 

market liberalization), the TSO does not have the resources to alter injections or offtakes, and 

is therefore forced to buy such flexibility capacities from market participants (generators and 

consumers). These flexible resources, or reserves, are necessary to ensure the continuous 

balance of the system (for the frequency stability) while maintaining voltage at suitable levels, 

preventing line congestions, and guaranteeing the grid recovery in case of major incident by 

means of black-start resources. The services are commonly known as ancillary services.   

 

 

2.5.1 Balancing market 
 

The Belgian high-voltage grid is part of a larger interconnected system. The 

coordination of the operation and the development of this European system is handled by the 

European Network of Transmission System Operators for Electricity (ENTSOE). The members 

of ENTSOE are shown in Figure 2.12. 

 

ENTSO-E requires that each TSO allows a maximum deviation of the frequency level 

of ± 20 mHz within its control area. Elia is even more demanding and aims at maintaining the 

frequency within a range from 49.99 Hz to 50.01 Hz. Indeed, uncontrolled frequency deviations 

quickly generate grid instability, which may eventually degenerate into a blackout. For 

preventing such an extreme scenario, each TSO disposes of balancing reserves that are made 

up of several products and enable the TSO to restore the grid frequency in case of imbalances. 

These reserves are classified according to their response speed into the following categories: 

- Frequency Containment Reserve (FCR), or Primary reserve (R1); 

- International Grid Control Cooperation (IGCC); 

- automatic Frequency Restoration Reserve (aFFR), or Secondary reserve (R2); 
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- manual Frequency Restoration Reserve (mFFR), or Tertiary reserve (R3); 

- mFRR non-reserved power; 

- Inter-TSO exchanges. 

 

Throughout the dissertation, the terms ‘frequency services’, ‘reserves’ and 

‘operational flexibility’ are used interchangeably to refer to ‘balancing services’. 

 

 

 
Figure 2.12– Map of ENTSO-E members [ENTSOE18]. 

 

The volume of the FCR (fixed to 3000 MW on ENTSO-E level) is distributed every 

year between the different control zones according to their weight in the synchronous area of 

Continental Europe. The sizing of the FRR capacity is then delegated to the national TSOs, but 

ENTSO-E nonetheless sets boundary conditions for the sizing procedure to guarantee the safe 

and reliable operation of its transmission grid. In this way, the FRR capacity in both in upward 

and downward directions cannot be smaller than their respective highest system imbalances. In 

Belgium, the required total volumes for 2018 are 81 MW for (symmetrical, i.e. both upward 

and downward) FCR, 139 MW for (symmetrical) aFRR and 830 MW for (upward) mFRR. 

 

As previously mentioned, the volumes of FCR and aFRR reserves are auctioned in 

week-ahead, and the mFRR is contracted on a monthly basis. It should be noted that market 

players can bilaterally transfer reserve (FCR, aFRR and mFRR) obligations to each other via a 

secondary market. 

 

Currently, the reserve procurement is mainly organized at the national level. However, 

one of the main target of the European Commission regarding the electricity markets is to 

harmonize the balancing mechanism across countries so as to achieve a more efficient 

procurement of reserves, while reducing the risk of shortage in reserve supply for TSOs, thereby 

increasing the overall system security. Obtaining such an integrated European balancing 

market is a complex task due to the varying market designs across countries [ENTSOE15]. 

Market zones are indeed characterized by different clearing mechanisms (“pay-as-bid”, “pay-
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as-cleared”, etc.)16 with different activation rules (sequential activation of offers based on a 

merit order, or parallel activation of all participants on a prorate basis), have different times at 

which the procurement of both capacity and energy is carried out (month-ahead, week-ahead, 

day-ahead, etc.), propose different types of products (symmetrical, asymmetrical, etc.) for each 

service with different time and size (in MW) resolutions, etc. 

 

However, as a first step, the IGCC was introduced in 2012 in order to enable TSOs to 

exchange opposing imbalances (thereby reducing the activation of opposite reserves in different 

zones). Then, since the first week of August 2016, a cross border FCR auction is carried out for 

German, Dutch, Swiss, Austrian, Danish and Belgian market zones, introducing competition 

between foreign flexible resources (and shifting FCR obligations between countries). Another 

important guideline that dictates the evolution of the balancing market design is the switch from 

technology-oriented products (development of new products to foster participation of a 

particular technology) to technology neutral products (so as to ensure a level playing field for 

all technologies). In Belgium, it is translated into the progressive opening of the market to the 

flexibility distributed in all layers of the grid (both transmission and distribution grids) and an 

anticipated simplification of the proposed products. 

 

Then, the sizing of the reserve capacity is expected to shift from a static approach (on 

the current annual basis) towards a dynamic reserve sizing dynamic, i.e. over smaller time 

periods, e.g. on a monthly, weekly, daily or hourly basis [van Stiphout17]. 

 

Frequency Containment Reserves (FCR) 

The frequency containment reserve (FCR) consists in an automatic activation of power 

reserves in case of a frequency deviation. The participating units detect automatically frequency 

fluctuations and adjust their output power in a very short time for a period up to 15 minutes. 

The participation requires the installation of specific equipment able to continuously measure 

the grid frequency and to adapt their profile to reach the half of contractual primary reserve 

within 15 seconds and the whole reserved power over a timeframe up to 30 seconds. The reserve 

has to be available during each contracting period and the amount of activated power is linearly 

dependent of the frequency deviation Δf. Moreover, ENTSO-E imposes a symmetrical and 

linear activation of R1 with a total activation at a Δfmax equal to ±200 mHz. All these technical 

requirements are shown in Figure 2.13. 

 

 
Figure 2.13 – Technical requirements for a local activation of primary reserve. 

 
16 In a pay-as-bid system (such as in Belgium for the procurement of both reserve capacity and reserve energy), 

the market participants who are in-the-market (i.e. for which the offer has been accepted by the market) receive 

the price at which they bid in the market, resulting in a potentially different price for each player. It contrasts thus 

with the pay-as-cleared system (such as the day-ahead energy market) where market participants all receive the 

uniform market clearing price.  
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International Grid Control Cooperation (IGCC) 

The International Grid Control Cooperation (IGCC) aims at taking advantage of 

opposite imbalances between neighbouring system operators. Practically, the IGCC consists in 

the pooling of the imbalances of each participating market zone, which allows avoiding the 

activation of balancing reserves in opposite directions and reduces thus the total volume of 

activated regulation reserves. This operation is carried out continuously with a 5 seconds 

refreshing rate of the imbalance signal and is limited by the available transmission capacity on 

borders as well as the amount of reserved aFRR of each zone17. The residual imbalance within 

a given control area must be addressed by the concerned TSO. 

 

Automatic Frequency Restauration Reserves (aFRR) 

The symmetric aFRR reserves are controlled automatically by the TSO and activated 

centrally based on a set point that is sent continuously to the reserve provider (Figure 2.14). The 

full activation of the reserve in one direction (upward or downward) must be performed in 7.5 

minutes, and remains active for the time needed. 

 

 
Figure 2.14 – Activation of the automatic frequency restauration reserve. 

 

Manual Frequency Restauration Reserves (mFRR) 

The mFRR enables the TSO to both alleviate the aFRR in case of significant imbalance 

in the control area (so as to offset frequency variations) and to cope with major congestion 

problems. Unlike the FCR and aFRR that are automatically activated, the mFRR is activated 

manually upon a specific request from the TSO. Any grid user (generation or consumption) 

whose resources comply with certain technical requirements (e.g. the power must be fully 

delivered within 15 minutes after request) can sign a contract with the TSO to take part in the 

service. 

 

mFRR non-reserved power 

In order to create the possibility to offer bids on the balancing market from flexibility 

coming from all grid users, aggregators and smaller production or storage units, Elia launched 

in July 2017 the “Tertiary Control Non-Reserved Power” (formerly called “bidladder”). The 

offered volumes are submitted until 45 minutes before real-time through the BMAP (Balancing 

Market Platform), and reserve providers are subsequently activated by Elia in case of need. 

These are only remunerated for the provided energy (and not for their availability). When 

activated by Elia, the reserve provider should activate the offered volume as soon as possible 

within a margin of 15 minutes. 

 

 
17 The imbalance of a control area that is pooled in the IGCC procedure cannot exceed the total volume of 

secondary reserve contracted by the concerned TSO. 
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Since it is desired that grid customers can valorize their flexibility independently from 

their basic requirements (e.g. non-shiftable consumption), they can offer their flexibility to new 

players, known as Balancing Service Providers (BSPs). If the BSP differs from the ARP of the 

same access/delivery point, a procedure (referred to as transfer of energy), has to be carried out 

to fairly distribute the energy flows among actors.  

 

Inter-TSO support 

Finally, as a last resort, available capacity from emergency support with neighboring 

TSOs can be used. The availability is non-firm and non-guaranteed. 

 

 

2.5.2 Voltage control 
 

As above-mentioned, generators with output power exceeding 25 MVA are linked to 

Elia through the Coordination of the Injection of the Production Units (CIPU) contract. In this 

respect, they have to contribute to the control (i.e. generation and absorption) of reactive power 

so as to maintain the voltage plan within acceptable limits (automatic regulation). The units 

receive a fixed remuneration to cover one-time expenses (IT communication with Elia, 

technical adaptations for expanding the technical band of the unit), and an activation price 

covering the reactive energy actually produced or absorbed. 

 

Since the voltage control is a local issue (the voltage levels vary across the grid based 

on the distribution of power generation/consumption), Elia selects the participating units on the 

basis of their location. Elia currently contracts some 6300 MVAR of reactive generation 

capacity and 3200 MVAR of absorption capacity. The contracts have a one year duration. 

 

If the voltage level is too low (due to a high load), Elia asks to generate additional 

MVARs, whereas it resorts to increasing the local consumption of reactive power when the 

voltage level is exceeding the upper limit. Penalties are applied in case the automatic control is 

not well executed. 

 

 

2.5.3 Black start 
 

The TSO has to make sure that it can restore its grid in the event of a blackout, by relying 

on generation units that can start up without an external electricity supply (e.g. hydro 

generation). The service provider receives a fixed payment, regardless of whether it is activated 

or not. The participating units must also be able to operate smoothly at any time and have to 

meet certain technical criteria such as a minimum power level (100 MW) and a grid restoration 

time. The units are selected on the basis of their costs and location. 

 

 

2.6 Imbalance settlement 
 

The system imbalance (SI) is the imbalance that would be faced by the system (Belgian 

control area) without activation of the power reserves. There is no direct measurement of this 

imbalance and it is therefore necessary to introduce the fundamental notion of Area Control 

Error (ACE). The ACE is defined as the unintentional residual imbalance between supply and 

demand after the activation of reserve (due to the imperfection inherent to the balancing 

market). The ACE can be determined by taking the difference between the scheduled and 
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measured values from the exchanges at the borders of the TSO control zone, taking into account 

the effect of frequency bias (i.e. linear approximation of the FCR contribution (in MW) within 

the control area).  

 

Illustration of the concept of Area Control Error (ACE): 

As an illustrative example, let us consider the case of an interconnected grid composed 

of two control areas A and B. If entity A has a disturbance in its balancing area, such as the loss 

of a generator of 500 MW, the FCR response in both areas will automatically increase the 

generation (or decrease the consumption).  

 

Consequently to the loss of 500 MW in entity A, the energy flows from area B to area 

A will increase, and the ACE of entity B will therefore show a positive value (indicating a 

surplus of generation). In this way, if the frequency bias is not taken into account in the ACE 

equation, the balancing mechanism of entity B would react by decreasing the total generation 

(so as to restore the energy balance). The frequency bias term allows thus the FCR response of 

areas adjacent to an unbalanced zone to continue supporting the interconnection frequency.  

 

Concerning the area in shortage, if the frequency bias is not considered, the ACE would 

be higher than -500 MW due to the automatic activation of FCR within its control area (e.g. 

ACE equal to -400 MW if 400 MW of importation for 100 MW coming from its own FCR). 

However, it is essential to alleviate as soon as possible the automatic primary control. 

Therefore, the frequency bias adjustment brings back the ACE value to a quantity as close as 

possible to the deficit caused by the disturbance, namely around -500 MW. 

 

The purpose of the TSO is to minimize the ACE in order to maintain the grid frequency 

while keeping the cross border exchanges as scheduled. When the ACE is unbalanced, Elia has 

to activate FRR in compensation. This activation has a price, which is directly reflected by the 

imbalance tariff (single pricing scheme18). The imbalance tariffs depend mainly on two 

important concepts, namely the net regulation volume (NRV) and the marginal price. 

 

The net regulation volume (NRV) is calculated for each quarter of an hour by taking 

the difference between all the activated volumes for upward regulation (GUV = Gross Upward 

regulation Volume) and the activated volumes for downward regulation (GDV = Gross 

Downward regulation Volume) requested by the TSO (including the exchanges carried out via 

the International Grid Control Cooperation). A positive value of NRV correspond thus to a 

negative imbalance of the system that had to be counterbalanced by the activation of upward 

reserves, and vice-versa. It can therefore be concluded that: 

 SI = ACE- NRV   (2.1) 

 

The second indicator is the marginal price which is defined by two different regimes, 

depending on the type of activated reserve. In this way, for a particular quarter of an hour, the 

marginal incremental price (MIP) corresponds to the highest price paid by the TSO for 

upward regulation, whereas the marginal decremental price (MDP) is defined by the lowest 

price received by the TSO for downward regulation. It should be noted that the MIP will always 

be positive (i.e. the TSO will always pay a producer for extra power in situation of scarcity) 

while the MDP can be negative when the global generation is much higher than consumption. 

 
18 The single pricing means that ARPs with a negative imbalance are faced with the same price as the ARPs with 

a generation surplus, resulting in only one imbalance price for each player. This contrasts with dual pricing where 

separate prices are determined for positive and negative imbalances.  
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Indeed in such a case, the TSO is forced to activate reserve far in the merit order, where the 

prices are likely to be negative. The money flows are then reversed and the market players with 

a negative imbalance are paid for their excess consumption.  

 

Table 2.3 summarizes the imbalance settlement procedure. The imbalance tariff applied 

to each ARP depends on both its own imbalance and the imbalance of the control area. 

 

The imbalance of a given ARP is the quarter-hourly difference between its total 

injections and its total offtakes within its balance perimeter. In this way, a positive imbalance 

is characterized by a surplus of generation, while a negative imbalance consists in a lack of 

generation to cover the total demand. It is nonetheless worthwhile to recall that the activation 

of ancillary services, at the exception of the FCR (considered as symmetrical), is neutralized in 

the portfolio of ARPs, and cannot lead to imbalances. 

 

The choice of the penalty price (MDP or MIP) is defined by the NRV sign within the 

control area (for the considered quarter-of-an-hour). If the value of the NRV is positive, the 

MIP is applied in the tariff for balancing energy and conversely, the MDP is applied in case of 

a negative NRV. 

 
Table 2.3 

Imbalance settlement. 
  

 

 

 

 

 

 

The term α is an additional financial incentive applied to the regulation costs in case of 

important imbalance of the system.  

 

It can be seen that four possible situations can be encountered: 

 

- There is a surplus in the TSO area and the ARP is in surplus as well:  

The imbalance of the ARP amplifies the severity of the global situation in the control area. If 

the situation is not critical enough to lead to negative prices (Section 2.8.1), the ARP is still 

paid for the surplus of production but at a price lower than it could have expected in the 

electrical energy market. 

 

- There is a surplus in the TSO area while the ARP area is in shortage: 

The imbalance of the ARP is helping the global situation in the TSO control area. The ARP is 

thus paying at a reasonable price for its negative imbalance and can even be paid in the extreme 

case of a negative MDP. 

 

- There is a shortage in the TSO area while the ARP is in surplus: 

The positive imbalance of the ARP is helping the global situation of scarcity within the TSO 

area and the ARP is therefore paid accordingly. The amount corresponds to the MIP, which is 

determined by the highest price paid by the TSO for activating the upward reserve. 

Consequently, the remuneration received by the ARP increases with the severity of the 

imbalance within the TSO control area. 

 

P = Production 

C = Consumption 

Situation in the TSO control area 

Excess (P>C) 

NRV < 0 

Shortage (P<C) 

NRV > 0 

ARP area 

Excess (P>C) 

Positive imbalance 

MDP – α 

TSO pays ARP 

MIP 

TSO pays ARP 

Shortage (P<C) 

Negative imbalance 

MDP 

ARP pays TSO 

MIP + α 

ARP pays TSO 
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- There is a shortage in the TSO area and the ARP is in shortage as well: 

The negative imbalance of the ARP worsens the situation of scarcity of the TSO area. In such 

a case, the ARP can face major penalty if the situation necessitates activating power reserve 

located far in the merit order. 

 

Overall, with an imbalance settlement characterized by a single pricing 

mechanism, the ARPs that degrade the system balance are penalized, while those that help 

maintaining the system balance are rewarded.  

 

 

2.7 Strategic reserve 

 

Each year, the Belgian Federal Minister for Energy may give to Elia the task of 

constituting a strategic reserve (SR) and sets the required reserve volume in MW. The strategic 

reserve may change over years depending on the requirements concerning the reliable and 

efficient security of supply. The strategic reserve is awarded to market participants through a 

competitive tendering procedure at the end of which the selected tenderers sign a contract with 

Elia for the winter period lasting from 1 November to 31 March.  

 

The strategic reserve is activated once a risk of an energy shortage has been detected. 

To that end, two indicators, which are respectively referred to as economic and technical 

triggers, are used. The economic trigger is based on an automatic detection of shortage risk 

based on the day-ahead market clearing results. The technical trigger, however, is activated 

either in day-ahead or in the course of a day, based on forecasts of total generation and 

consumption. 

 

 

2.7.1 Economic trigger 

 

The first way of detecting a potential shortage is carried out at the end of the day-ahead 

market clearing process, when the market clearing volume (MCV) is not sufficient to cover the 

bids offered at the maximum price of the market (i.e. 3000 €/MWh). This situation is 

represented in Figure 2.15. If the available volume of strategic reserve (SR) contracted by Elia 

is not sufficient to cover all the 3000 €/MWh demand, this SR volume is prorated on this 

demand for ensuring the maximum welfare among market participants (the rest of the load 

needs however to be shed). 

 

 
Figure 2.15 – Activation of the economic trigger of strategic reserve. 
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2.7.2 Technical trigger 

 

The second trigger for activating the strategic reserve is based on the continuous 

monitoring of the grid situation carried out by Elia. The first evaluation occurs in day-ahead no 

earlier than 18:00, when Elia disposes of the relevant information to perform a reliable analysis 

and the technical trigger can be activated until 4 hours19 before real-time. However, Elia can 

exceptionally resort to using strategic reserve closer to real time, taking into account the 

activation time of the units participating in the strategic reserve, if this activation allows 

avoiding the load shedding of end-users who are not paid during this outage.   

 

Contrary to the activation by economic trigger that results from an automatic process, 

the activation by technical trigger is the outcome of a whole decisional process in which the 

human contribution is important. 

 

 

2.8 Impacts of renewable generation 

 

A mechanism of Green Certificates (GC) was introduced in Belgium in order to promote 

the electricity generation from renewable sources, namely solar, wind, hydraulic, biomass and 

cogeneration. The purpose of the GC mechanism is to increase the share of renewable energy 

in the total electricity generation. Indeed, currently, despite the absence of fuel costs, green 

energy remains more expensive than conventional generation (fossil and nuclear). This can be 

explained by the intrinsic costs related to the technology as well as their decentralized nature 

potentially requiring expensive grid connection costs. However, such technologies are 

generating no or very few CO2 emissions and do not require handling toxic waste.   

 

The principle of the support mechanism is to provide an additional income to green 

electricity producers through Green Certificates for each MWh generated. The financial value 

of these certificates is not fixed and is subject to its own tailored market. Indeed, the electricity 

consumers (by the intermediary of their supplier) have to provide a number of GC proportional 

to their consumption. Hence, if they do not have their own renewable generation, they have to 

buy these GC to green electricity producers. In case of lack of GC in the market, their price will 

rise and ultimately foster investment in renewable generation. Since the percentage of GC that 

consumers have to provide is fixed by the authorities, the mechanism provides a regulatory 

framework allowing to progressively converge towards this given percentage of green 

electricity generation at the scale of the considered area. Moreover, with this system, the extra 

costs related to renewable generation are distributed among all consumers by virtue of the fact 

that their emergence is beneficial for everyone, in terms of both environment preservation and 

long-term security of supply. 

 

The value of the GC is not fixed and fluctuates with respect to supply and demand. It is 

actually the demand that is boosting supply since the quota of GC is increasing each year, which 

constitutes the main asset of the system. However, the Walloon government has set up a 

complementary mechanism designed to ensure a minimum price for Green Certificates. The 

local transmission system operator Elia, as part of its public service task, has indeed the 

obligation to purchase each extra GC at a minimum price of 65 €. 

 

 
19 This duration is the reasonable period for estimating accurately the risk of structural shortage taking into account 

of the time necessary for market players to submit nominations in Intraday. 
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The Green Certificates are awarded to certified green electricity producers in proportion 

of the amount of generated energy. However, the number of received GC also depends on two 

criteria, i.e., the estimated additional costs of the technology as well as its environmental 

performance. In this way, the green electricity production is compared to the generation of a 

combined cycle gas turbine (CCGT) plant, which specifically emits 456 kg of CO2 for each 

MWh of electricity. Concerning out-of-the-water hydroelectricity and wind turbines, the 

generation of 1 MWh of electricity entitles receiving 1 Green Certificate. However, the amount 

of CO2 emissions generated during the preparation of the biomass reduces the number of 

perceived GC, whereas the heat production allows cogeneration to receive more than 1 GC for 

each electrical MWh. 

 

For enhancing attractiveness of residential photovoltaic (PV), the Walloon government 

had originally (in the 2000s) applied a multiplying (>1) coefficient to the number of GC for 

each generated MWh. This coefficient first allowed convincing the most skeptical20 to invest in 

the technology but overall annihilated the main asset of the whole support mechanism by 

considerably inflating the supply of GC, thereby preventing the system from converging 

towards the targeted percentage of renewables. In order to solve this issue, since the 1st March 

2014, the photovoltaic installations in Wallonia of a power ≤ 10 kVA are subject to the 

Qualiwatt plan and can no more pretend to Green Certificates. With the Qualiwatt plan, the new 

residential PV installations are profiting of an annual premium during 5 years paid by the local 

DSO. The amount of the premium is fixed so that a return on investment can be achieved in 8 

years. 

 

 

2.8.1 Impact on market prices 

 

The financial incentives granted to the renewable generation for ensuring their 

profitability has biased the standard law of supply and demand. Indeed, due to the GC 

mechanism that remunerates renewables for each MWh generated, it is more profitable for such 

units to sell the electricity at low prices than to be off-the-market (i.e. curtailed). The increase 

of renewables has therefore progressively driven down the electricity prices on electrical energy 

markets to the point of dropping below the profitability threshold of some conventional plants. 

For instance, in the wholesale markets, the price of electricity is around 40 €/MWh whereas the 

fuel cost for producing the same energy for gas-fired units is worth 50 €. As represented in 

Figure 2.16 for the day-ahead market, this may even result in negative prices at certain times of 

low demand. 

 

 
Figure 2.16 – Day-ahead market clearing without (a) and with renewable energy sources (b) in case of low load. 

 
20 The Green Certificates, added to the regional bonus for reducing installation costs, the reduction of the electricity 

bill and the absence of taxes for the injections towards the grid, made the investment highly (too much?) lucrative. 
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2.8.2 Impact on balancing services 

 

With the growing share of stochastic (and difficult to predict) renewable generation, the 

energy exchanges are carried out closer to real-time, which is reflected by the increased 

importance of the day-ahead market. In this respect, the European TSOs expect a growing need 

of balancing reserves (as well as the creation of an inertia service with a response time much 

lower than FCR) to alleviate real-time imbalances. 

 

If these renewable sources progressively replace conventional units, less reserve 

capacity will be available. In this context, solutions such as (big centralized and small-scale 

decentralized) storage utilities as well as demand response strategies are envisaged to alleviate 

this issue. However, renewables could also be part of the solution and provide cost-effective 

ancillary services by relying on an adequate control of the power electronics devices that are 

located at the interface between the installation and the electrical grid. It has indeed been 

demonstrated that wind turbines are perfectly adapted to quickly modulate their output power, 

and even deliver bidirectional (upward and downward) reserves if they are operated below their 

maximum power point [Martinez12]. 

 

The procurement of frequency control by wind turbines is however very limited or even 

non-existing in most countries, mainly due to two reasons. The first one originates from the 

financial incentives such as Green Certificates that are remunerating renewables for each MWh 

generated. Indeed, this external revenue combined with the profit realized by selling energy to 

consumers currently exceeds what renewable technologies could obtain from delivering 

ancillary services. Then, the contribution of renewable generation in frequency regulation is 

hampered by the regulation framework. Indeed, the time resolution for the reservation of 

balancing services is typically of one day and flexible resources have to be fully available during 

this 24 hours period, which often turns out to be prohibitive for power production with high 

volatility. Moreover, in most countries, the ancillary services reservation currently takes place 

in mid-term (typically in week- or month-ahead), which prevents them from efficiently 

contributing since they have limited knowledge on the daily energy that will be available with 

sufficient reliability (due to their poor predictability over such a long horizon). 

 

To overcome these barriers and to foster participation of energy-constrained 

technologies (storage, demand response and modulation of RES), major stakeholders related to 

European electricity markets (e.g. energy regulators and political representatives of each 

country) gathered in June 2015 in Florence and have identified important guidelines for the 

future operation of electricity markets.  

 

Specifically, it was agreed that the reservation of balancing capacity should shift 

towards shorter time horizons, from mid-term to day-ahead [ECR17].  

 

Then, in order to bring costs further down, innovative sizing and allocation strategies 

for balancing services such as dynamic (hourly) reserve sizing (e.g. high forecasted RES output 

power involves higher upward reserve requirements) need to be encouraged.  

 

Moreover, it was emphasized that renewable power producers should follow the same 

regulation than conventional generation and compete with them in the current liberalized 

environment without any external support [ECR15]. 
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2.8.3 Impact on energy market design 

 

In order to reach the European climate and energy targets, it is necessary to change the 

current electricity generation mix (to reduce pollutant emissions). However, the current market 

design might not be tailored to properly facilitate this transition.  

 

Currently, most electricity markets (including Belgium) are organized as energy-only 

markets, where generators are only remunerated for the energy actually sold to the market 

(expressed in €/MWh during a specific period). Assuming perfect competition (no player 

exercises market power to deviate the prices for its own individual benefit), the electricity price 

is fixed by the equilibrium of supply and demand, which is equal to the variable generation cost 

of the most expensive units cleared by the market. In this way, power plants with relatively low 

variable costs can realize an inframarginal rent (Figure 2.17) whereas a peak load unit with 

higher variable costs (that determines the market price) only cover their marginal costs21. The 

number of (profitable) operating hours of these plants is not sufficient to cover their investment 

and maintenance costs, resulting in their shut-down (which is associated with a dangerous 

decrease of the total generation adequacy). In Belgium, as early as winter 2012-2013, the total 

import capacity of 3500 MW was at certain periods fully used to cover shortages. 

 

 

 
Figure 2.17 – Return on investment of conventional generation. 

 

This issue resulting from the energy-only market structure can be addressed through 

adequate capacity mechanisms. The principle is to generate an additional source of revenue, 

which values the installed generation capacity, in addition to the profit realized in the energy 

market (inframarginal rent). The objective is to obtain a generation mix that allows 

compensating the unpredicted fluctuations of the renewable-based generation in the short-term 

while ensuring the system adequacy in the long-term. 

 

At a longer time horizon, in a market with only renewables, the clearing prices can no 

longer be determined by the marginal cost of renewable power plants (which is close to zero) 

since it would lead to capital cost recovery problems for renewable producers. A new price-

setting mechanism has thus to be designed and implemented to ensure stability of the system. 

 

 

2.8.4 Impact on network operation – what markets cannot see… 
  

The large-scale integration of renewable generation raises questions about the operation 

of the electric power grid in terms of stability regarding both frequency and voltage controls. 

 
21 Inframarginal rents are needed for power plants to recover from fixed generation costs. 
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In traditional (directly coupled synchronous generator based) power systems, 

oscillations of the frequency are, in a very short time frame (less than 1 second), directly 

counteracted by the inertial response of the directly-connected synchronous generators (by 

using their kinetic energy). In the absence of such units, the transient stability may thus be 

jeopardized. This issue has been studied and solutions have been proposed (for wind power-

electronic connected units). Indeed, in such systems, the inertial behavior can be emulated 

through an appropriate control scheme using the rotating inertia of the turbine, i.e., by the so-

called synthetic inertia. 

 

In contrast with the network frequency, the voltage is a vector quantity in the sense that 

it varies across the different nodes of the grid. Maintaining an acceptable voltage plan is an 

important task since both under- and over-voltages can lead to operational issues and even be 

destructive for the electrical equipment. In this way, a variable-speed industrial motor can be 

cut out for voltage variation around ± 15 %. In case of loss of conventional capacity, this voltage 

control needs to be provided (cost-effectively) by other resources. In order to avoid installing 

costly devices such as flexible alternating current transmission systems (FACTS), the voltage 

control can be performed by the injection of reactive power from renewable technologies, which 

has an effect on the dimensioning of both the components and the grid connection. 

 

Finally, since the conventional synchronous generators are connected in parallel to the 

power system, they allow decreasing the resulting short-circuit impedance Zsc throughout the 

grid. Hence, with the loss of such generators, this short-circuit impedance Zsc will increase, 

thereby increasing the short-circuit power Psc (inverse of short-circuit impedance Zsc) across the 

network. This value of Psc is an image of the grid sensitivity to perturbation (higher values of 

Psc are associated with a more robust and insensitive electrical network). One should thus 

remain careful when integrating renewables, and should above all strive to guarantee a smart 

and controlled energy transition. 

 

 

2.8.5 Peer-to-peer energy trading 
 

 The roll-out of renewable generation distributed throughout the system has raised the 

opportunity for all end-users (regardless of their size) to directly trade energy between 

themselves, by allowing consumers to take advantage of the unused energy generated by other 

users. This mechanism, known as peer-to-peer energy trading, is further boosted by the 

increased accessibility of small-sized storage applications (due to significant costs reductions), 

and enable to bypass retailers (and the costs associated with the margin of profit of these 

middlemen).  

 

  The main benefit of peer-to-peer exchanges is the improved differentiation among the 

different products. In this way, the players can set their own terms (regarding price), and have 

the freedom to trade energy with friends or family, to choose a particular technology (such as 

solar or wind) and to prioritize local generation. 

 

 This paradigm can be even pushed further with a cooperation between these actors with 

the aim of intelligently manage all small and decentralized systems to relieve network issues 

and ensure the energy balance.  
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2.8.6 Microgrid paradigm 
 

 In the same line as the operational issues associated with the integration of renewable 

generation, the development of microgrids22 needs to be carefully studied.  

 

The main driver of such microgrids is not environmental (e.g. for consuming the energy 

more locally since the Kirchhoff’s law governing the electrical flows were already ensuring 

that), but is purely economic. The main business model is to offset the load and generation 

locally so that the electrical bill is only related to the residual load of the microgrid. This enables 

the actors to considerably decrease their invoice by bypassing part of the costs related to grid 

fees and taxes. Indeed, the total grid fees and taxes (at the country level) are distributed among 

the different client connected to the grid, in proportion to their consumption/generation. By 

netting the profiles of a group of clients, the aggregated energy exchanges lead to grid fees and 

taxes significantly lower than the sum of individual contributions. The problem is that the 

earnings realized by the microgrid have to be re-distributed among the rest of the grid 

customers, ultimately benefiting the players able to constitute a microgrid (at the expense of 

small actors with limited financial resources). 

 

Overall, it is important that the way towards improved (techno-economic) efficiency in 

power systems do not prevail over the concept of solidarity. 

 

 

2.9 Interactions of electricity markets with other energy markets 

 

The variable costs of conventional power plants depend on both fuel costs and the need 

to purchase CO2 emission allowances for their CO2 emissions. The amount of CO2 generated 

during combustion is a function of the carbon content of the fuel.  In this way, natural gas is 

emitting around 502 kg CO2 for each MWh of electricity, compared with 987 kg for hard coal 

and 1,170 kg for brown coal [EIA18]. The CO2 emission allowances are traded on international 

exchanges (centralized market with transparent prices). 

 

Hard coal, natural gas and crude oil are traded on global markets and have thus a 

transparent price. Lignite or uranium on the other hand are not traded on global markets, which 

makes their prices much less transparent. This originates from the transportation costs of lignite 

that are so high that the lignite power plants are usually located closely to the lignite pits. For 

uranium, legal conditions restrict mining and trading.  

 

The market prices for natural gas, hard coal and CO2 emissions for 2015-2016 are 

illustrated in Figure 2.18. It can be seen that the market related to CO2 emissions allowances is 

completely malfunctioning, with very low prices that do not properly penalize coal power 

plants, allowing countries such as Germany to offer very competitive prices (but with 

deleterious environmental effects). It can nonetheless be observed that the CO2 price was more 

volatile in 2016 than in 2015, which can be attributed to the uncertainty associated with 

European political decisions in the light of the Paris agreement. 

 

 
22 A microgrid is a localized energy system composed of loads, electrical generation and flexibility resources (such 

as storage) that operates as a single actor connected to the main grid. It can even be disconnected from the backbone 

system (islanded mode), and operates autonomously (very rare in practice due to the technical challenges). 
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Figure 2.18 – Daily day-ahead gas prices from EEX, monthly hard coal prices from API#2 ASK(CIF ARA), and 

daily CO2 futures prices, all traded through 2015/2016 [TenneT17]. 

 

 

2.10 Conclusions and perspectives 

 

 This chapter was devoted to describe the general situation (particularized to the Belgian 

case) resulting from the liberalization of electricity markets. In this way, after the construction 

of the first power plants at the end of the 19th century and the subsequent implementation of 

localized small-scaled electrical systems, the grid progressively became more robust and 

interconnected with a centralized, vertically integrated structure. Then, in the second half of the 

1990s, the European Union has decided to deregulate electricity markets with the aim of 

ensuring fair prices and improve security of supply, by introducing competition at both 

generation and retail levels. Such a regulation, combined with a strong will to move towards 

decarbonisation of the overall energy system, has facilitated the development of renewable-

based generation, typically from wind and photovoltaic sources. However, their stochastic 

behavior is inferring an increased need of flexibility in the system, need that has triggered 

technological advances, most noteworthy regarding storage utilities and electric vehicles. 

Consequently, numerous actors of varying sizes (from smart buildings to big industrial estates) 

have seen an opportunity to become more resilient with respect to energy shortages during 

critical periods, while bypassing grids fees and related taxes by developing autonomous areas 

with a self-centered energy management. The general structure of electricity markets can be 

summarized as represented in Figure 2.19, with the co-existence of energy, ancillary services 

and capacity mechanisms to ensure stability of the system from a long-term perspective to real-

time considerations. 

 

 
Figure 2.19 – General structure of electricity markets. 
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In the following years, the main challenge for the power industry will be to cleverly 

harmonize and accommodate the current regulation policies so as to favor the generalized 

implementation of smart solutions for integrating the renewable-based generation and 

promoting flexibility within the grid, while preserving the legacy infrastructure (so as to 

safeguard security of supply). The latter constitutes indeed not only a resilient backbone 

structure guaranteeing solidarity among interconnected areas, but also a reliable system 

allowing energy exchanges between remote locations, and, as a result, global energy efficiency 

at a large-scale. The regulation should therefore create a favorable environment ensuring a level 

playing field among all technologies that enable all actors to take advantage of their resources.  

 

However, this development of active customers at all layers of the system leads to the 

question of how will the levels interact. More particularly, how to foster an efficient energy 

systems integration with adequate roles for each actor is a key issue to address in the following 

years. Indeed, the end-user (residential client) is not, in essence, a genuine economic 

stakeholder of the energy sector and it is important to protect him from professional actors while 

increasing its awareness of energy challenges to improve its daily behavior and stimulate him 

to contribute at a wider scale (e.g. through cooperatives, aggregators, etc.). 

 

The market design should moreover remain flexible enough to leave the door open to 

new technical breakthroughs. The energy sector is indeed constantly changing and the whole 

system must be tailored and prepared to adapt to both expected and unexpected evolutions. In 

this regard, the further digitalization of the energy system will break the barriers hindering the 

development of active consumers by facilitating information exchanges. 

 

Globally, underestimating the importance of the regulatory framework may potentially 

lead to adverse situations. Firstly, the energy transition should be carefully monitored with 

regard to current need and sufficient investments in conventional power plants constituting the 

basis for stability and inertia of the grid should be maintained as long as necessary. Secondly, 

a significant development of energy-autonomous areas may jeopardize the viability of the 

current infrastructure and eventually cause its progressive dismantlement if poor incentives for 

global ancillary services are provided. Finally, the way towards improved efficiency in power 

systems should not prevail over the concept of solidarity nor negatively impact the bill of end-

users. Indeed, although it is important that motivated and contributing (load-responsive) actors 

are rewarded, there is a strong responsibility of decision-making authority to protect the most 

exposed part of the population. One should not forget the original purpose of electrical grids, 

namely provide energy to all end-users at a competitive price. 

 

This chapter aimed thus at giving an overview of the liberalized context currently 

governing the electricity sector in Europe (with a particular focus on the Belgian specificities). 

This knowledge is indeed essential to take full advantage of the economic potential of a 

portfolio participating in electricity markets (chapters 4 to 6). However, it is also necessary to 

properly account for the numerous uncertainties associated with the optimization procedure (so 

as to ensure robustness of the decisions), and the prediction of such fluctuating and uncertain 

variables is addressed in the next chapter. 
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CHAPTER 3 

 

SHORT-TERM MULTIVARIATE 

PROBABILISTIC FORECASTING 

 

 
3.1 Introduction 

 

Our society is currently undergoing a major energy transition, mainly driven in the 

electricity sector by an increased penetration of renewable energy sources, an improvement of 

the energy, and reduced emissions of greenhouse gas. In parallel, in order ensure the success 

and foster this energy transition, European Union has decided to set up a competitive 

environment (liberalization of the electricity sector) with underlying mechanisms encouraging 

the actors to invest and act towards decarbonization. As a consequence, intricate dependencies 

have been developed between electrical and market data, and this relationship strengthens over 

time. 

 

This context gives rise to complex stochastic optimization problems, not only for system 

operators but also for all the other players that have indeed to operate within a complex 

(multiple platform markets) and uncertain (renewables sources, load, market data) environment. 

Hence, the success of their planning strategies, and as a corollary of an affordable energy 

transition, strongly relies on the knowledge of the system state (through adequate prediction 

tools) at time horizons which go from day-ahead to quasi real-time [Pinson07- Thatte13]. 

 

However, due to the complex nature of the signals of interest (arising from their non-

stationarity and nonlinear nature), predictions over such time horizons are ineluctably vitiated 

by errors. The uncertainty mainly originates from noise in the explanatory variables (e.g. due 

to the chaotic nature of the weather system) as well as model misspecifications. Hence, 

traditional point (deterministic) forecasts that only predict the conditional mean of the signal 

are providing very limited information to decision-makers. Indeed, in order to ensure decisions 

that are robust with regard to forecast errors and unexpected events, it is also necessary to 

quantify the level of uncertainty associated with predictions. 

 

In this way, different approaches for obtaining such uncertainty regions (or by 

extrapolation densities) can be found in the literature for respectively wind power [Felder10, 

Kavousi-Fard16, Pinson10, Quan14, Wan14, Zhang14], PV generation [Wan17], load [Khosravi10, 
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Quan14] and electricity prices [Shrivastava15, Zhao08]. Then, techniques such as robust, interval 

and chance-constrained optimization were developed to hedge against uncertainties, by relying 

on probabilistic forecasts. However, these optimization techniques have two main drawbacks. 

Firstly, robust and interval techniques are known to yield conservative (and thus sub-optimal) 

solutions since these are intrinsically designed to be optimal with regard to extreme scenarios 

[Bruninx16]. Chance-constrained optimization offers a less conservative and more practical 

approach by considering a probability for satisfying each constraint, but such a formulation is 

very difficult to solve in practice (due to the non-convexity of the resulting problem). Secondly, 

since the uncertainty characterization (under the form of intervals) provide little information on 

the intertemporal relationship between time steps (i.e. actual time variations, or ramps), the 

quality of subsequent decisions may be affected [Pinson08]. 

 

Consequently, for time-dependent decision problems that have to be carried out on a 

regular basis (such as the daily participation in electricity markets), scenario-based stochastic 

optimization provides a practical framework that yields efficient (less conservatives) outcomes 

in general [Morales-Espana14]. But this technique, which optimizes the expectation of some 

loss function (e.g. profit of an electricity retailer) under a forecast distribution, can be associated 

with tractability issues, depending on the number of scenarios (time trajectories) used to 

represent uncertainties. In this respect, implementing a methodology able to provide a limited 

set of representative scenarios is highly valuable [Dupacová03, Gröwe-Kuska03].  

 

This problem is tackled in [Morales10,a], where an autoregressive moving average 

(ARMA) model is developed for individual wind sites, and a stationary variance-covariance 

matrix is thereafter used for integrating the spatial correlation among series. However, this 

approach does not allow to properly take into consideration the uncertainty associated with 

particular conditions (e.g. higher uncertainty during strong winds). In [Ma13, Papaefthymiou08, 

Pinson08], the scenarios are constructed by computing the complex covariance matrix based on 

a multivariate Gaussian distribution assumption. In [Quan15], a nonparametric neural network 

dedicated to the quantification of prediction intervals (PIs) is firstly implemented. Then, these 

PIs are used to estimate an empirical cumulative distribution function, from which scenarios 

are generated. But, due to the independent nature of the sampling methodology, these scenarios 

do not account for the time-varying structure of forecasts errors.  

 

In this work, this issue is overcome using a copula-based strategy to sample the 

multivariate distribution originating from probabilistic forecasts. This allows to generate 

scenarios that comply with both the predicted distributions and interdependence structure of 

variables. Overall, the main contributions of the chapter can be summarized as follows. 

 

Firstly, in order to increase the predictive capability of (both point and 

probabilistic) forecasts, the work capitalizes on recent breakthroughs in Deep Learning 

(with the use of neural networks with improved memory) to generate more accurate 

multi-step ahead forecasts. Specifically, we make use of deep Bidirectional Long Short Term 

Memory (BLSTM) neural networks, a particular type of recurrent architecture with rich 

dynamics, designed to automatically select and propagate through time the most relevant 

contextual information. The results demonstrate that this approach infers lower forecast errors 

with regard to traditional techniques and are well suited for time series forecasting, which 

allows to reduce the uncertainty space of the subsequent decision making problem. 

 

Secondly, concerning probabilistic forecast, two different models for 

characterizing the uncertainty are compared. In this way, the BLSTM network is trained 
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to either generate a Gaussian [Flunkert17] or a non-parametric predictive distribution of 

the dependent variables [Bremnes04, Nielsen06, Wen17]. It enables to confront the Gaussian 

assumption of prediction errors with an empirical approach (that makes no assumption on the 

underlying probability distribution of variables). 

 

Thirdly, although the method can provide prediction intervals and densities, it is 

here extended with the aim to provide predictive scenarios. Practically, the tool relies on a 

copula-based sampling of the multivariate forecasted distribution so as to generate time 

trajectories (sample paths) that mimic actual time and cross-variable dependencies. In this way, 

whereas most of the literature focuses on individual variables, the proposed approach attempts 

to exploit information in a multi-dimensional context with heterogeneous data from different 

natures. Indeed, in the competitive framework governing the current electricity sector, complex 

dependencies between electrical and market data are taking shape, and it is thus important to 

implement a strategy that is able to capture this information. 

 

Fourthly, the value of the methodology is compared with other approaches not only 

in terms of statistical performance, but also regarding the practical impact of the quality 

of scenarios on the decisions optimized within a scenario-based stochastic optimization 

tool.  Here, the day-ahead scheduling of electricity aggregators (such as energy retailers or 

generation companies) in a multi-market environment is used as a case study. 

 

Moreover, thanks to the self-learning nature of the proposed methodology, minimal 

manual engineering or data pre-processing is needed. Then, within the objective of quickly and 

efficiently integrating the new information that is revealed each day, the method is developed 

in such a way that the models can be dynamically adapted using exclusively new data. This step 

circumvents the need of retraining the global architecture from scratch with the whole set of 

historical data. 

 

The rest of the chapter is structured as follows. Firstly, an introduction to neural 

networks, with an emphasis on recurrent architectures, is provided. Such mathematical models 

will indeed be used for the short-term (day-ahead) predictions of electrical and market data. 

Specifically, a deterministic (point) forecasting tool will firstly be developed, and the procedure 

will then be extended to generate probabilistic forecasts (under the form of densities). Then, the 

subsequent sampling policy implemented to generate predictive multivariate scenarios is 

thoroughly explained and motivated. Finally, the results illustrating the benefits of the proposed 

approach (with regard to traditional methods such as the multilayer perceptron ) in terms of 

both statistical and impact on the quality of decisions optimized within a dedicated stochastic 

optimization tool are discussed.  

 

 

3.2 Neural networks 
 

 It has been observed in the past decade that, due to improvement in computer 

capabilities, machine learning methods outperform the best physical models when a sufficient 

amount of historical data is available [LeCun15]. Generally, these methods are divided into three 

categories, depending on the desired objective. The first one is referred to as supervised 

learning, and consists in determining the hidden relationship between a set of inputs-outputs 

pairs, typically for regression or classification tasks. The objective is to bypass the (possibly 

complex) physical modeling of the underlying phenomena, by directly exploiting the 

information contained in the data. The second category is the reinforcement learning, where the 
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purpose is to optimize the strategy of an agent in a given environment, which is achieved by 

assigning a positive or negative reward for each decision during training (based on its impact 

on the objective function). These two techniques differ thus from the unsupervised learning, 

where no task-specific target is defined. The algorithm rather attempts to infer the hidden 

structure of data, typically for clustering purposes. 

 

 For the prediction task in which we are interested, this work therefore relies on 

supervised learning, and more specifically on neural networks. Neural networks are indeed 

universal, i.e. theoretically able to model any complex function between pairs of inputs-outputs 

by capturing and replicating their hidden underpinning mechanisms [Hornik89].  

 

 

3.2.1 Multilayer perceptron 
 

The artificial neural networks (ANNs) were initially developed to mimic the processing 

properties of the human brain [McCulloch88, Rosenblatt63, Rumelhart86]. In this way, their 

structure is composed of several processing units (or neurons), connected to each other by 

weighted connection (or synapses) so as to mathematically represent any relationship between 

inputs (explanatory variables) and outputs (dependent variables of interest). 

 

Different architectures of ANNs have been developed over the years, with the most 

important distinction associated with the cyclic nature of connections. ANNs without cycles 

(acyclic connections between neurons) are known as feedforward neural networks, among 

which the most popular are the radial basis function networks [Broomhead88] but also the 

multilayer perceptron [Rumelhart86], which will be further described in this section. ANNs 

whose connections create cycles are referred to as recurrent neural networks, and will constitute 

the main focus of Section 3.2.2. 

 

It is important to clearly differentiate the two main stages when making use of neural 

networks, i.e. its online utilization (section 3.2.1.1), and the preceding training phase (Section 

3.2.1.2). Neural networks are trained by using the historical datasets (of both explanatory and 

dependent variables) within a supervised learning strategy that adjusts the model parameters 

(weights between neurons) with respect to the desired task (e.g. maximize the prediction 

accuracy of the network). This learning procedure generally requires significant (time and 

space) computational resources. Then, when the network is trained, it can be stored so as to be 

used online for real-time applications (with very low calculation times). 

 

 

3.2.1.1 Network online utilization  

 

As represented in Figure 3.1, the neural processing units in a multilayer perceptron 

(MLP) are organized in layers, with forward connections from one layer to the next one. The 

inputs (explanatory variables forming the input layer of the network) are provided to the first 

hidden layer of the network. These neurons are activated and propagate this activation through 

all the hidden layers along the synapses to the output layer (forward pass of the network). By 

modifying the connection weights, a single neural network architecture is therefore capable of 

modeling different functions.  
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Figure 3.1 – General structure of a multilayer perceptron (MLP), in which the sigmoid-shaped curves in the neural 

processing units indicate the application of the sigmoidal activation function (but any other function can be 

employed). In practice, different functions are used for hidden and output layers. 

 

The general form for the activation of neurons is represented in Figure 3.2.  

 

 
Figure 3.2 – Activation of a neural processing unit. 

 

Let us consider a MLP hidden layer l ∊ [1, L], activated by a vector bl-1 composed of the 

H outputs of the previous layer. For the first hidden layer l = 1, the bottom layer corresponds to 

the network input vector x. The final activation 
l

hb  of each unit h of the layer l is determined by 

the following equations:  

 
1

1

' '

' l

l l

h h h h

h H

a w b
−

−
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where wh’h is the weight from unit h’ to unit h, and θh the activation function, for which the 

most common options are the hyperbolic tangent and the logistic sigmoid. These functions, 

which are represented in Figure 3.3, are indeed characterized by two interesting features.  

 

 
Figure 3.3 – Traditional activation functions of multilayer perceptron [Graves12]: hyperbolic tangent (a), and 

logistic sigmoid (b). 
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First, these functions are nonlinear. Indeed, any combination of linear operations 

remains linear, which contrasts with nonlinear combinations that can significantly improve the 

processing capabilities of the neural network (which is achieved by using successive hidden 

layers of nonlinear operators so as to re-represent the data [Hinton06]). Then, these functions 

are differentiable, and the network can thus be trained using traditional gradient descent 

algorithms (see Section 3.2.1.2).  

 

 The output vector y = [y1,…, yK] of the MLP is obtained following the activation of the 

K neurons constitutive of the output layer. Its activation function generally differs from the one 

associated with hidden layers since the output layer is closely linked to the task for which the 

network is applied to. In this way, the standard configuration for binary classification tasks is a 

single output unit with a logistic sigmoid activation (for which the range is included within the 

[0, 1] interval), and the output can consequently be viewed as the probability that the input 

pertains to the first (of both) considered class. Then, for regression tasks (such as predictions 

where the objective is to estimate the relationship between the dependent variables at future 

time steps with the available information), a linear activation function (3.3) is often privileged. 

 
L

L

k k hk h

h H

y a w b


= =    (3.3) 

where yk is the kth output of interest, and L

hb  is the output of unit h of the last hidden layer HL. 

 

 

3.2.1.2 Neural network training 

 

The objective when training neural networks is to find the optimal weight values 

(connections) between neurons that minimize the error on the output (e.g. for deterministic 

forecasts, minimize the difference between the predicted values and the actual observations). 

Since MLPs are composed of differentiable operating units, they can be trained to optimize any 

(also differentiable) loss function using gradient descent.  

 

After selecting a loss function  suitable for the considered task, the principle of gradient 

descent is to determine the derivatives of this loss function with respect to each weights of the 

network, and to subsequently adjust the weights in the direction of the negative slope (that 

minimizes the loss function). 

 

In this respect, error backpropagation is to this day one of the most important 

achievements for training neural networks [Rumelhart86]. The methodology can be summarized 

by the four following steps: 

Step 1 - Forward pass: Given inputs and current weights values, the outputs are computed by 

propagating activation of units throughout the network; 

Step 2 - Loss function: The outputs are compared with actual observations using a pre-defined 

error function ;  

Step 3 - Backward pass: The partial derivatives of the loss function with respect to each of 

network weights are computed; 

Step 4 - Weights update: The weights (network parameters) are adjusted with the standard 

equation for gradient descent. 

  

The backward pass (Step 3) is computed by a repeated application of the chain rule for 

partial derivatives. To that end, the first step is to calculate the derivatives of the loss function 

with respect to the output units. Then, we recursively apply the chain rule, working backwards 
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through the hidden layers. In this way, for the connections between the last hidden layer and 

the output units: 

 

hkk

k k

L

hk k k h

w

y a

w y a b



   
=

   

L L
  (3.4) 

 

At this stage, it is therefore convenient to introduce the following notation: 
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Concerning the weights between the penultimate hidden layer L-1 and the last one L, 

the partial derivatives are obtained as follows: 
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The partial derivatives between layers l and l+1 can then be calculated recursively: 
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Once all the partial derivatives are computed, the weight update procedure (Step 4) is 

carried out. This consists in adjusting the weights values through a small step in the direction 

of the negative error gradient of the loss function: 
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where 
it

ijw  is the weight between neurons i (at layer l-1) and j (at layer l) at iteration it, whereas 

the learning rate α ∊ [0, 1].  

 

The whole procedure (steps 1-4) is repeated until some stopping criterion (e.g. failure 

to decrease the loss function for a given number of iterations) is reached. 

 

 

3.2.2 Recurrent neural networks 
 

In the latter section, networks whose neural connections did not form cycles were 

considered. However, the dynamic nature of some electrical quantities (photovoltaic 

generation, etc.) cannot be optimally modeled by such static neural networks that do not capture 

the influence of previous states. A solution consists therefore in collecting the inputs into 

overlapping time-windows (i.e. relevant past information is incorporated as additional inputs 
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of the network), and treating this task of capturing time dependencies as spatial (data from all 

time steps are concatenated to form a single input vector to the neural network). 

 

This procedure can be performed by time delay neural networks (TDNNs), where the 

output vector y in time t is based on the inputs in times (t-1), (t-2), ..., (t-nx). 

 ( )1f , ,...,
xt t t t n− −=y x x x   (3.9) 

 

Another similar approach can be viewed in the nonlinear autoregressive exogenous 

(NARX) model, where the output vector y in time t is based on both inputs and outputs at 

previous moments. 

 ( )1 1f ,..., , , ,...,
y xt t t n t t t n− − − −=y y y x x x   (3.10) 

 

Both these architectures necessitate to find an optimal time-window size, which is task-

dependent and results from a complex trade-off between integrating sufficient temporal 

information while avoiding irrelevant data (too small window size and the network will neglect 

important explanatory information, too large and it will reduce the ability of the network to 

discern data noise from the relevant dependencies). 

 

However, if the non-cyclical condition of feedforward networks is relaxed so that 

connections between neurons within a given layer are allowed, we obtain recurrent neural 

networks (RNNs), in which a sequential representation of data is then intrinsically embodied 

(Figure 3.4). Indeed, recurrent connections allow a natural memory of previous inputs that can 

thus propagate through time within the internal state b● of the network, resulting in a more 

compact and robust representation [Vermaak98]. 

 

 
Figure 3.4 – Recurrent neural network architecture. 
 

Such architectures are more representative of biological brains and represent an efficient 

generic tool, integrating both a powerful dynamical memory and computational abilities that 

can be very easily adapted to the complexity of the modeling task. Recurrent networks have 

shown high potential in processing sequential data by allowing past information to persist 

[LeCun15], and, in this regard, they constitute the natural class of neural networks for time series 

prediction.  

 

 The forward pass of recurrent networks is similar to the one of a MLP, with the 

exception that the activation of hidden layer arises not only from the output from the layer 

below but also from the hidden layer activation from the previous time step (thanks to recurrent 
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connections). This enables past information to be propagated across time through the hidden 

layer. Let us consider an input sequence x(I x T) = [x1,…, xT] composed of I input units varying 

over T time steps, so that xi,t is the value of input i at time t. This sequence is presented to a 

RNN made up of L hidden layers (each one containing respectively Hl hidden units) and K 

output units, so that yk,t is the output k at time t. 

 

For the first hidden layer l = 1, the input of unit h at time t is thus computed as follows: 

 
1

1

, , ' ', 1

1 '

I
l

h t ih i t h h h t

i h H

a w x w b −

= 

= +    (3.11) 

where  
1

', 1h tb −  is the activation of unit h’ (pertaining to the first layer) at time t-1, whereas wih is 

the weight between input i and unit h, and wh’h is the weight between units h’ and h (from the 

same hidden layer). Analogously, we have for deeper layers: 

 
1

1

, , ' ', 1

'l l

l l l

h t xh x t h h h t

x H h H

a w b w b
−

−

−

 

= +    (3.12) 

 

Similarly to MLP, a nonlinear (and preferably differentiable) activation function θh is 

then applied to obtain the activation state of the hidden units of the network: 

 ( ), ,

l l

h t h h tb a=  (3.13) 

 

The output vector sequence (y1,…, yT) is then obtained by sequentially applying the 

following equation (which considers a linear activation function of the output layer) from time 

steps t = 1 to T:  

 
, hk ,

L

L

k t h t

h H

y w b


=    (3.14) 

 

 It should be mentioned that the procedure necessitates to initialize the network states 

before it receives information from the input sequence. In this work, b values are set to zero, 

but other nonzero initial values can also be used. Overall, the complete output sequence 

(forward pass) can thus be obtained by following this procedure: 

 

For each time step t = 1 to T, knowing that ,t 0 0 ,l

hb h l= =   

Compute the activation state of units of the first hidden layer by applying (3.11)-(3.13)     

Compute, sequentially for each hidden layer l > 1, the activation state of units by 

applying (3.12)-(3.13) 

Compute the network outputs by applying (3.14)  

 

Whereas the additional cyclic connections of recurrent networks do not strongly impact 

the complexity of the forward pass, it is different for the backward pass, and RNNs are 

consequently more difficult to train with gradient descent. Two main algorithms have been 

developed to compute the desired partial derivatives of the loss function with respect to the 

network weights: real time recurrent learning [Robinson87], and backpropagation through time 

[Werbos90, Williams95]. However, the second method emerged within the machine learning 
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community since it is both simpler to implement and more effective in terms of computational 

time [Graves12]. 

  

Backpropagation through time (BPTT) applies the same methodology as standard 

backpropagation (i.e. recursive application of the chain rule). However, the activation of 

internal units (neurons) within layer l influences not only the next layer l+1, but also the same 

layer l at the next time step, which involves that: 
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,

,
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  (3.15) 

where ,t 1

l

h T = +  = 0 ∀ l ∊ L, h ∊ Hl , since no error originates from beyond the sequence.  

 

Hence, the complete sequence of δ terms (backward pass) can be computed by applying 

(3.15) recursively from t = T to 0. 

 

Knowing that the same weights (connections between units) are used for each time step, 

the partial derivatives are summed over the whole sequence. For inter-layer weights (between 

layers l and l+1), we have: 
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lT T
h t l l

h t h tl
t thh h t hh

a
b

w a w
 +

= =
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  (3.16) 

 

For intra-layer weights (connections within the same layer l), the partial derivatives of 

the cumulative sequence error are obtained as follows: 

 
'', , 1

1''

T
l l

h t h t

thh

b
w

 −

=


=




L
  (3.17) 

 

After presentation of the sequence and determination of the partial derivatives, the 

weights are updated using the standard equation for gradient descent (3.8), and the procedure 

(forward pass, backward pass, weight update) is iterated over the whole historical dataset until 

convergence on results is achieved. 

 

Similarly to feedforward networks, different varieties of RNNs have been developed 

(i.e. different functions θh were proposed), such as Elman [Elman90] and Jordan [Jordan90] 

networks. Then, an alternative trend to train and use recurrent network has been introduced with 

reservoir computing, which are divided into echo state networks [Jaeger01] and liquid state 

machines [Maass02], depending on the way the hidden neurons are activated. These 

architectures are nevertheless prone to overfitting (see Section 3.2.3.2) and necessitate thus a 

complex optimization of their topological structure (complexity) [Lukosevicius12]. Moreover, 

their inner dynamics is limited to a narrow frequency band, which prevents them from 

adequately representing multiple periodicities in the data. 

 

Overall, such traditional RNNs are characterized by two main limitations.  
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The first problem, widely known as the vanishing gradient problem, is that the back-

propagated errors δh during training either fades or blows up over time due to the multiple 

gradient calculations associated with the backpropagation algorithm. In this way, sigmoidal 

activation functions (Figure 3.3 (b)) map its input into the small [0, 1] range, and any variation 

in the input will generate a very small change in the output (i.e. a small gradient). This 

phenomenon is exacerbated for recurrent networks that aims to propagate the information 

through time steps. Indeed, at the first time step, the hidden layer will map its input into a small 

region, the output of which will itself be mapped to a smaller region during the next time step, 

and so on. It has been shown that this process ultimately prevents the model from reliably 

accessing time dependencies more than a few time steps long [Hochreiter01].  

 

Secondly, standard RNNs process inputs in temporal order and ignore the information 

contained in the future context. This results in an inadequate modeling of backwards 

dependencies, preventing the network from fully exploiting contextual information. This can 

be easily understood for speech recognition where the understanding of a word (or a phoneme) 

is improved after the whole sentence has been heard, and can also be extended to time series 

where a known future event may contain valuable information to explain previous values. 

 

 

3.2.2.1 Long Short Term Memory (LSTM) networks 

 

The first issue (vanishing gradient problem) is here tackled by using an alternative (more 

complex) neural architecture, referred to as Long Short-Term Memory (LSTM), which better 

controls the flow of information through the hidden layer by means of memory cells 

[Hochreiter97, Gers02]. In this way, a LSTM layer l ∊ L is made up of NH recurrently connected 

blocks, known as memory blocks (or neurons). As represented in Figure 3.5, each block has 

three multiplicative units, known as input, output and forget gates, which can be seen as 

modules for respectively writing, reading and resetting information. The inputs of each layer l 

at time t are composed of the outputs of the same layer at the previous time step 1

l

t−b  as well as 

the outputs of the layer below 1l

t

−
b . For the first hidden layer l = 1, the bottom layer 1l

t

−
b  

corresponds to the network input variables xt. 

 

The activation function θh associated with the LSTM architecture consists in the 

following composite equations: 

 ( )( 1)

1 1

l

t i t h t c t   −

− −= + +i W b W b W c   (3.18) 

 ( )( 1)

1 1

l

t i t h t c t   −

− −= + +f W b W b W c   (3.19) 

 ( )( 1)

1 1tanh l

t t t t i t h t 

−

− −= + +c f c i W b W b   (3.20) 

 ( )( 1)

1

l

t i t h t c t   −

−= + +o W b W b W c   (3.21) 

 ( )tanht t t=h o c   (3.22) 

where σ is the logistic sigmoid function, and it, ft and ot  are the activation vectors of the input 

gate, forget gate and output gate respectively, whereas ct stands for the cell activation vector. 

All these vectors are of similar size, equal to the one of the hidden vector 1

l

t−b  (i.e. output vector 

of the hidden layer l). 

 



 CHAPTER 3  SHORT-TERM MULTIVARIATE  

PROBABILISTIC FORECASTING 

58 

 
Figure 3.5 – Single-cell LSTM memory block (cell h of hidden layer l at time t) used in this work. 

 

Theoretically, LSTM networks can capture both long and short periodicities of time 

series. Indeed, each LSTM memory block is able to adaptively memorize, forget and expose its 

memory content. In this way, if the current information stored in the memory cell is identified 

as important by the network, the forget gate will ensure that it is propagated over time, which 

amounts to model a long-term dependency. Consequently, periodicities can be adequately 

modeled by exposing the memory content when a relevant input feature is observed. 

Contrariwise, irrelevant information (whose effect has completely faded over time) can be reset 

by opening the forget gate. Since both operating modes (propagate or eliminate past 

information) can simultaneously occur among the different LSTM blocks within each hidden 

layer, the LSTM network is potentially able to model any complex signals with multiple time 

scales. 

 

However, it has been shown that modeling intricate time series with multiple 

periodicities may prove to be more difficult in practice, even with LSTM networks 

[Sugiartawan17]. In [Jaeger07], a hierarchical architecture is implemented, in which the raw 

signal is decomposed into different dynamical features, each one with a specific frequency 

band. Each of the resulting components is then processed by a particular layer that is composed 

of a tailored echo state network. Likewise, several papers have studied the combination of the 

wavelet transform (to decompose the system dynamics into different timescales [Soltani02]) 

with simple models such as autoregressive moving average (ARMA) models or traditional 

neural networks [Kaur15, Peng14]. 

 

A novel RNN architecture, referred to as gated-feedback RNN (GF-RNN), was 

presented in [Chung15] in order to address this issue of learning multiple adaptive timescales 

within a single procedure. This GF-RNN relies on deep architectures, consisting of stacking 

multiple layers on top of each other, in which new connections among recurrent layers are 

considered so that these layers are fully connected between each other. The global architecture 

of a gated-feedback recurrent neural network is sketched in Figure 3.6. 
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Figure 3.6 – Gated feedback recurrent neural network. 

 

Based on the input vector [x1,…, xT], the proposed GF-RNN adaptively controls the 

flow of information between recurrent connections so as to drive each hidden layer to process 

different timescales of the studied signals. This is realized by using a global gating unit for each 

pair of layers. The global reset gate between layers l’ and l is computed as 

 ( )' ' 1 ' *

1

l l l l l l l

t xg t sg tg → → − →

−= +W b W b   (3.23) 

where *

1t−b  is the concatenation of states of all hidden layers from the previous time step. Hence, 

the signal between layer l’ at time t-1 and layer l at time t depends on a scalar defined by the 

current input and all the previous hidden states. The new memory content of the GF-LSTM is 

then expressed as: 

 1 ' ' '

1 1

' 1

tanh
L

l l l l l l l l l l

t t t t i t t h t

l

g 

− → →

− −

=

 
= + + 

 
c f c c W b W b   (3.24) 

  

Therefore, the single GF-LSTM memory cell (i.e. neuron architecture pertaining to 

hidden layers) can be represented as in Figure 3.7. 

 

 
Figure 3.7 – Single-cell GF-LSTM memory block (cell h of hidden layer l at time t). 
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3.2.2.2 Bidirectional recurrent neural networks 

 

A simple solution for the second issue of RNNs (i.e. suboptimal exploitation of the 

contextual information) is to add a time-window of future context, and to use the window as 

additional input features. In this way, the input vector xt at time t include also information from 

the future time steps. Another possibility is presented in Figure 3.8 and consists in introducing 

a delay in the neural architecture between inputs and outputs corresponding to the same time 

step so as to give to the network information about future context. However, both these 

approaches do not usually make full use of backwards dependencies and require the adequate 

range of future context, which is usually unknown and varies over time (from segment to 

segment). 

 

 
Figure 3.8 – Unidirectional RNN with delay between inputs and targets. 
 

A more efficient solution is provided by the bidirectional topology, which harnesses at 

each time step t the complete information about the whole temporal horizon (before and after t). 

As illustrated in Figure 3.9, the principle of such bidirectional RNN is to process the training 

sequence forwards and backwards by two different recurrent networks, both of which being 

connected to the same output vector [Schuster97]. In this way, for every point of the input 

sequence, the network has a comprehensive information about past and future points. Such 

architectures have demonstrated to give state-of-the-art results on speech recognition 

[Graves13].  

 

 
Figure 3.9 – Single layer bidirectional recurrent neural network. 

 

At first sight, this approach is counter-intuitive for prediction tasks as it seems to violate 

causality. However, for offline multi-step ahead predictions that do not require to generate an 

output at each time step (i.e. predictions for which outputs are needed simultaneously at the end 

of the input segment), there is no reason to disregard reliable future information as it is likely 

to generate improved performance. Such a situation is often encountered in the context of 

operational planning (Figure 3.10) where decisions have to be simultaneously optimized over 

the whole scheduling horizon or, more generally, for multi-period optimization (such as the 

participation in the day-ahead electricity market where the optimal bidding strategy has to be 

determined at once for the 24 hours of the following day). 
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Figure 3.10 – Time line representing the sequential decision-making process for a planning optimization under 

uncertainty. 
 

Moreover, bidirectional networks are faster to train, and are more robust to model 

uncertainties and biased inputs. Indeed, in contrast with unidirectional RNNs, they do not rely 

on a recursive strategy that iteratively fed back previous predictions as inputs for the next time 

step, which is shown to lead to error accumulation [Bengio15, Lamb16]. 

 

Combing bidirectional RNNs with LSTM gives Bidirectional LSTM (BLSTM), which 

has the benefits of both long-range memory and bidirectional processing [Graves05,a]. 

Furthermore, it is possible to take advantage of deep architectures, which are able to build up 

progressively higher level representations of data, by piling up RNN layers on top of each other 

(the output sequence of one layer forming the inputs for the next). 

 

To summarize, we have seen that the concept of neural networks has emerged with 

feedforward architectures, which were developed as generic tools able to model any nonlinear 

relationship between a set of explanatory variables (input vector) and the dependent variables 

of interest (output vector). However, such acyclic topologies do not efficiently capture temporal 

dependencies, and recurrent neural networks (characterized by cyclical connections) have thus 

appeared. Recently, the long-short term memory (LSTM) recurrent neural network architecture 

has become increasingly important (e.g. in the Google Translate algorithm) due to its superior 

modeling capabilities. However, even this advanced architecture presents limitations, and 

numerous works have thus been realized to devise architectural improvements, most notably 

the gated-feedback topology. In parallel, bidirectional recurrent architectures were introduced 

to better exploit contextual information, and both concepts (LSTM networks and the 

bidirectional data processing) have been successfully merged.  

 

 In this dissertation, the different architectures (feedforward networks, LSTM, gated-

feedback LSTM and bidirectional LSTM) are implemented and compared for the task of 

forecasting electrical quantities (load, renewable generation and electricity prices) for the 24 

hours of the following day. 

 

 

3.2.3 Neural Network training 
  

When training neural networks with gradient descent, several issues have to be 

addressed for ensuring that the training phase is effective (convergence towards global 

optimum), fast (limited number of iterations to achieve results convergence), and that the 

performance of the network is preserved when confronted with new (unseen) data. 
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3.2.3.1 Gradient descent algorithm 

 

Different methods can be used to follow the error gradient. The simplest (traditional) 

method is given by (3.8), which consists in taking a small, fixed-length step Δw (whose 

magnitude is defined by the learning rate α) in the direction that minimizes the gradient of the 

loss function with respect to the network parameters. 

 

However, due to the nature of gradient descent algorithms that only explore locally the 

shape of the objective function to decide on the optimal direction, they may get stuck in local 

minima. This can be alleviated by adding a momentum term [Plaut86] in the algorithm search 

through the weight space as follows: 

 1
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+


 =  −



L
  (3.25) 

where m ∊ [0, 1] is the momentum parameter. This principle to add inertia (typically m = 0.9) 

in the search procedure has shown to speed up the convergence and help escaping local minima. 

 

The behavior of gradient descent algorithm not only depends on the optimal search 

direction [Akaike59], but also on the choice of a step size. In this regard, a technique that aims 

at optimally adapting the value of the learning rate at each iteration of the gradient descent 

algorithm was presented in [Barzilai88]. This procedure was implemented in this work, but was 

unsuccessful for the day-ahead prediction task of electric variables (led to poorer performances 

than the one using a fixed α value during the whole learning phase).  

 

Then, two different approaches can be considered for updating the weights, which are 

respectively referred to as batch learning and online learning. Concerning batch learning, the 

gradients are computed for each sample of the historical dataset but the weights are only updated 

once at the end of the training epoch23. This procedure contrasts with online learning, or 

stochastic gradient descent, where the model is updated for each sample in the training set. A 

compromise between both approaches (split the training set into small batches grouping several 

samples so that the model is updated at the end of each batch) can also be envisaged. 

 

It should be noted that, due to the principle of the search procedure (small changes in 

the direction of the optimum) of both batch and online learning, the training procedure 

necessitates several epochs, i.e. to pass several times throughout the whole historical dataset in 

order to achieve convergence. 

 

Traditional gradient descent is very efficient in the context of online learning since the 

stochasticity of the procedure can help escaping from local minima. Indeed, since the shape of 

the loss function (with respect to model parameters) slightly varies between training samples, 

the algorithm tends to avoid poor local minima [LeCun98]. The stochasticity can be further 

enhanced by randomizing the order in which the samples of the training set are processed within 

each epoch (pass through the training set) of the global learning procedure. 

 

Finally, it has been shown that retraining the network (from the last optimal solution) 

may increase the final performance [Beringer04, Graves05,b], most likely by escaping the local 

minima in which gradient descent algorithms may potentially get trapped.  

 

 
23 An epoch refers to one cycle throughout the entire training dataset. 



 CHAPTER 3  SHORT-TERM MULTIVARIATE  

PROBABILISTIC FORECASTING 

63 

All simulations carried out in Section 3.5 were carried out using online steepest descent 

with learning rate of 10-4 and a momentum of 0.9. The weights are initialized with a random 

distribution in the range [−0.1, 0.1]. 

 

 

3.2.3.2 Checking the implementation of the backpropagation with the numerical gradient 

 

 When coding backpropagation (and, by extension, backpropagation through time) from 

scratch, it is strongly recommended to check numerically that the procedure is correctly 

implemented. This can be achieved by using the symmetrical finite differences technique: 
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where ε is a small perturbation (typically 10-5) in the weights. As illustrated in Figure 3.11, this 

equation (3.26) gives an estimate of the gradient of the loss function. 

 

 
Figure 3.11 – Numerical gradient computation.  

 

One may wonder why we do not use this simple procedure to directly compute the 

derivatives (instead of the more complex backpropagation procedure that may yield 

implementation errors). It originates from the fact that calculating the full gradient using (3.26) 

requires O(P2) time, whereas backpropagation only requires O(P) time, where P is the number 

of model parameters (neurons), which makes numerical differentiation impractical for network 

training. In this way, when checking the code of the backpropagation algorithm with the 

numerical gradient, it is recommended to use a small-sized network architecture so as to limit 

the computation time of the check procedure. 

 

 

3.2.3.3 Regularization 

 

The overarching goal when training a predictive model is to maximize its 

generalization capability to unseen data. To that end, the model should be able to extract the 

fundamental underpinning properties of the training data while ignoring the irrelevant 

information included in the noise [Verstraeten10].  
 

 In other words, the objective is to implement a sufficiently complex model for capturing 

all hidden characteristics of historical data but not too complex such as to avoid overfitting. 

The overfitting is a modeling error that arises when the model is too closely adapted to a limited 

set of data points, which substantially reduces its predictive capacity. In this way, overfitting is 

more likely to occur in two situations. The first one is characterized by a learning process carried 
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out with a small training dataset. In this case, the procedure does not dispose of enough 

information to discern the noise in the data from the relevant underlying patterns governing the 

studied process, which results in a model that fits well the training data but that does not 

efficiently generalize to new observations. The second major cause of overfitting is an 

important number of model parameters (i.e. high model complexity). In such a situation, there 

is an increased risk that the weights of some parameters are excessively large in order to 

accommodate data, resulting in model outputs very sensitive to fluctuations regarding the exact 

learning conditions. This phenomenon is illustrated in Figure 3.12 where polynomials of 

different degrees are used to model a particular system based on actual measurements. In the 

left graph, the first degree model is too simple to adequately represent the underlying system. 

In the middle plot, the model complexity is well suited, and, in the right graph, the fifth degree 

polynomial is overly complex and is describing the noise instead of the actual system. 

 

 
Figure 3.12 – Illustration of the dependence between model complexity and overfitting. 

 

Early stopping  

The most common way to avoid overfitting is to divide the historical dataset into two 

separate sets: a training set and a validation set. The principle is to train the model using only 

the training data, and to evaluate the performance of the model at regular intervals on the 

independent validation set (no gradient calculations or weight updates are performed during 

this test). The training is stopped when the error on the validation set is minimized. Indeed, as 

long as the network learns the structure of the data, the performance on the validation set will 

increase. Then, when the network stops deciphering the actual relationship between inputs and 

outputs and begins to learn the noise within the training sample, the error will stop decreasing 

(and will even start rising) on the validation set, while continuing to drop on the training set 

(Figure 3.13). 

 

 
Figure 3.13 – Overfitting on training data. 

 

The main drawback of this method is that part of the data are lost for the validation set, 

which can be problematical if the historical dataset is small. Moreover, there is no methodology 

to know the optimal division of data (or, in other words, how big the validation set should be 

to be sufficiently representative without sacrificing too much valuable information). 
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In parallel to early stopping, other regularization techniques are introduced to prevent 

from overfitting (and ensure that the training set performance carries over to the test set). The 

principle is introduce additional information so as to reach a trade-off between model 

complexity (ability to capture properties of the data) and noise robustness (ability to avoid 

modeling irrelevant dependencies). The main regularizers are here briefly introduced. 

 

L1 regularization 

The first technique is the LASSO (Least Absolute Shrinkage and Selection Operator) 

regression, which adds a penalty term, equal to the sum of the absolute value of the model 

coefficients (weights), into the loss function so as to avoid high values of these parameters. The 

loss function to be minimized is therefore given by: 

 
1

P

p

p

w
=

+ L   (3.27) 

where P is the number of parameters (weights) of the model, and λ is a parameter that provides 

a trade-off between the original loss function and the magnitude of coefficients. In this way, 

values of λ that are too low will not be able to solve overfitting issues, whereas large values 

will result in coefficients with values close to zero (leading to model underfitting). 

 

L2 regularization 

A variant to L1 regularization, which is based on the same principle is given by ridge 

regression, which adds a penalty term equal to the sum of the squares of the model coefficients 

in the objective function: 

 ( )
2

1

P

p

p

w
=

+ L   (3.28) 

 

Elastic net 

Elastic net is a regularized regression method that combines the L1 and L2 penalties. 

 ( )
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1 2

1 1

P P

p p

p p

w w 
= =

+ + L   (3.29) 

 

Input noise 

 An alternative strategy is to add zero-mean (with a fixed variance) Gaussian noise to the 

inputs of the network during the training stage [Koistinen91]. This allows to generate more 

training examples by deforming the existing ones, which artificially enhances the number of 

data and improve the generalization.  

 

However, such input perturbations should reflect the actual variations that can occur in 

the data. In this way, contrary to meteorological data, categorical information (such as day of 

the week) should not be altered.   

 

Weight noise 

 A similar technique consists in adding zero-mean (with a fixed variance) Gaussian noise 

to the network weights [Murray94]. Since the noise acts on the internal state of the network 

(rather than on its inputs), it can be employed regardless of the type of data. However, the noise 

variance has also to be carefully selected, and the method can overall hamper the convergence 

of the learning procedure. 
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Dropout 

 More recently, a new technique known as dropout was presented and successfully 

applied to several tasks [Srivastava14]. At each stage of the training, each individual unit 

(neurons) can be either dropped out of the network (with probability 1-u) or kept with 

probability u. It is shown that the reduced network forces to learn more salient features. 

Practically, dropout tends to double the number of iterations to reach the convergence of the 

gradient descent algorithm, but the training time associated with each epoch is decreased. This 

technique has proved to give good results, especially when it is coupled with batch 

normalization (Section 3.2.3.5). 

 

 In this work, early stopping is combined with weight noise during the training phase for 

enhancing the generalization capabilities of the neural network-based prediction models.  

 

 

3.2.3.4 Hyperparameters optimization 

  

 Beyond the quality of the training algorithm, the final performance of the neural network 

depends on two important conditions. The first one is the selection of the appropriate set of 

explanatory variables (inputs selection). This task is essential since any missing information 

will inevitably deteriorate the model ability to provide accurate outcomes whereas irrelevant 

input data will, for their part, lead to additional unnecessary noise (that may disorient the 

learning algorithm). Secondly, even though a well-thought training strategy allows to reduce 

under- and over-fitting issues, it is important to properly define the complexity (number of 

parameters to optimize) of the neural network. The latter can be tuned along two dimensions 

(also referred to as hyperparameters): the number of hidden layers within the network 

architecture and the number of neurons within each hidden layer. Finding the optimal 

architecture (in terms of both inputs selection and model complexity) is task-dependent, and is 

achieved in this thesis using to the two-nested loops approach [Toubeau17] presented in 

Figure 3.14. It should be noted that other hyperparameters (such as the learning rate of the 

gradient descent learning procedure, or other parameters associated with regularization 

techniques used during training) have to be optimized together with the complexity of the 

network architecture for the optimal model selection. 

 

 

Figure 3.14 – Two-nested loops procedure designed for the optimal model selection. 

 

Finally, at the end of the two-nested loop procedure, the different models (differentiated 

regarding both their inputs and hyperparameters) can be ranked with respect to their statistical 

score on the validation set (unseen data), and the best model is then used for practical 

application.  
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However, in order to compare the different topologies, it is necessary to define an 

appropriate error metric with respect to the considered task (e.g. sum of squared errors for 

deterministic predictions). The accuracy measure obtained at the end of the learning process 

(with the validation set) is slightly biased (smaller than the true error rate) since the training is 

stopped at the optimal time with respect to the validation set. The performance depends thus on 

the decomposition of the data. To solve this issue, another part of the dataset can be used as a 

test set. Hence, the training is carried out on the training set with regular evaluations of the 

model performance on the validation set. Once the learning is achieved, the final evaluation is 

done on the test set. 

 

However, such a procedure further reduces the number of samples to train the model, 

and the final accuracy measure still depends on the particular random division of historical data. 

A solution to this problem is given by cross-validation, in which the historical data are divided 

into κ distinct subsets (the process is then called κ-fold cross-validation). The methodology can 

be summarized as follows: 

 

For each of the κ separate folds 

This fold is used as a validation set to stop the training at the optimal time 

The model is then trained using the κ-1 remaining folds as training information 

The final performance measure of the procedure is the average of the κ performance values 

computed in the loop 

 

 

3.2.3.5 Input representation 

 

The choice of a suitable representation of input data is an important pre-processing task 

when dealing with neural networks. This consists in adapting the input values to the operating 

range of neural processing units for avoiding to systematically end up in the saturation zone of 

neurons, which would lead to poor generalization (Figure 3.15). This procedure does not 

degrade the information of the explanatory variables, and improves the performance of neural 

networks by putting the input values in a range more suitable for the standard activation 

functions [LeCun98].  

 

 
Figure 3.15 – Sigmoidal activation function of processing unit. 

  

 Typically, for hyperbolic tangent units, the components of the input vectors are 

standardized so as to have a zero mean and standard deviation equal to 1 over the whole training 

set. It should be emphasized that the validation set (as well as the test set) has to be standardized 

with the same parameters than those used in the training set. 
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 Instead of normalizing uniquely the network inputs, a more complex policy, known as 

batch normalization, has been lately introduced [Ioffe15], where the inputs to all layers within 

the neural network are also normalized, by applying a transformation that maintains the mean 

of the activated state close to 0 and its standard deviation around 1. Such networks tend to train 

faster, reduce the sensitivity to the network initialization (starting weights), and allow to better 

extract the full potential of deeper networks (with regularization properties). 

 

 To summarize, this thesis aims to compare (in Section 3.5) four different neural network 

architectures (multilayer perceptron, LSTM, gated-feedback LSTM and bidirectional LSTM), 

trained with online gradient descent with momentum (with a combination of early stopping and 

weight noise to avoid the model overfitting), with the prior standardization of both input and 

output variables. 

 

 

3.3 From deterministic to probabilistic predictions 
 

 Generally, neural networks can be used (with similar success) for three main fields of 

application: 

- Classification when the output function is discrete (e.g. predict the failure status of 

industrial equipment in the context of predictive maintenance).  

- Regression when the output function is continuous (e.g. deterministic forecasting of 

electric quantities). 

- Probability estimation when the output function is a probability distribution (e.g. 

probabilistic forecasting of electric quantities). 

 

In this thesis, only the last two categories will be investigated.  

 

3.3.1 Point forecasting 
  

 In the context of deterministic predictions, the objective of the neural network training 

(for both feedforward and recurrent architectures) is to use the historical datasets (of 

explanatory and dependent variables) within a supervised learning strategy that adjusts the 

model parameters in order to maximize the predictive capability of the tool. Practically, this 

consists in finding the optimal weights between neurons so as to determine the conditional mean 

E(yk,t0+t|yk,→t0) of outputs yk,t for each time t of the prediction horizon (which starts at t0) for each 

variable of interest k. 

 

 The typical loss function for this task is the sum of the squared errors (SSE), which aims 

at minimizing the squared deviations between predictions and actual observations. This 

function, which is easily differentiable, is presented in (3.30). 

 ( )
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t

y d
=

= −L   (3.30) 

where n is the number of time steps T of the sequence of interest (e.g. for hourly day-ahead 

prediction T = 24) , yt the output of the prediction model (MLP, LSTM, BLSTM, etc.) and dt 

the actual measured value. 

 

 However, for multi-step predictions, the stability of the predicted signal may be 

problematic (i.e. large deviations at the end of the prediction horizon) and is not fully captured 
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by the traditional SSE metric since the last prediction steps are averaged with the first ones 

[Wyffels13]. To overcome such an issue, we can use a weighted error metric as loss function 

(during gradient descent training) that progressively weights up errors along the prediction 

horizon so as to ensure stability of the prediction tool. The purpose is to encourage the training 

to achieve a good accuracy throughout the prediction horizon rather than excellent precision for 

first time steps with significant deterioration over time. 

 ( )
2

1

n

t t t

t

y d
=

= −L   (3.31) 

where γt is a monotonically increasing function. 
 

Here, the neural networks were thus firstly trained with a weighted Sum of Squared 

Error (wSSE), and the optimal solution is then used as a starting point for another learning 

phase (retraining) with classic SSE. 

 

 

3.3.2 Probabilistic forecasting 

 

Many decision making procedures such as the optimal bidding strategy in electricity 

markets, require richer information than point forecasts since deterministic optimization show 

very poor robustness regarding forecast errors. This additional information can be efficiently 

provided by a probabilistic forecast that yields the full conditional distribution p(yk,t0+t|yk,→t0).  

 

 

3.2.2.1 Parametric model of prediction errors 

 

 In order to obtain this predictive probability distribution of outputs, the first investigated 

procedure is to define a statistical (parametric) model of forecast errors yt - dt (e.g. Gaussian 

model) and to use the neural network for predicting the parameters of the specified distribution 

(e.g. mean and variance of the Gaussian model) using the maximum likelihood estimation. 

The neural network is thus trained so that its outputs (parameters θ of the specified distribution) 

are maximizing the likelihood function L(θ). In other words, the procedure aims at finding the 

parameters of a specified distribution that maximizes the “probability” of observing the 

available historical dataset. 

 

 However, maximizing the likelihood requires to compute the partial derivatives of the 

function L(θ) with respect to its parameters θ, and it is therefore more convenient to use the log-

likelihood (which can be indifferently applied since the logarithm function is monotonically 

increasing). Hence, the maximum likelihood estimation is equivalent to minimizing the 

negative log-likelihood, and this loss function EL can be expressed as follows: 

 ( )( )
0

,ln
T

L

L k t t

t t

E L y 
=

= − b   (3.32) 

where L

tb  is the internal state of the last hidden layer of the neural network. 

 

Here, the Gaussian likelihood LG is employed, which is parametrized using the mean 

and standard deviation of past observations θ = (μ, σ): 
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The log-likelihood lG is then: 
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where x is the actual measurement of the dependent variable. The mean μ of the distribution is 

given by an affine function of the network output (3.35), whereas the standard deviation σ is 

determined by applying sequentially a softplus activation after the affine transformation, in 

order to ensure that its value remains strictly positive (3.36): 

 ( )L L
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 ( ) ( )( )ln 1 expL L
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where wμ and wσ represent the output weight vectors associated respectively with the mean and 

standard deviation. The gradients can be computed as follows: 
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 It should nonetheless be emphasized that other likelihood models can be employed, 

provided that the function derivatives with respect to their parameters θ can be obtained. 

 

 

3.2.2.2 Non-parametric model of prediction errors 

 

 In real-life applications, it may be difficult to know the exact theoretical distribution of 

the uncertainty at hand. In this context, methods that do not rely on a pre-defined distributional 

assumption are likely to be more robust compared to other parametric methods. A solution 

consists therefore in using quantile regression [Koenker78], for which the objective is to directly 

predict the specified quantiles q ∊ Q of the target distribution: 

 ( )
0 0 0

( )q

t t t t tq P y y y+ + →=    (3.39) 

 

 In this framework, models are trained to minimize the quantile loss (or pinball loss) 

since it has been proved in [Takeuchi06] that minimizing this pinball loss Eq yields the optimal 

quantiles. The total loss is therefore the result of the sum over all specified quantiles of interest: 

 ( ) ( ) ( )( ) ( )max 0, 1 max 0,q q

q

q Q

E q d y q y d


= − + − −   (3.40) 

where the quantiles y(q) are given by an affine function of the network outputs. It is interesting 

to notice that, when q = 0.5, we get an estimate of the conditional median of the output 

distribution.  
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 Moreover, similarly to the parametric model previously described, a great asset of the 

methodology is that the loss function is differentiable, so that the neural network can be trained 

using gradient descent. This learning procedure (contrary to metaheuristics such as genetic 

algorithm or particle swarm optimization) allows the network to be systematically retrained 

each day using only the new information that has been revealed, so that the computational 

burden of this retraining task is very limited. 

 

 

3.4 From multi-step ahead probabilistic predictions to time-dependent 

scenarios 
 

Once the predictive distributions (either Gaussian or under the form of empirical 

quantiles) at each time step t ∊ T for each output variable k ∊ K are obtained, the objective is to 

obtain samples 𝐲𝑖,𝑡0:𝑇
𝑠  from the D-dimensional distribution (D = #T#K), where # stands for the 

cardinality of the associated set. The generated scenarios therefore contains the global 

dependence structure of variables  

 ( )
0 0 0 0, : , : , 1 , :,s

k t T k t T k t k t TH → −y y y x   (3.41) 

where t0 stands for the start of the prediction horizon of interest (data before t0 are therefore 

assumed to be known for the prediction phase). 

 

However, the task of generating random vectors from a high dimensional distribution is 

really complex, even when the marginal distributions of each dimension are known [Law00]. 

The only exception is when the variables are independent since the multivariate distribution FY 

can be simply decomposed as the product of its marginal (= univariate) distributions:  

 ( ) ( ) ( ) ( )
1 21 2

...
DY Y YD D
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where FYk(y) is the distribution function of the variable Yk. 

 

Otherwise, it is necessary to remember that a D-dimensional distribution function can 

be decomposed into: 
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The conditional probability function of Yd given the values Yd-1 can be expressed as:  

 ( )
( )

( )1

1

1

1 1

1 1

,...,
,...,

,...,

d

d d

d

d

d dY

d

f y y
f y y y

f y y−

−

−

−

=
Y

Y

Y

  (3.44) 

 

The joint conditional cumulative distribution function (CDF) is then computed 

according to: 

 ( )
( )

( )1

1

1 1

1 1

1 10

,..., ,
,...,

,...,

d

d

d d

D

y

d

d dY

dy

f y y y
F y y y dy

f y y−

−

−

−

−=

= 
Y

Y

Y

  (3.45) 

 



 CHAPTER 3  SHORT-TERM MULTIVARIATE  

PROBABILISTIC FORECASTING 

72 

From equation (3.45), it results that the computation of the D-1 conditional distribution 

functions 𝐹𝑌𝑑|𝐘𝑑−1
 of a D-dimensional distribution theoretically requires knowing the analytical 

function of the marginal distributions 𝑓𝐘𝑑
(𝑦1, … , 𝑦𝑑), which are unknown. 

 

 This problem is bypassed using an original solution [Toubeau18] that relies on a 

copula model, which represents an attractive alternative to compute multivariate distributions. 

As more thoroughly explained in Annex B, such models integrate the whole dependence 

structure of variables (independently from the constitutive univariate marginal distributions 

[Sklar59]).  

   

 The novel procedure to generate dependent samples from the multivariate multi-step 

ahead probabilistic forecasts is represented in Figure 3.16. It is decomposed into two parts. 

Firstly, the copula model is trained using historical observations of the dependent variables 

(Annex B). To that end, the univariate distributions (each one corresponding to a particular 

variable k at one specific time step t) are empirically constructed (phase I-A). The probability 

integral transformation is then used to convert these variables into uniform variables (phase I-

B), for which the multivariate distribution (copula model) can be easily computed (phase I-C). 

Secondly, once the copula model is obtained, it can be used to generate uniformly distributed 

numbers u = (u1,…, uD) ∊ [0, 1]D with the dependence structure of the original data. Using the 

marginal predictive distributions obtained with the probabilistic forecasting tool, these uniform 

numbers can then be converted into the original dimensions thanks to the inverse transform 

sampling so as to obtain the scenarios 𝐲𝑖,𝑡0:𝑇
𝑠  (phase II). The sampled scenarios thus encompass 

both time and inter-variable dependencies. 

 

 
Figure 3.16 – Generation of predictive scenarios from multivariate distributions. 

 

 

3.5 Results 

 

In the current context of liberalized electricity markets, energy aggregators, need to 

define each day (typically at 12h00) their optimal bidding strategy for the 24 hours of the 

following day, and must therefore have accurate predictions of the stochastic variables 

influencing the decision procedure over this scheduling horizon of 24 hours. As represented in 

Figure 3.17, the prediction horizon of interest for the day-ahead stochastic decision-making 

problem spans thus from 12 to 36 hours in the future. 
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Figure 3.17 – Representation of the prediction horizon. 

 

The predictions focus on the aggregated load and renewable generation (both onshore 

wind and photovoltaic generation) in Belgium in order to confront such predictions with the 

day-ahead forecasts published by the system operator (at 12h in day-ahead). Indeed, the latter 

publishes each day its forecasts for the purpose of promoting a transparent and more 

competitive market. The electricity prices related to the day-ahead market (DA prices) are also 

forecasted as they constitute highly relevant information for the day-ahead scheduling of market 

participants. Practically, the following neural network architectures are compared (thereafter 

referred by their abbreviations in brackets): 

- Multilayer perceptron (MLP), i.e. traditional static feedforward network, in which 

outputs at every time steps are simultaneously predicted so as to avoid accumulation of 

errors. 

- Unidirectional LSTM (LSTM) 

- Gated-feedback LSTM (GF-LSTM), an improved variant of the LSTM neural 

architecture, developed to optimally process signals with different timescales. 

- Bidirectional LSTM (BLSTM), the reference architecture to capture time dependencies. 

 

In order to compare the different variants on a fair basis, the same amount of effort was 

given in the determination of the optimal topology (same number of investigated configurations 

in the two-nested loops procedure). Moreover, all architectures are implemented and tested 

using the same simulation environment (Matlab). 

 

The prediction models were trained using hourly historical data from 2012 until 2017. 

The performance of the three compared neural networks (final architectures at the end of the 

optimal model selection) is evaluated on the month of January 2017 (test set composed of data 

that are not included within the learning phase). In order to increase the network robustness 

regarding unseen data, two (complementary) regularization techniques are jointly used during 

the learning phase, namely early stopping and the addition of weight noise so as to ensure that 

the network ignores the irrelevant information contained in the data. 

 

It should be noted that each variable is predicted independently (with a tailored neural 

network), since it has surprisingly been observed that the joint prediction of several variables 

(single prediction tool with several outputs to better capture interdependencies) does not 

improve the prediction accuracy. 

 

  The selection of adequate inputs is driven by both an intuitive determination of the 

influencing factors and a numerical comparison of the selected input configurations. 

 

All studied variables are characterized by both daily and yearly cycles (i.e. temporal 

profiles hold essentially the same shape from one day to the next and from year to year). 

Additionally, load and electricity prices are also strongly related to human activity, which 

results in a weekly periodicity. For example, the frequency content of the load signal can be 

visualized though its spectral density estimation (SDE) in Figure 3.18. Such a method allows 
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describing how the power of a signal is distributed over the frequency domain and, since the 

period is the inverse of frequency, the frequencies that carry most of the energy correspond to 

the prevalent periods. Here, a non-parametric approach, referred to as Welch’s method, is used 

for adequately representing the periodogram of the load. 

 

 
Figure 3.18 – Welch’s periodogram for aggregated Belgian load. 

 

Two main peaks can be observed, one at the frequency of 1.66 μHz, which corresponds 

to a weekly periodicity and the other at 11.56 μHz, which highlights the strong daily cycle of 

the load. In this way, the load temporal profile holds essentially the same shape from one day 

to the next one and from week to week. It should be noted that remaining peaks of lesser 

importance are only integer multiples of the aforementioned harmonics. 

 

For temporal information, the input selection does not only concerns the determination 

of adequate explanatory variables but also the way the information has to be included into the 

network. Indeed, the relative importance of these time data is not easily quantified by a 

numerical value. For instance, the second hour of the day is not 2 times more important than 

the first one. In this context, a binary representation may provide a more natural way of 

expressing such data, but at the expense of an increased dimensionality of the network input 

space. Here, different inputs combinations were therefore tested. Hence, for describing the 

hourly variation within the day, the different options were: 

- Incremental indexing: a single input in the form of a continuous value within the range 

[0.1, 2.4]. 

- Incremental binary representation: 5 inputs representing a binary Gray coding (from 

‘00001’ to ‘10100’). In contrast with the traditional binary representation, the Gray 

coding is a binary numerical system in which two successive values differ in only one 

bit, which allows smoother transitions between time steps. 

- Mutually exclusive binary representation: 24 binary inputs, one for each hour of the day. 

With such an input representation, when one input is equal to 1, all others are set to 0. 

 

For all temporal information (hours of the day, day of the week and month of the year), 

the best performance was obtained with the mutually exclusive binary representation, provided 

that the network complexity was sufficiently important (with a sufficient number of hidden 

units with each layer). Furthermore, an additional day index is introduced to efficiently 

represent the occasional events such as public holidays. 
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Then, weather conditions have also a significant influence on the studied variables. 

Here, the day-ahead predicted features (temperature, wind speed, cloud cover and solar 

radiation) provided by numerical weather predictions (NWP) at a single location in Belgium 

are thus integrated as network inputs. 

 

Finally, historical information is also provided so that the neural network can exploit 

the recent trend of the variable.  

 

To summarize, the inputs (explanatory variables) of the neural networks are: 

- Recent historical observations (last measured values before the prediction); 

- Temporal information (month of the year, day of the week and hour of the day) 

expressed with the mutually exclusive binary representation; 

- Discrimination of public holidays with a binary variable; 

- Forecasted weather data (such as temperature, cloud cover, etc.) coming from 

meteorological models (given by the Royal Meteorological Institute) at one location of 

the country. 

 

 

3.5.1 Performances of point forecasts 
 

The statistical quality of point forecasts from the different neural network topologies, 

which focuses on the degree of correspondence between the predictions and the actual 

observations, is estimated. For these deterministic forecasts, the root mean square error (RMSE) 

is used as error metric: 
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where n is the number of sampled data (number of time-steps T predicted each day multiplied 

by the number of simulated days), yt the output of the prediction model and dt the actual 

measured value. The results are presented in Table 3.1. 

 
Table 3.1 

Comparison of tested architectures in terms of RMSE.  

Network Wind PV Load DA prices 

BLSTM 101 MW 53 MW 236 MW 17 € 

GF-LSTM 105 MW 65 MW 250 MW 20 € 

LSTM 108 MW 72 MW 242 MW 20 € 

MLP 113 MW 78 MW 282 MW 22 € 

System Operator 109 MW 67 MW 391 MW NA 

 

The results demonstrate that recurrent neural networks show higher accuracy than both 

the multilayer perceptron and the tool used by the system operator. It should nonetheless be 

noted that we have little knowledge regarding the information used by the system operator. On 

the one hand, we have assumed that the information at 11h is available when conducting the 

predictions at 12h, which may not be the case in practice. But on the other hand, the 

meteorological information at our disposal is very limited (only one location at the center of the 

country) compared to what is actually available (to companies that have the financial resources 

to obtain the data). 
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The best performance is given by the bidirectional architecture, which emphasizes the 

importance of accurately accounting for time dependencies in the context of multi-step ahead 

forecasting. Then, the GF-LSTM architecture is more prone to overfitting than simpler models. 

In this way, the GF-LSTM outperforms the traditional LSTM network for predicting the wind 

and the PV generation but yields lower performance for the load. This can be explained by the 

strong deterministic behavior of the load curve that does not necessitate a complex model to 

catch important features.  

 

Finally, it is also interesting to emphasize that the optimal results are obtained with deep 

architectures (with several hidden layers). In this way, the best topology for predicting the wind 

generation, the total load and the day-ahead prices is obtained with a 2-layers BLSTM, whereas 

the best prediction model for the aggregated photovoltaic generation is a BLSTM network with 

3 hidden layers. Furthermore, the optimal size (capacity) of the neural networks is relatively 

low (10 to 20 neurons within each hidden layers, which can be explained by the necessity to 

avoid overfitting with the small number of historical data available. In this way, over the years, 

the accuracy of the proposed self-learning approach is expected to grow thanks to the amount 

of data that will allow to progressively increase the network capacity (complexity). 

 

 

3.5.2 Performances of probabilistic forecasts 
 

The second objective is to compare the Gaussian assumption of prediction errors with a 

non-parametric approach. The BLSTM architecture is used as a reference to evaluate these 

(parametric and empirical) methods. The statistical accuracy of the conditional quantiles 

provided by both methods is computed using the total quantile loss, with q = 1, 5, 10, 25, 50, 

75, 90, 95 and 99 %, averaged over the 24 hourly time steps of the prediction horizon.  
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This error metric (3.47) is evaluated on the same test set (January of 2017), and the 

outcomes are presented in Table 3.2. It should be noted that, since the model associated with 

the quantile loss is trained on the same error metric than the one used for evaluating its post-

hoc accuracy, the results may be slightly biased. However, this measure is the reference in both 

statistical and machine learning communities [Steinwart11], and is therefore used nonetheless.  

 
Table 3.2 

Comparison of parametric and non-parametric quantiles. 

Topology Wind PV Load DA prices 

BLSTM + Gaussian  171 MW 42 MW 422 MW 34 € 

BLSTM + quantile   147 MW  41 MW  389 MW 28  € 

 

Overall, the non-parametric model slightly outperforms the outcomes obtained with the 

Gaussian error assumption (i.e. the quantiles encapsulate more accurately the actual 

observations, and are characterized by more tight intervals). These results tend thus to support 

that the empirical model should be privileged, but, for the studied variables, assuming a 

Gaussian distribution of prediction errors does not lead to significant modeling errors 

(especially for PV generation). 
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For illustrating the quality of the results obtained using the BLSTM network with the 

(non-parametric) quantile loss function, the probabilistic forecasts associated with the four 

studied outputs are shown in Figure 3.19. Specifically, the concatenation of day-ahead 

predictions (at 12h in day-ahead for the 24 hours of the next day) carried out during 7 

consecutive days (from Monday to Sunday) is presented. 

 

 
Figure 3.19 – Probabilistic forecasts (with the quantile loss as loss function) performed during 7 consecutive days 

for wind (a), PV generation (b), total load (c), and day-ahead electricity prices (d). 

 

One can see that the predicted intervals properly encompass the actual realizations of 

uncertainties (the volatility of the studied variables is well captured). However, we observe that 

the quantiles are more tightened for the aggregated load, which indicates that the amount of 

uncertainty associated with this variable is much lower than, for instance, wind generation. 

Moreover, it should be mentioned that the simulated month was characterized by a high demand 

(and very low renewable generation) throughout Western Europe, which has considerably 

increased the price uncertainty (volatility) during this period. 

 

 

3.5.3 Quality of stochastic scenarios 

 

Once these probabilistic forecasts are obtained, the distributions are sampled to obtain 

the time trajectories that can thereafter be used in a stochastic optimization tool (Chapter 4). 

The quality of scenarios is compared regarding both the tool used for probabilistic forecasts 

(i.e. the MLP and BLSTM tools) and the sampling policy (i.e. independent [Quan15] and copula-

based sampling methods). The results are illustrated for two representative days (days 3 and 7 

of the week represented in Figure 3.19) of wind generation.  

 

The wind power scenarios generated from the BLSTM tool for the third and seventh 

days are respectively represented in Figure 3.20 and Figure 3.21. Likewise, the scenarios 

issuing from the feedforward multilayer perceptron for the same days are shown in Figure 3.22 

and Figure 3.23. 
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Figure 3.20 – Scenarios of wind generation for the third day of the considered week obtained using the copula-

based sampling (a), and independent sampling (b) methods from the BLSTM prediction tool. 

 

 

 
Figure 3.21 – Scenarios of wind generation for the seventh day of the considered week obtained using the copula-

based sampling (a), and independent sampling (b) methods from the BLSTM prediction tool. 

 

 

 
Figure 3.22 – Scenarios of wind generation for the third day of the considered week obtained using the copula-

based sampling (a), and independent sampling (b) methods from the MLP prediction tool. 
 

 
Figure 3.23 – Scenarios of wind generation for the seventh day of the considered week obtained using the copula-

based sampling (a), and independent sampling (b) methods from the MLP prediction tool. 
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Firstly, it is observed that the quantiles provided by the BLSTM are tighter and more 

accurate than those issuing from the MLP. Then, it can be seen that the proposed copula-based 

sampling strategy allows to better capture the statistical information of the multivariate time-

varying distribution of interest. Indeed, the independent sampling leads to scenarios with 

numerous sharp ramps that do not represent the smoother time profile of the aggregated wind 

power. In order to quantify this effect, the interdependence structure of forecast errors is 

studied. To that end, the autocorrelation function (ACF) of scenarios is compared with the one 

associated with the original variables. The ACF yields indeed the (linear) correlation between 

two values of the same variable at times t and t+i. 
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The results are summarized in Table 3.3, where the mean ACF deviation (i.e. deviations 

between the ACF of the generated scenarios and the one of the actual data averaged on the first 

representative lags of the serial correlation) are presented.  
 

Table 3.3 

Temporal properties of generated scenarios (deviation of autocorrelation function on representative lags) with 

respect to historical observations. 

 
Copula-based 

 sampling 

Independent  

sampling 

Wind   0.24 0.75  

PV  0.17  0.92 

Load 0.19 0.62 

DA prices 0.09 0.63 

 

The results show that the studied variables (wind, PV, load and electricity prices in the 

day-ahead market) do not come from a random processes (high values of autocorrelation 

between consecutive time steps), and that the copula-based sampling, contrary to the 

independent policy, appropriately captures this time-dependent information. 

 

Visually (from Figures 3.20 to 3.23), the quality of scenarios seems more sensitive to 

the sampling strategy than to slight improvements in prediction accuracy. In this way, the 

scenarios generated with the (improved) copula-based sampling from the (basic) MLP 

probabilistic forecasts appear more realistic and accurate than scenarios generated with the 

(basic) independent sampling from the (improved) BLSTM probabilistic forecasts. Such an 

observation will be further investigated through a dedicated case study. 

 

 

3.5.4 Value of probabilistic forecasts 
 

Finally, we analyze the practical value of generating more accurate scenarios, by 

studying the economic benefits resulting from the use of these scenarios in the subsequent 

decision-making procedure. Here, the day-ahead optimization faced each day by an electricity 

retailer having its own renewable generation capacity is used as a case study. The portfolio is 

composed of one percent of the Belgian load (~ 140 MW of peak consumption) as well as 

twenty percent of the installed (onshore) wind (~ 350 MW) and PV (~ 600 MW) capacity. Then, 

a storage station (maximum output power of 50 MW, energy capacity of 250 MWh, and 

ramping capabilities of 10 MW/minute) is also considered so that dependencies between 
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decisions at each time step of the scheduling horizon are important. Basically, the retailer aims 

at balancing its portfolio on a quarter-hourly basis (so as to avoid the financial penalties in case 

of imbalance) by exchanging (the surplus or deficit of energy) in the day-ahead electricity 

market (tariff arbitrage). In real-time, the retailer can then use the flexibility provided by the 

storage station to face prediction errors. 

 

In this context of time-dependent decisions under uncertainty, we estimate the value of 

the different techniques to generate day-ahead scenarios, which is here realized through the 

procedure depicted in Figure 3.24. 

 

 
Figure 3.24 – Procedure used to compare the quality of day-ahead decisions based on the different techniques to 

characterize the forecast uncertainty. 

 

The methodology is carried out for three different variants, which differ by the way 

scenarios are generated (Step 1): 

1) MLP + copula-based sampling 

2) Probabilistic BLSTM + independent sampling 

3) Probabilistic BLSTM + copula-based sampling 

 

The practical quality of scenarios is then analyzed through a post-hoc analysis, which 

consists in confronting the day-ahead decisions (obtained at the end of the day-ahead stochastic 

optimization of Step 2) with respect to the actual realizations (observations) of uncertainties 

during the whole month of January 2017. To that end, an economic dispatch (Step 3) has to be 

performed. The objective is to compute the profit actually generated based on the actual 

trajectories of uncertain variables as well as the day-ahead decisions, i.e. energy exchanged in 

the day-ahead market for each of the 24 hours. This procedure is performed for each day of the 

studied month, and the results (daily profit for the three investigated variants) are represented 

in Figure 3.25. 

 

 
Figure 3.25 – Daily profit generated by the electricity aggregator with respect to the stochastic scenarios used to 

model uncertainties. 
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By comparing variants #2 and #3 (which use the same probabilistic forecasts but differ 

by the way the scenarios are generated), it can be concluded that using representative scenarios 

in the stochastic optimization process of step 2 (scenarios that account for the complex 

dependence structure among variables) is an highly important factor to take reliable decisions, 

which is here associated with an increase of profit of around 4*105 Euros (i.e. relative increase 

of more than 10 %) over the simulated month. Moreover, the quality of predictions, in our case 

the fact of using the BLSTM neural networks (variant #3) instead of traditional feedforward 

networks (variant #1) with the same subsequent approach to generate the stochastic scenarios, 

plays also an important role to improve decisions in an uncertain environment. In this way, 

improved predictions (variant #3) enable decision makers to avoid taking overly conservative 

policies (so as to guarantee their robustness towards extreme scenarios). Here, the total profit 

throughout the considered month in variant #3 exceeds by 0.5*105 Euros (~4%) the profit 

realized in variant #1. 

 

 

3.6 Conclusions and perspectives 
 

In this chapter, a new approach to generate short-term multivariate predictive scenarios 

is presented. The methodology attempts to address the main challenges associated with such a 

task, i.e. obtaining accurate forecasts that efficiently catch the contextual information contained 

in the explanatory variables, while capturing both temporal and cross-variable dependencies 

when generating scenarios. The results demonstrates that the proposed methodology yields 

accurate, calibrated forecast distributions learned from the historical dataset, and that the 

generated scenarios enables to increase the economic profit of energy aggregators participating 

in power markets. 

 

As a next step (which is already under implementation), we investigate improvements 

in the prediction framework to tailor the architecture for shorter-term time horizons (e.g. wind 

forecasting for the next few seconds to minutes). Similarly, longer-term predictions (over a 

week) can be considered as well. 

  

It may also be of interest to explore the benefit of further improving the sampling 

strategy to take into account that the contextual information can influence the interdependence 

structure of variables (e.g. stronger autocorrelation during windy days). Likewise, it would be 

interesting to perform a thorough (over a representative learning horizon) sensitivity analysis 

on the number of epochs required for efficiently adapting the network parameters to new data. 

The idea is to find the best trade-off between conserving reliable information from remote 

historical realizations and efficiently accommodating new patterns in the data. 

 

 

3.7 Chapter publications 

 

 This chapter has led to the following publications: 

 

- J.-F. Toubeau, J. Bottieau, F. Vallée and Z. De Grève, “Improved Day-Ahead 

Predictions of Load and Renewable Generation by Optimally Exploiting Multi-Scale 

Dependencies,” in IEEE Innovative Smart Grid Technologies, Auckland, New-

Zealand, 2017. 
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- J. Bottieau, F. Vallée, Z. De Grève and J.-F. Toubeau, “Leveraging Provision of 

Frequency Regulation Services from Wind Generation by Improving Day-Ahead 

Predictions using LSTM Neural Networks,” in IEEE Energycon, Limassol, Chyprus, 

2018. 

 

- J.-F. Toubeau, J. Bottieau, F. Vallée and Z. De Grève, “Deep Learning-based 

Multivariate Probabilistic Forecasting for Short-Term Scheduling in Power Markets,” 

in IEEE Transactions on Power Systems, vol. 34, no. 2, pp. 1203-1215, March 2019. 
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CHAPTER 4 

 

DAY-AHEAD STOCHASTIC OPTIMIZATION 

OF VIRTUAL POWER PLANTS 

 

 
4.1 Introduction 
 

Once the uncertainties associated with the day-ahead decision procedure of market 

players have been properly characterized (chapter 3), the optimal day-ahead scheduling of their 

generation/consumption/storage portfolio has to be determined so as to efficiently hedge against 

the resulting uncertainty space. Within the framework of this thesis, a particular interest is 

drawn to small-to-medium pumped storage hydro (PSH) stations. However, the operation of 

such units is significantly constrained by their limited energy capacity (typically 4 to 6 hours at 

full power to completely exhaust the storage capacity). Consequently, their economic potential 

is fully leveraged when included within an existing virtual power plants, i.e. energy aggregators 

optimized as a single entity (mono-agent centralized control), participating jointly in energy 

and balancing services markets (see chapter 2).  

 

Market players are financially incentivized to improve their ability to address the 

different sources of uncertainties within their portfolio or even to help the system (through 

participation in ancillary services) when the real-time balance between the total generation and 

consumption is not maintained [Matevosyan06, Zapata14]. Indeed, such behaviors enhance grid 

security and allow system operators to decrease the quantity of necessary power reserve for 

restoring the balance, which positively impacts the electricity bill of end-users by reducing the 

total transmission grid costs associated to these ancillary market services. It is therefore of 

general interest to improve portfolio management of power market participants, especially as it 

can also contribute to the emergence of new actors investing in renewable energies. They can 

indeed rely on robust tools for managing risk in power markets, which will overall accelerate 

the energy transition.  
 

Currently, a large part of the literature devoted to the day-ahead decision procedure of 

market players relates to the challenges associated with a single wind producer [Baringo13, 

Bathurst02, Botterud12, Liang11, Morales10,b, Pinson07, Sánchez de la Nieta14, Zugno13] or a 

single hydroelectricity producer [De Ladurantaye07, Pousinho13]. Then, another significant part 

of the proposed works studies the combined and coordinated use of technologies with 
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complementary characteristics such as wind generation and energy storage [Abreu12, 

Castronuovo04, Ding12, Sánchez de la Nieta13, Khodayar13,a] or wind and conventional 

generation [Hellmers16]. 

  

Generally, these studies tend to focus on one fixed type of portfolio, and as a result, the 

developed methodologies often fail to consider all market opportunities such as using part of 

the flexibility for helping the system in real-time (during the imbalance settlement) or by 

participating in the different ancillary services. In this context, the proposed formulation is here 

designed to be as general as possible in order to suit any portfolio configuration. In this way, 

similarly to [Amin Tajeddini14, Mashhour11, Pandzic13,b], we do not make any assumption on 

the portfolio constitution, and the methodology is built to incorporate any type of electricity 

generation, consumption or source of flexibility (storage technologies, demand response, etc.). 

The objective is moreover to be able to consider all market opportunities, i.e. both energy 

markets (day-ahead, intraday, imbalance settlement) and ancillary services (including spinning 

and non-spinning reserves24). Finally, in contrast with traditional works that only consider a 

limited number of stochastic variables (typically wind generation and day-ahead electricity 

prices), it is here intended to include all relevant sources of uncertainty, while accounting for 

the risk in the decision strategy. 

 

However, the main contribution targeted in this part is the proper consideration of the 

uncertain amount of energy that will be called on for operating reserves in the day-ahead 

scheduling of Virtual Power Plants. In most studies, the amount of balancing power reserves 

requested in real time is either neglected [Ugedo06, Vargas-Serrano17], or simplified to a single 

hourly value [Chazarra17, Connolly11, Kazempour09]. In [Chazarra18], the uncertainty in the 

price of the aFRR capacity (but not regarding the actual activated energy) is added into a 

stochastic decision procedure. Here, we aim at generating adequate scenarios of the energy 

requested for ancillary services, and also to subsequently integrate them in a new formulation 

that jointly includes technical and economic effects arising from the uncertain real-time 

activation of allocated reserves. Specifically, the work takes into account both revenues from 

the actual provision of reserves and the variable cost structure of all considered technologies. 

This allows to obtain a cost-optimal allocation of assets to the different ancillary services over 

the scheduling horizon. In this way, downward regulation can be economically supplied by 

expensive-to-run units (due to operational cost savings), while high-performance technologies 

are cost-optimal for delivering the frequently activated reserves. 

 

These reserves were historically provided by conventional power plants due to their 

ability to efficiently modify their output power (high ramping rates). However, environmental 

considerations (i.e. reduce pollution and health detriment caused by coal fired power plants, 

and, to a lesser extent, gas-fired power plants) associated with a strong willingness to open up 

the market of ancillary services to all flexible resources within the grid, is driving the emergence 

of new actors. The most popular ones are currently storage units, demand response strategies, 

and modulation of the output power of renewable energies through power electronic devices. 

The participation of these technologies to balancing services is however more complex due to 

their limited energy capacity. Indeed, for storage units, the uncertain deviations in the output 

power (due to the real-time activation of reserves to restore grid frequency) may lead to 

unintended amount of energy stored at the end of the planning horizon, which thus affect the 

economic value of the storage power plant for the following days. Such deviations may also 

 
24 The non-spinning reserve is defined as extra capacity that remains offline unless it is requested by the system 

operator in the framework of mFRR. From a practical point of view, this type of reserve is more complex to 

integrate in the formulation of the day-ahead scheduling of virtual power plants. 
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unexpectedly empty or fill up the available capacity during the considered period and therefore 

prevent the unit to fulfill its operational schedule or to provide the contracted operating reserves. 

Then, the participation of demand response (deferrable load) to operating services is hampered 

by two main challenges, namely the necessity to comply with the load intertemporal constraints 

(some processes have fixed load profiles and/or cannot be stopped during operation), while 

efficiently accounting for the load recovery effect, i.e. the fact that the load curtailment infers 

postponement in the energy consumption [Pourmousavi14]. Finally, the contribution of 

renewable energy sources (RES) in flexibility services is limited by the reliability of power 

forecasts [Morren06].  

 

Overall, the probabilistic nature of the energy requested in the ancillary service markets 

induces uncertainty on both the profit (revenues from the real-time activation and expenses due 

to operating costs) and the energy capacity of participating resources. Considering worst-cases 

in the optimization, i.e. that the energy can be fully activated in either upward or downward 

direction during the whole scheduling horizon, prevents small-to-medium sized resources to 

participate in the service. Henceforth, in order to fully leverage the flexibility abilities of 

energy-constrained assets (so as to increase their economic value), it is important to efficiently 

model the uncertain fluctuations resulting from the real-time activation of operating reserves, 

and to incorporate them in a tailored stochastic scheduling procedure. This allows indeed to 

avoid relying on sub-optimal overly conservative approaches that aims to ensure availability of 

committed energy in case of full deployment of the reserve during the whole scheduling 

horizon. 

 

The stochastic optimization framework is discussed in Section 4.2. Then, Section 4.3 

introduces the methodology to model the uncertainties, whereas Section 4.4 presents the 

formulation of the day-ahead stochastic scheduling of Virtual Power Plants that considers the 

uncertainty of real-time procurement of ancillary services. In Section 4.5, the mathematical 

methodology to solve the resulting problem is briefly discussed, and finally, Section 4.6 

presents the case study that is designed to estimate the added value of the developed model with 

regard to traditional approaches that lead to overly conservative solutions. Relevant conclusions 

and perspectives are summarized in Section 4.7. 

 

 

4.2 Stochastic optimization 
 

 The main objective of the optimization model is to obtain a rational scheduling for 

allocating the available resources to the different markets platforms, while ensuring reliability 

of the results, i.e. the operational constraints must be adequately modeled so as to reflect the 

actual technical requirements of the studied system and to avoid impractical outcomes. From 

this, a trade-off between the performance of the model and the associated simulation time has 

to be determined. However, decisions need to be made without perfect information about the 

decision-making problem, and we have to resort on stochastic optimization. Different 

techniques exists, and are here briefly described: 

 

Scenario-based optimization 

In this framework, each uncertain parameter is modeled as a random variable and 

represented by a finite set of discrete scenarios [Conejo10]. It is critical to generate a sufficient 

number of representative scenarios that cover the possible realization of the underlying 

stochastic processes. The objective function is not a single value but a random variable, and the 
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problem is traditionally formulated as the optimization of the expected value of this function, 

e.g. maximizing the mean profit of the virtual power plant over the scheduling horizon. 

 

Interval optimization 

Instead of sampling scenarios, the interval optimization uses confidence intervals under 

the form of upper and lower bounds to represent the uncertainty space [Yu05], and therefore 

does not require the probability distributions of uncertain variables. The method then derives 

optimistic and pessimistic solutions for satisfying the problem constraints [Wu12]. 

 

Robust optimization 

The stochastic variables are modeled by an uncertainty set that is specified a priori. The 

shape of this uncertainty set is chosen so as to fit the historical data, but is typically selected to 

obtain a linear problem (e.g. rectangular set when two random variables are considered). The 

problem is optimized with respect to the worst-case realization within the uncertainty set, but 

the outcome remains feasible for any point contained in the uncertainty set [Sun17]. In 

comparison with the scenario-based approach (which leads to the best solution in expectation), 

robust optimization is a more conservative method, but has the advantage to be associated with 

lower calculation times. 

 

Chance-constrained optimization 

This is a less conservative version of the robust approach, which recently became 

popular due to its pragmatic (in terms of computational burden) characteristics. In this 

technique, the principle is to consider a probability for satisfying each constraint (e.g. based on 

all potential realizations of the real-time activation of balancing reserves, the probability that 

the energy limits of storage units are not violated should be equal to or higher than 95%). Such 

a formulation is very difficult to solve in practice (due to the non-convexity of the resulting 

probabilistic constraints), unless it is considered that the uncertainty set is following a Gaussian 

or a rectangular probability distribution function [Wu14].  

 

Distributionally-robust optimization 

This modern technique is an improved version of the chance-constrained and 

robust approaches. Instead of a single known uncertainty set, we have to deal with an ambiguity 

set that includes an infinite number of uncertainty sets [Bian15, Wei16]. This framework is well-

suited when the exact distribution of the uncertainty at hand is unknown. In such a case, the 

objective is to optimize the objective function against the worst-case distribution, while the 

obtained solution remains feasible for any other distribution within the ambiguity set.  

 

The day-ahead scheduling of VPPs has to be carried out on a daily basis and it is thus 

important that the formulation does not lead to conservative solutions. Indeed, the savings 

realized in case of realization of the worst-case scenario is unlikely to compensate the 

accumulation of opportunity losses during the other more classical days. Then, since providers 

of balancing capacity are disqualified if they fail to provide the service (Section 2.5), it is 

important to ensure that the provision of ancillary services is satisfied for all possible 

scenarios. Henceforth, the scenario-based approach is here privileged.  

 

The proposed day-ahead model has a multi-stage structure, and is constructed based on 

the actual decision process (subdivision into three consecutive trading floors) faced by a 

portfolio manager, namely: 

1. The VPP operator must submit its offering curve in the day-ahead market and establish 

the schedule of its slow (inflexible) generators before knowing the actual realization of 
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stochastic parameters (market prices, load and generation within the portfolio) 

influencing the portfolio operation. 

2. The VPP operator must decide on the operation of its fast (flexible) conventional power 

plant and storage utilities once the uncertainty is resolved, which corresponds to the real 

time economic dispatch of the portfolio. It should be noted that the imbalance price 

remains unknown at this stage. 

3. The imbalance tariffs are revealed. However, no decision has to be made at this third 

stage. As a result, the stochastic imbalance prices can be replaced by their expectations 

in the preceding stage and the proposed model can be expressed as a two-stage 

stochastic programming problem. 

 

The two-stage decision procedure is sketched in Figure 4.1, where ω is the scenario 

index, NΩ is the number of scenarios considered, and Ω represents the set of all scenarios. 

 

 
Figure 4.1 – Day-ahead decision procedure of Virtual Power Plants. 

 

In the two-stage stochastic decision-making process, we differentiate two different types 

of decisions: 

1. First-stage or here-and-now decisions x. These decisions are taken before the realization 

of the uncertainties Ω. It results that these here-and-now decisions variables are 

scenario-independent (do not depend on the realization of the stochastic processes). 

2. Second-stage or wait-and-see decisions y(x, ω). These decisions are made after the 

actual realization of uncertainties is disclosed/revealed. Consequently, these decisions 

are scenario-dependent (i.e. these are differentiated for each single scenario), and 

depend upon both the first stage decisions and the realization of the stochastic variables. 

 

A two-stage stochastic linear programming problem can be generally expressed as 

presented in (4.1). It should be noted that a nonlinear version can be straightforwardly deducted 

[Conejo10]. 
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where Qω is the optimal value of the second stage problem (referred to as recourse problem), 

which is formulated as follows: 
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where x is the vector of the n1 first-stage decision variables (limited by lower bounds xmin and 

upper bounds xmax), whereas yω encompass the n2 second-stage decision variables of the 

scenario ω. Since there are NΩ second-stage sub-problems, one for each considered scenario, 

the problem is therefore characterized by n1 + NΩ n2 decisions variables. Then, c, qω, b, hω, A, 

Tω, and Wω are known vectors and matrices of appropriate size (regarding the problem 

formulation). 

 

The two-stage stochastic problem can be equivalently expressed as the following 

deterministic program [Birge97]: 
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where πω is the probability of occurrence associated with scenario ω. Such a formulation 

intrinsically presents an exploitable structure that is well suited for decomposition (so as to 

accelerate the convergence of the resolution algorithm). 

 

Illustrative example 

 The following example is drawn from [Conejo10], and is aimed at illustrating the two-

stage stochastic formulation. It is centered on an industrial electricity consumer that participates 

in a pool-based electricity market to cover its load throughout a week (168 hourly periods). It 

is facing uncertainty regarding both its future demand and the pool-based market price, but it is 

assumed for simplicity that these stochastic parameters are constant over the considered week. 

The buyer has moreover the possibility to purchase up to 90 MW at 45 €/MWh (the same 

quantity is purchased for each period of the week), through bilateral contracting in week-ahead 

(before knowing its actual consumption and pool prices). The uncertainty associated with the 

decision process (predictive scenarios of demand and pool price) is provided in Table 4.1 

 
Table 4.1 

Scenario data for illustrative example. 

Scenarios 
Probability 

of occurrence 

Demand 

[MW] 

Price 

[Euros/MWh] 

ω1 π1 = 0.2 110 50 

ω2 π2 = 0.6 100 46 

ω3 π3 = 0.2 80 44 

 

To summarize the decision procedure (Figure 4.2), at the first stage, the consumer has 

to decide how much to buy from the bilateral contract (ignoring both its future consumption 

and the electricity prices in the pool-based market). Then, during the second stage, knowing its 

electrical load, it has to buy the remaining quantity (at the corresponding market price) to cover 

its load. It should be noted that the possibility to buy energy in week-ahead to sell it afterwards 

in the pool market is not considered.  
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Figure 4.2 – Decision scenario tree associated with the illustrative example [Conejo10]. 

 

This two-stage stochastic programming problem can be formulated as the minimization 

of the expected cost faced by the consumer to supply its uncertain demand. 
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The first-stage decision variables pbil represent the power purchased through the bilateral 

contract for the three considered scenarios. The second-stage variables ppool stand for the power 

bought in the pool-based market. 

 

The first three constraints enforce energy supply for the three scenarios of demand, 

whereas the two following constraints express the bounding limits of the bilateral trading and 

pool-based market respectively. Finally, the last constraint describes the non-anticipativity 

condition translating the fact that the bilateral contract is independent of the scenario 

realization (and has to be fulfilled whatever the future realization of stochastic parameters).  

 

The solution to this problem is characterized by a consumer buying pbil = 80 MW using 

the bilateral contract. 

 

Including risk in the stochastic decision procedure 

Traditional two-stage stochastic programming is risk-neural. Indeed, by optimizing the 

expected value of the objective function, the formulation does not consider the remaining 

parameters characterizing the distribution. In this way, in the context of profit maximization of 

a Virtual Power Plant, even though the mean profit is positive, it is possible that some scenarios 

lead to negative profits or losses. The effect of risk can be taken into account by controlling the 

shape of the profit distribution, in particular the probability of experiencing low revenues. The 

purpose is to obtain the best trade-off between the conflicting objectives of maximizing both 
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the expected profit and the worst-case profit scenarios (typically increase one contribution 

reduces the second), while satisfying the technical constraints of the problem. Practically, the 

most common method of managing the risk is to include in the formulation a term measuring 

the risk related to the profit distribution. Here, the conditional value-at-risk (CVaR) is used . 

 

As represented in Figure 4.3, for a given α ∈ [0, 1], the conditional value-at-risk (CVaR) 

is defined as the expected value of the profit smaller than the (1−α) % quantile of the profit 

distribution [Rockafellar00]. 

 

 
Figure 4.3 – Illustration of the conditional value-at-risk. 

 

In the context of the maximization of the profit Φ, the CVaRα is the expected value of 

the profit lower than the Value-at-risk (VaRα). 

 ( ) ( )( )|CVaR VaR  =    E   (4.4) 

where the VaR at confidence level α, noted VaRα is the upper bound of the 100(1-α) % least 

profitable scenarios of the profit distribution, i.e. the largest value η ensuring that the probability 

of having a profit lower than η is less than 1-α.  

 ( ) max 1VaR P   =    −   (4.5) 

 

The CVaRα can be expressed by means of linear expressions [Rockafellar00]. To that 

end, it suffices to introduce an additional positive variable zω (for each scenario), which 

measures negative profit deviations from VaRα.  

 0,z      (4.6) 

 ( ) ,z VaR      −      (4.7) 

 

Hence, the CVaRα can be expressed as: 

 
1

1
CVaR VaR z   




 

= −
−
   (4.8) 

  

The CVaR can be included into the formulation (4.3) using β = {0, 1} as the trade-off 

between the maximizations of the expected profit and of the average profits in the 1-α % of 

scenarios with the lowest revenues. 
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  (4.9) 

where zω is a continuous non-negative variable. 

 

Challenges associated with scenario-based stochastic optimization 

Currently, stochastic programming still presents two important challenges 

[Papavasiliou11]. 

 

The first one consists in choosing the most appropriate set of scenarios modeling the 

complex dependency structure of the stochastic variables (Section 4.3). Each scenario has to be 

statistically representative of the interdependencies among variables while conserving the 

information about the time structure (i.e. autocorrelation) of each variable individually.  

 

The second challenge is to reduce the computational burden of the problem due to its 

numerous degrees of freedom. This challenge is particularly pronounced in two cases, namely 

when some decision variables are binary and when the objective function or some constraints 

are nonlinear. Here, the sources of nonlinearity are appropriately linearized and the number of 

integer decision variables is minimized thanks to an efficient modeling framework, capitalizing 

on the knowledge reported in the existing literature. The problem is indeed formulated as a 

compact mixed-integer linear program (Section 4.4). 

 

 

4.3 Scenarios generation 

 

In day-ahead, the uncertain variables need to be predicted as accurately as possible in 

order to take adequate market decisions while scheduling the optimal sequence of actions of 

portfolio units for the next day. The robustness of these decisions is ensured by the decision-

making procedure that statistically accounts for the possible deviations using a set of 

representative scenarios ω ∊ Ω. It is therefore essential to precisely model and generate these 

scenarios. However, it may not be relevant to rely on an advanced forecasting tool for all 

uncertain variables, especially the real-time grid imbalance or the amount of reserve that will 

have to be activated by the system operator, since these values are highly volatile and governed 

by ultra-short-term events. The prediction accuracy of such variables over a multi-hours horizon 

is thus questionable. The distinction between the two set of variables is presented in Table 4.2.  

 
Table 4.2 

Stochastic variables included into the formulation. 
Set 1: Variables predicted using the BLSTM-based 

approach 

Set 2: Endogenous variables modeled using 

statistically representative scenarios 

Wind generation 

PV generation 

Load 

Electricity prices in the day-ahead market 

Electricity prices and liquidity in the intraday market 

Grid imbalance 

Amount of energy requested in real-time for FCR, 

aFRR and mFRR 

 



CHAPTER 4       DAY-AHEAD STOCHASTIC OPTIMIZATION 

     OF VIRTUAL POWER PLANTS  

92 

The generation of the predictive scenarios (for stochastic variables pertaining to set 1) 

is presented in Chapter 3. As a reminder, the probabilistic forecasts (under the form of intervals) 

for the 24 hours of the following day for all considered variables are first obtained using a 

BLSTM-based approach. Then, the multivariate scenarios are generated by sampling the 

resulting high-dimensional distribution. 

 

The procedure for identifying the representative scenarios (of the endogenous uncertain 

parameters pertaining to set 2) is structured around two consecutive steps. The first one consists 

in identifying the relevant set of historical data for constructing the model. Then, the type of 

model has to be appropriately selected and the building phase (i.e. model training) can be carried 

out. Since market and grid conditions are currently in a transition state mainly due to the 

increasing contribution of renewable-based generation in the energy mix, the model is trained 

using relevant data of at most 2 years old (so as to avoid modeling irrelevant past regimes). 

 

Traditionally, the different uncertain variables of the problem are generated 

independently [Glasserman04]. This originates from the fact that the temporal dynamics may 

significantly vary among the different variables, which necessitates diverse modeling tools (e.g. 

Markov chains, autoregressive (integrated) moving-average models, neural networks, etc.) that 

cannot be easily coupled. This approach may accurately model the statistical properties of each 

variable individually but ignores the dependency structure between variables and can therefore 

lead to unrealistic scenarios. Moreover, as represented in Figure 4.4, this independent 

generation yields a multiplying effect of the number of scenarios when the number of stochastic 

parameters increases. This issue can be addressed by using scenario reduction techniques 

[Römisch03], but at the expense of less likely scenarios. These may potentially generate extreme 

outcomes (highly profitable or highly adverse) and should therefore not be neglected. 

 

 
Figure 4.4 – Independent generation of scenarios. 

 

Against this background, a comprehensive model including all uncertain variables may 

not only increase the quality of the model but also reduce the number of scenarios required for 

capturing the uncertainty sphere [Tastu13]. Here, a probabilistic approach is envisaged, and 

involves representing the multivariate distribution function with a large number of dimensions 

in order to encompass the temporal information of all variables of the problem. 

 

Firstly, the number of dimensions is thus preliminarily decreased for each endogenous 

variable separately using principal component analysis (PCA). This technique attempts indeed 

to find a linear subspace of lower dimensionality than the original space, in which the new 

dimensions include the largest amount of information about the original dataset.  
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Secondly, a copula model is used to incorporate the complex dependence structure 

among variables [Sklar59]. The model encompasses both the temporal transitions characteristics 

of each single parameter as well as the dependence pattern among variables. It is worth noting 

that the model intrinsically catches fluctuations of the dependence structure over time (e.g. a 

stronger correlation between variables at some specific periods of the day). The method used 

to estimate the copula model and generate subsequent random vectors (or scenarios, or time 

trajectories) with the multivariate distribution of interest is based on [Strelen07, Strelen09], in 

which the copula is estimated thanks to a non-parametric (empirical) approach. Such a 

parameter-free method offers a greater generality allowing to represent any type of dependence.  

 

Illustrative example 

The methodology for generating scenarios of endogenous variables (pertaining to set 2 

of Table 4.2) is illustrated in a simple bivariate case including the imbalance tariffs and the real-

time activation of upward aFRR for a typical day of January. 

 

Both these variables are measured with a quarter-hourly time step, leading to 96 daily 

data. The first stage of the modeling procedure presented above consists therefore in decreasing 

the dimensionality of the uncertainty space through a PCA analysis. The transformation is 

indeed such that the first principal component accounts for the largest possible variance 

contained in the original data, and each succeeding component comprises, in turn, the largest 

possible part of the remaining information (with the constraint that each component is 

orthogonal to the preceding one). The percentage of variability associated with each component 

for imbalance prices and activation of upward aFRR is represented in Figure 4.5. 

 

 
Figure 4.5 – Outcomes from the principal component analysis for the imbalance price variable (a), and the upward 

activation of aFRR (b). 
 

It is interesting to observe that 85 % of the information is captured using around 35 

dimensions, thereby demonstrating that a lot of redundant information is included within the 

studied time series. A copula model including both reduced-size variables is then constructed 

based on historical measurements (months of January 2015 and 2016). This model can then be 

exploited to generate representative scenarios that account for both time and cross-variable 

dependencies. Here, 10 scenarios aiming at representing a typical day of January 2017 are 

generated, and the comparison between the actual realizations of 2017 with the simulated time 

trajectories (using the copula model trained on 2015-2016 data) is illustrated in Figure 4.6 for 

the imbalance tariffs and in Figure 4.7 for the amount of aFRR activated by the system operator. 
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Figure 4.6 – Test set (a) and generated data (b) for the imbalance tariffs of January 2017. 
 

 
Figure 4.7 – Test set (a) and generated data (b) for the imbalance tariffs of January 2017. 

 

It can be observed that the generated scenarios appear statistically close to the actual 

observations. In order to mathematically endorse this visual conclusion, the autocorrelation 

function (ACF) of both series are represented in Figure 4.8. 

 

 
Figure 4.8 – Comparison of Autocorrelation functions (ACFs) between the training set and generated scenarios 

for the imbalance settlement (a) and activation of upward aFRR (b) 
 

 

4.4 Mathematical formulation 
 

The nomenclature relative to the stochastic formulation of the day-ahead scheduling of 

Virtual Power Plants (containing pump storage hydro stations) is exposed hereunder. When the 

formulation refers to other variables, the latter are properly introduced in the text.  
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Sets and indexes 

   Time step 
  Stochastic scenario 
g G  Conventional power plants 

s sg G G   Slow conventional power plants 

f fg G G   Fast conventional power plants 
p PSH  Pumped-storage hydro station 

( )G PSH    Conventional and storage plants 

dr DR  Demand response technology 
r RES  Renewable generation technology 
s  Reserve product 

up    Upward reserve product 
down    Downward reserve product 

 

Mid-term decision variables (= parameters in the day-ahead optimization) 
totRess  Total balancing capacity reserved by the VPP 

LTME  Energy exchanged on the long-term markets 

 

Decision variables (in bold characters) 

, , ,s   Res  Allocated reserve capacity 
on

, , ,s   Res  Spinning reserve capacity 
su

, , ,s g  Res  Non-spinning reserve capacity 
sd

, , ,s g  Res  Spinning reserve capacity through shut-down 
dr

, ,s  
Res  Reserve capacity offered by demand response 

DAM

E  Energy exchanged on the day-ahead market 
IM

, E  Energy exchanged on the Intraday market 
imb

, E  Imbalance of the portfolio 
cut-off

, ,r  P  Renewable output power curtailed 
com

, ,g    Binary variable indicating the committed status of the unit (before 

activation of reserves) 
real

, ,g    Binary variable indicating the actual status of the unit (after activation 

of reserves) 
su

, ,g    Binary variable indicating if the unit is starting up 
sd

, ,g    Binary variable indicating if unit is shutting down 
off,su

, ,g    Binary variable indicating if the unit is allocated to start-up (for reserve 

provision) 
on,sd

, ,g    Binary variable indicating if the unit is allocated to shut-down (for 

reserve provision) 
com

, ,g  δ  Output power (above the minimum level) 
turb

, ,p    Binary variable indicating the turbining status 
pump

, ,p    Binary variable indicating the pumping status 
turb

, ,p  P  Output power in turbine mode 
pump

, ,p  P  Output power in pump mode 
SU,pump

, ,p  c  Pump start-up costs  
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SU,turb

, ,p  c  Turbine start-up costs 
SD,pump

, ,p  c  Pump shut-down costs 
SD,turb

, ,p  c  Turbine shut-down costs 
DR

, P  Output power of demand response 

 

Parameters  

CVaR  Confidence level used for the CVaR 
  Risk-aversion parameter 

  Probability of occurrence of scenario ω 

  Time resolution, in hours 
res

s  Price for availability of reserves, in €/MWh 
DAM

,   Price of day-ahead market, in €/MWh 
IM

,   Price of Intraday market, in €/MWh 
LTM

  Price of long-term markets, in €/MWh 

imb

,   Penalty price, differing between positive and negative imbalances, in 

€/MWh 
NRV  Net regulation volume within the system, in MW 

1, ,   Risk-aversion parameter in case of positive system imbalance 

2, ,   Risk-aversion parameter in case of negative system imbalance 
act

s  Price for activation of reserve, in €/MWh 
GC

r  Price of green certificates, in €/MWh 
inj cons,    Grid fees for generated (consumed) energy, in €/MWh 

,

sR   Proportion of reserve (∈ [0, 1]) requested by the system operator 
min

gC  Minimal operating costs of conventional generation units 
marg

g
C  Marginal operating costs of conventional generation units 

min max,g gP P  Minimum (maximum) stable output power, in MW 
s

gR  Maximum power variation for service s, in MW 

,g gSU SD  Maximum start-up (shut-down) rate, in MW 
op

pC  Variables operating costs, in €/MWh 
minSOC p  Minimum state-of-charge, in MWh 
maxSOC p  Maximum state-of-charge, in MWh 

targetSOC p  Target value of the state-of-charge (at the end of the scheduling 

horizon), in MWh 
SU,pump

pC  Costs incurred in case the pump is stated up, in € 
SU,turb

pC  Costs incurred in case the turbine is started up, in € 
SD,pump

pC  Costs incurred in case the pump is shut down, in € 
SD,turb

pC  Costs incurred in case the turbine is shut down, in € 
pump turb,p p   Efficiencies in pump and turbine modes 
load

,P   Total load in portfolio, in MW 

 

Objective function 

The objective function (4.10)-(4.11) is expressed as the maximization of the expected 

profit of the portfolio over the whole set of scenarios, while taking into consideration the risk-
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aversion of the VPP using the conditional value-at-risk. The formulation is expressed as a 

mixed-integer linear program (MILP), and includes: 

(i) the fixed revenues from the energy exchanges in long-term markets; 

(ii) the fixed revenues for the availability (capacity) of balancing reserves during the 

24 hours of the scheduling horizon;  

(iii) the revenues from the energy exchanges in the day-ahead market;  

(iv) the revenues from the energy exchanges the Intraday markets;  

(v) the financial penalties in case of portfolio imbalance;  

(vi) the revenues from the actual provision of ancillary services (based on the signal 

𝑅𝜔,𝜏
s  requested by the system operator);  

(vii) the operating costs (including the contribution to reserves) of all units;  

(viii) the costs of curtailment of renewable generation (loss of green certificates).  

 

 ( )max 1 .CVaR −  +   (4.10) 

   

DAM DAM IM IM imb imb

, , , , ,
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,
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  (4.11) 

 

In order to adequately model the operation of the imbalance settlement, the optimization 

is carried out with a 15 minutes time resolution. This allows moreover that the power 

trajectories of all resources can be modeled as quarter-hourly piecewise linear functions instead 

of hourly functions, which enables to better represent ramping properties of units. This results 

in a clear distinction between power and energy, and eliminates power discontinuities (and thus 

energy imbalances) in the scheduling phase. 

 

Day-ahead market 

The profit made in the day-ahead market is positive if energy has been sold, and negative 

if energy has been purchased. In both cases, the profit value is equal to the volume exchanged 

multiplied by the market price. In the day-ahead market, the energy is exchanged for hourly 

periods, whereas the formulation is carried out with a quarter-hourly time resolution. It is 

therefore imposed that the hourly energy is equally distributed among its constitutive intra-hour 

(quarter-hourly) intervals. 

 

To reflect the non-anticipativity constraint associated with the bidding strategy in the 

day-ahead market, the optimal values 
DAM

E  are the same for all scenarios ω ∊ Ω. These 

decisions variables are thus not associated with the subscript ω (scenario-independent variables) 

into the formulation.  

 

Intraday market 

Similarly to the day-ahead market, the energy in the Intraday market is traded for hourly 

periods, and we make the necessary adaptations to ensure consistency with the quarter-hourly 

time intervals used in the formulation. 
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Due to the continuous trading model used in the Intraday market, different market prices 

can be defined for each transaction. Here, for simplicity, the different prices corresponding to 

the same hours are weighted with respect to the volume of the transaction so as to obtain a 

single price. 

 IM

,
tr

tr

tr TR tot

q

q
  



=    (4.12) 

where qtr and qtot stand respectively for the volume (in MWh) of the transaction tr ∊ TR and the 

aggregated volume of all transactions associated with period τ, whereas λtr is the trading price 

(in €/MWh) of the transaction tr. 

 

The intraday market liquidity is also modeled using historical information: 

 
IM

, liquidityIM  E   (4.13) 

 

It should be emphasized that the VPP behaves as a price taker in day-ahead and intraday 

markets (i.e. it is assumed that the market price is not impacted by the portfolio decisions). It 

results that the day-ahead and intraday prices can be modeled as exogenous variables.  

 

Energy balance equation – Portfolio imbalance settlement 

The imbalance penalty applied to the VPP for each quarter of an hour is equal to the 

imbalance price (in €/MWh) multiplied by the unbalanced energy of the portfolio (in MWh). 

This imbalance energy 
imb

, E  is considered as positive in case of positive imbalance (i.e. the 

portfolio is in surplus of energy) and negative otherwise. 

 

The VPP cannot be considered as a price-taker in the balancing market (since the 

sensitivity of this market is in the order of a few MWh). This issue of accounting for the market 

power in the imbalance settlement has been tackled in [Zugno13] for a wind producer aiming at 

maximizing its profit from both day-ahead and balancing markets (i.e. imbalance settlement) in 

an uncertain environment. The problem has a bi-level (nested) structure that cannot be solved 

directly. However, if a problem is convex and satisfies some regularity conditions (e.g. if the 

constraints are affine functions, then no other conditions is required), then it can be replaced by 

its Karush-Kuhn-Tucker (KKT) conditions [Luenberger84]. The lower-level problem is 

consequently equivalently represented by its KKT conditions, and the bi-level problem can then 

be reformulated as a single MILP. However, due to the complexity of the resulting formulation, 

a single time period needs to be considered in the work.  

 

To bypass this issue, traditional formulations impose that the imbalance should be equal 

to 0. However, such a risk-averse strategy does not exploit the potential of the single pricing 

mechanism that rewards actors who are helping the system. Here, we attempt to find a 

compromise between both approaches (computationally demanding game-theoretical model 

that does not allow to consider multiple time steps and risk-averse policy that does not harness 

the economic potential of the imbalance settlement) with a solution that allows the portfolio to 

intentionally deviate in real-time to improve its energy management policy. 

 

However, in two-stage stochastic programming, second stage decisions are taken once 

the uncertainty is fully disclosed. This implies that a decision to purposefully deviate from a 

balanced position is made without the risk that is normally faced in real-time by a portfolio 

manager that ignores the actions of other market participants. Hence, if these decisions are let 
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uncontrolled in the formulation, this will lead to overly optimistic strategies since the portfolio 

will fully take advantage of the global imbalance of the grid, whereas it is much more risky in 

practice due to the important volatility of the grid imbalance. Furthermore, it should not be 

forgotten that the VPP is unlikely to have perfect information about its own current position, 

especially if load and renewable generation is included in the portfolio. 

 

Hence, the imbalance position is decomposed into three components, a term 
imb,play

, E  

which defines the imbalance that is deliberately played in the market, and two other terms 
imb,pos

, E and 
imb,neg

, E  that are used to strongly penalized the portfolio in case of undesired 

imbalance. 

 imb imb imb,play imb imb,pos imb,pos imb,neg imb,neg

, , , , , , , ,                  + −E = E E E   (4.14) 

where the tariffs in case of positive and negative portfolio imbalances are respectively set to 

𝜆𝜔,𝜏
imb,pos

 = 0 € and 𝜆𝜔,𝜏
imb,neg

 = 100 €. 

 

In this dissertation, the following risk strategy is applied:  

 imb,play

1, , , 2, ,NRV NRV         E   (4.15) 

 
1, ,

0.2 if NRV -100 MW

0 otherwise


 


=


  (4.16) 

 
2, ,

0.2 if NRV 100 MW

0 otherwise


 


=


  (4.17) 

where κ1,ω,τ and κ2,ω,τ are constant values, and allow to adopt different risk strategies. The net 

regulation volume (NRV) is fully explained in Section 2.6, and represents the amount of 

reserves activated by the system operator to restore the balance within the system. This value 

is used to determine the imbalance tariff, which is why the variable is included into the 

formulation. 

 

 Overall, the imbalance of the VPP is the difference between two terms, i.e. (1) the total 

energy generated within the portfolio and the energy purchased in energy markets, and (2) the 

total consumption and the energy sold in markets. It is worth reminding that the energy provided 

in the context of ancillary services is neutralized in the imbalance perimeter of a Belgian 

portfolio, and is therefore not taken into account25. 

 
( )

imb LTM DAM IM

, ,

real turb pump actual load dr
, , , , , , , , , ,

E

g p p r

g G p PSH r RES dr DR

P P

     

           
   

= − − −

 
+ + − + − − 

 
   

E E E

P P P P
  (4.18) 

 

Allocated reserve capacity 

The procurement of balancing capacity Res𝑠
tot occurs in mid-term (in week-ahead). The 

resulting capacity is then dynamically allocated (on a 15-min basis) to the different resources 

of the portfolio. It must be ensured that, at each time period, the portfolio is able to provide the 

total contracted amount of balancing reserves in both directions. Each unit can provide 

asymmetric contributions (e.g. participating only in upward regulation). The upward reserve 

can be delivered by online (conventional and storage) units, offline power plants that can start-

 
25 Technically, the activation of FCR is not neutralized in the portfolio of Belgian market players. 
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up sufficiently quickly (non-spinning reserve) and load shedding (4.19). The downward 

regulation is provided by online (conventional and storage) stations, power plants able to shut-

down sufficiently quickly, curtailment of renewable generation and demand response by load 

activation (4.20). 

 ( )up on su dr tot

, , , , , , , ,: Ress s s s

dr DR

s        
 

  + + = Res Res Res   (4.19) 

 ( )down on sd dr tot

, , , , , , , , , , ,: Ress s s r s s

r RES dr DR

s          
  

  + + + =  Res Res Res Res   (4.20) 

 

It is worth noting that the allocation of reserves within the portfolio is differentiated 

among the different scenarios of stochastic variables to ensure the optimal dispatch of available 

resources with regard to actual realizations of uncertainties.  

 

The real-time activation of balancing energy for each product s is modeled as a 

normalized vector 𝑅𝜔,𝜏
s  ∊ [0, 1] that reflects the severity of the global imbalance within the grid 

for each scenario ω ∊ Ω. The power actually delivered for service s is thus equal to this value 

𝑅𝜔,𝜏
s  multiplied by the total power allocated. Only downward reserve by shut-down and non-

spinning reserves are binary stochastic variables ∊ {0, 1}. 

 

Conventional power plants 

The investment costs (capital expenditure) as well as the fixed operating and 

maintenance costs (fixed O&M)26 are not considered in the short-term decision procedure (not 

relevant at this operational stage). In fact, any costs that would be incurred regardless of whether 

a decision is made or not (e.g. depreciation of assets) are irrelevant.  

 

The main technical and cost-related specifications of traditional conventional power 

plants (CPP) technologies are presented in Table 4.3. The dynamic features are broadly divided 

into base, mid and peak technologies and the associated ramping rates are presented. Then, the 

characteristics in terms of capital and operational costs are illustrated. 

 
Table 4.3 

General characteristics of conventional technologies. 

Technology Generator type %𝑃𝑚𝑎𝑥 /minute CAPEX OPEX 

Nuclear 

Fossil fuel fired steam turbine 

Open Cycle Gas Turbine (OCGT) 

Combined Cycle Gas Turbine (CCGT) 

Diesel 

Hydro 

Base load 

Base load 

Mid load 

Mid load 

Peak 

Peak 

1-5 

1-5 

5-10 

5-20 

40 

20-50 

High 

High 

Mid 

Mid 

Low 

High 

Low 

Low 

Mid 

Mid 

High 

Very low 

 

With the increasing need of operational flexibility in power systems to alleviate system 

imbalances, it is important to accurately account for the cycling of power plants (i.e. any change 

in the output power due to ramping, start-up or shut-down), both in terms of technical and costs-

related aspects. Indeed, one should not only ensure that the output power transitions are 

technically feasible (in terms of ramping rates) but also take into consideration that these power 

variations involve additional CO2 emissions, while accelerating wear and tear on the unit 

 
26 The fixed operating and maintenance costs (fixed O&M) represent the overheads, i.e. costs that do not vary with 

the unit scheduling, such as wages and salaries, insurances and periodic maintenance. For units that have their own 

sources of energy, these costs also encompass fixed costs associated with the coal/gas extraction. 
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components (mainly due to excessive turbine shaft tensions and rotor temperatures), ultimately 

leading to forced outages [Wu13]. For instance, when a power plant is shut down, its components 

are subject to important temperature and pressure stresses that are accelerating the ageing of 

the unit, ultimately leading to forced outages. These stresses are even more exacerbated during 

the start-up phase. It has been shown in [Van den Bergh15,b] that these cycling costs can be in 

practice decreased by 40 % when they are fully included in the scheduling process. However, 

these costs are very difficult to quantify and depend on many factors, among which the most 

relevant are the type of the unit, its age and the usage pattern. The latter is furthermore measured 

with a long-term perspective (e.g. costs of lost opportunity due to unexpected outage, capital 

and maintenance costs due to accelerated ageing, decrease of global efficiency due to repeated 

cycling), and is thus very difficult to properly estimate in the short-term decision procedure.  

 

 
Figure 4.9 – Energy generated during cycling phase of conventional power plants. 

 

The running costs 𝐜𝑔,𝜔,𝜏
gen

 of conventional power plants consist in a fixed part 𝐶𝑔
min (fuel 

consumption and CO2 emissions when the plant is operating at its minimum stable output 

power) and a variable contribution 𝐶𝑔
marg

 reflecting marginal costs at higher generation levels, 

whereas the grid fees 𝐜𝑔,𝜔,𝜏
fees  are proportional to the energy 𝐄𝑔,𝜔,𝜏

real  actually injected by the unit 

into the grid (4.21).  As represented in Figure 4.9, this generated energy (4.22) takes into 

account the output power trajectory (ramping processes between consecutive time steps). 

 ( )gen fees realmin real marg real inj
, ,, , , , , , , , gg g g g g g gC C           + =  + +c c δ E   (4.21) 

 ( )real real real
, , , , , , 10.5g g g      −=  +E P P   (4.22) 

 

It should be emphasized that, due to the provision of non-spinning reserve as well as 

downward regulation by shut-down, the actual status of power plants may differ from their 

operation schedule (committed status). Consequently, in order to properly account for 

activation costs of such balancing services into the formulation, it is necessary to discriminate 

the scheduled output power 𝐏𝑔,𝜔,𝜏
com  and the real output power 𝐏𝑔,𝜔,𝜏

real .  

 
up down

real com
, , , , , , , , , , , ,

s s
g g s g s g

s s

R R           

 

= + − P P Res Res   (4.23) 

  min
, , , , , , com, real,

j j j
g g g g jP      = +P δ   (4.24) 

 

Then, ramping costs are incurred at each output power variation. The contributions from 

scheduled power variations 𝐜𝑔,𝜔,𝜏
ramp

 and deployment of reserves 𝐜𝑔,𝜔,𝜏
ramp,r

 are differentiated so as 

to accurately reflect costs of delivering reserves. Finally, costs 𝐶𝑔
su are incurred at each start-up 

(𝐜𝑔,𝜔,𝜏
su ), whether it is self-committed or by activation of non-spinning reserve (4.28). 
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 ( )ramp ramp com com

, , , , , , 1g g g gC      − −c δ δ   (4.25) 

 ( )ramp ramp com com

, , , , 1 , ,g g g gC     − −c δ δ   (4.26) 

 
ramp,r ramp on

, , , , , ,

s
g g s g

s

C R     


= c Res   (4.27) 

 ( )su su su off,su off,su
, , , , , , ,g g g gC R       = +c     (4.28) 

 

In order to model power-trajectories and costs during start-up and shut-down with 

respect to previous operation states (e.g. higher start-up costs when the unit has been offline 

during a long period), one can refer to the formulation proposed by [Morales-Espana13]. 

 

The generation limits of each unit are defined by (4.29)-(4.31). These constraints make 

sure that the scheduled power respects the capacity margins allocated for the reserves so that 

part of the generation capacity is not doubly booked (for both reserves provision and strategic 

level of generation). In this way, it is ensured that the allocated reserves can be provided 

regardless of the actual realization of uncertainties. 

 
up

com com max on
, , , , , , ,g g g s g

s

P     



 − P Res   (4.29) 

 ( )
down

comcom on,sd min on,sd on
, ,, , , , , , , , , ,+ gg g g s g s g

s

P         



− + Res Res P    (4.30) 

 ( )real real max min

, , , ,0 g g g gP P     −δ    (4.31) 

 

The output power transitions between consecutive time steps are constrained by the 

ramping abilities of the considered units, which differ between normal conditions and start-up 

or shut-down phases. When balancing capacity is allocated, it must be ensured that ramping 

capacity is not doubly booked (accounting for dynamic characteristics of the reserve products). 

In this way, FCR must be able to be fully activated in 0.5 minutes, aFRR in 7.5 minutes and 

mFRR in 15 minutes. Practically, the following constraints limit the provision of upward FCR 

(4.32), aFRR (4.33) and mFRR (4.34), as well as downward FCR (4.35), aFRR (4.36) and 

mFRR (4.37).  

 
up upFCR com FCR

, , , ,g g gR   Res    (4.32) 

 
up up upFCR aFRR com aFRR

, , , , , ,g g g gR     + Res Res    (4.33) 

 
up up up upFCR aFRR mFRR com mFRR

, , , , , , , ,g g g g gR       + + Res Res Res    (4.34) 

 
down downFCR com FCR

, , , ,g g gR   Res    (4.35) 

 
down down downFCR aFRR com aFRR

, , , , , ,g g g gR     + Res Res    (4.36) 

 
down down down downFCR aFRR mFRR com mFRR

, , , , , , , ,g g g g gR       + + Res Res Res    (4.37) 

 

Then, the remaining ramping capacity can be used for ensuring a better strategic position 

in terms of energy (balancing position of the portfolio). In other words, power transitions 
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scheduled by the operator are constrained by the total reserve capacity that can be requested 

during the time period considered (4.38)-(4.39). 

 ( )
up

com comon up com min su
, , , , 1, , , , , 1 , ,60g gs g g g g g g

s

R SU P         − −



 
+ −   + − 

 
P Res P     (4.38) 

 ( )
down

com com on down com min sd
, , 1 , , , , , , , , ,60g g s g g g g g g

s

R SD P          −



 
− −   + − 
 

P P Res     (4.39) 

 

The minimum up and down times are modeled following the methodology presented in 

[Rajan05] since this formulation has demonstrated higher performances than other methods 

[Ostrowski12]. The minimum up time expresses that once a unit has been started up, it may not 

be shut down immediately. Likewise, the minimum down time reflects the technical constraint 

that a unit that has been shut down must stay offline during a minimum period to ensure the 

safety of the equipment. 

 

Fast-starting units (with no minimum up and down times) can deliver non-spinning 

mFRR (4.40) as well as downward reserve by shut-down (4.41). The formulation ensures that 

units are effectively brought offline when spinning reserve via shut-down is requested by the 

system operator (4.42), and brought online in case of emergency start-up (4.43). Finally, logical 

conditions (4.44)-(4.45) respectively impose that units can be allocated to start-up (shut-down) 

only if the unit has been committed to be offline (online).  

 
off,su min off,su off,su

, , , , , ,g g g g gP SU      Res    (4.40) 

 
on,sd min on,sd on,sd

, , , , , ,g g g g gP SD      Res    (4.41) 

 
com real on,sd on,sd

, , , , , , ,g g s gR      − =     (4.42) 

 
real com off,su off,su

, , , , , , ,g g s gR      − =     (4.43) 

 
off,su com

, , , ,1g g    −    (4.44) 

 
on,sd com

, , , ,g g       (4.45) 

 

It is worth noting that these modeling equations necessitate to define only 𝛂𝑔,𝜔,𝜏
off,su

, 𝛂𝑔,𝜔,𝜏
on,sd

 

and 𝛂𝑔,𝜔,𝜏
com  as binary variables, since 𝛂𝑔,𝜔,𝜏

su , 𝛂𝑔,𝜔,𝜏
sd  and 𝛂𝑔,𝜔,𝜏

real  are then automatically enforced to 

take binary values even if they are considered as continuous ones.  

 

Then, in order to ensure the compactness (limited size) of the formulation, decision 

variables and constraints are differentiated between slow and fast power plants. In this way, 

equations (4.40)-(4.45) and related decision variables 𝛂𝑔,𝜔,𝜏
off,su

, 𝛂𝑔,𝜔,𝜏
on,sd

 are only modeled for fast 

power plants, whereas minimum up and down times are only limited to slow units. 

 

Pumped storage hydro stations 

Energy storage facilities have high dynamic characteristics and can thus quickly and 

cost-effectively modulate their output power to provide ancillary services or to accommodate 

unexpected deviations regarding the energy balance of the VPP. Representing 99% of the 
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worldwide installed storage capacity, pumped-storage hydro (PSH) is the most widespread 

technology, and allows to store energy cost-effectively.  

 

However, the operation of pumps and turbines is constrained by their operating domain, 

outside which the safe operation is not guaranteed (due to cavitation effects). Hence, as detailed 

in Chapter 5, in order to be able to provide balancing services, PSH units must continuously 

operate even when it is uneconomic to run the station since these are not flexible around 0 (idle 

mode). To prevent this problem, another more expensive solution, referred to as hydraulic short-

circuit operation [Argonne13], was developed so as to simultaneously pump (at a fixed rate) and 

turbine (over the operating range), thus assimilating the station to a controllable load. 

 

In this way, different configurations of PSH stations can be envisaged, each one 

differing in the number of hydraulic and electric machines. Each topology has its advantages 

and drawbacks, and defines the operation modes and ancillary services that can be achieved. In 

this way, the PSH modeling depends on the power plant configuration. For instance, with a 

reversible Francis pump-turbine, both main operation modes are mutually exclusive (either 

pump or turbine) whereas the hydraulic short-circuit operation allows to pump and turbine at 

the same time. It should be noted that a single holistic formulation able to model any 

configuration is not optimal as it results in overly complex structure (e. g. with too many 

equations with unnecessary binary variables). 

 

Here, a variable-speed operation of a reversible Francis pump-turbine is considered. 

Indeed, recent progress in power electronics have enabled these PSH units to operate with a 

reliable variable-speed feature in both pump and turbine modes, consequently fostering their 

dispatchability [Mercier17,a]. In this way, the upward reserve (s ∊ Σup) can be provided either by 

increasing the generated power in turbine mode 𝐑𝐞𝐬𝑠,𝑝,𝜔,𝜏
turb  or by reducing the pumping power 

𝐑𝐞𝐬𝑠,𝑝,𝜔,𝜏
pump

. Similarly, downward reserves (s ∊ Σdown) are supplied by lowering the power in 

turbine or by rising up the output power when pumping. Moreover, the reversible Francis pump-

turbine has lower installation costs and allows providing balancing reserves in both pump and 

turbine modes but not when the station is idle (shut-down). The resulting formulation involves 

using two binary variables to discriminate operation modes, whereas the transitions between 

modes are considered sufficiently quick to be neglected (4.46).  

 
pump turb

, , , , 1 , ,p p p     +      (4.46) 

 

Usually, operating and maintenance costs (O&M costs) are taken as a fraction of the 

total capital expenditures, i.e. 1.5 to 2% in [Zhang12]. These costs are divided into two parts: 

the fixed costs that are have to be paid regardless of the pump and turbine cycles (these costs 

are thus not relevant in the day-ahead decision stage), and the variable ones that are subject to 

the utilization of the plant. In [Connolly11], the fixed O&M costs CO&M,f  are estimated as a 

fraction of the total installed power, whereas the variable costs CO&M,v depend on the actual 

electricity exchanges. 

 
O&M,f

O&M,v

2.8€ / kW/ year

3.8 € / MWh

C

C

=

=
  (4.47) 

 

Both operating costs and grid fees depend on the actual energy exchanges with the grid 

(and must thus account for the contribution from reserves), and are expressed as follows: 
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( )

( )

op op inj turb turb turb
, , , , , , 1 , , , ,

op cons pump pump pump

, , , , 1 , , , ,

s
p p p p p s p

s

s

p p p p s p

s

C R

C R

          

        





−



−



 
= +  − + 

 

 
+ +  − + 

 





c P P Res

P P Res

  (4.48) 

 

Then, it is important to model the start-up and shut-down costs so as to properly consider 

the wear and tear of the hydraulic and electrical machines. Indeed, the operating costs employed 

in the literature often correspond to the historical usage of PSH power plants (i.e. turbine during 

peak hours and pump at night) and are not appropriate when a more fluctuating and intensive 

use is considered. The ramping costs, however, are less straining for the equipment (than they 

are for thermal power plants) and can be neglected. 

 ( )SU,pump SU,pump pump pump

, , , , , , 1p p p pC      − −c     (4.49) 

 ( )SU,turb SU,turb turb turb

, , , , , , 1p p p pC      − −c     (4.50) 

 ( )SD,pump SD,pump pump pump

, , , , 1 , ,p p p pC     − −c     (4.51) 

 ( )SD,turb SD,turb turb turb

, , , , 1 , ,p p p pC     − −c     (4.52) 

 
SU,pump SU,turb SD,pump SD,turb

, , , , , , , ,, , , 0p p p p        c c c c   (4.53) 

 

The schedule of hydraulic machines is constrained by output power limitations, defining 

the safe operating ranges of both pump and turbine modes [Ardizzon14]. Hence, operating range 

constraints are needed to ensure that the PSH unit can provide reserve in both pump and turbine 

modes, while ensuring that the energy capacity of the station is not doubly booked. 

 
up

turb turb turb,max turb

, , , , , , ,p p p s p

s

P     



 − P Res   (4.54) 

 
down

turb turb turb turb,min

, , , , , , ,p s p p p

s

P     



− P Res    (4.55) 

 
down

pump pump pump,max pump

, , , , , , ,p p p s p

s

P     



 − P Res   (4.56) 

 
up

pump pump pump pump,min

, , , , , , ,p s p p p

s

P     



P Res−    (4.57) 

 

PSH have very high ramping rates (able to switch from full pumping capacity to the 

maximum generation power in less than 7.5 minutes). Hence, given the 15-min time resolution 

considered, it is guaranteed that the ramping capacity is not doubly allocated. Nonetheless, due 

to the high dynamic requirements related to balancing reserves (e.g. FCR fully delivered in 30 

seconds), it must be ensured that the allocated capacity respects these ramping constraints. To 

that end, analogous equations to (4.32)-(4.37) have to be considered. 

 

When allocating reserves to PSH stations, one should ensure that the limits on the energy 

content have to be respected at each time step, i.e. the unit must be able to provide the requested 

energy in the worst-case scenario (full deployment of all scheduled reserves in one direction). 

Disregarding these constraints may mislead the VPP operator into believing that resources are 
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cost-effectively scheduled, while it may actually lead to the real-time unavailability of the 

reserved balancing capacity, resulting in costly financial penalties. 

 ( )
down

turb

, ,pump pump pump turb max

, , 1 , , , , , , , ,turb
SOC

p

p p p s p s p p

sp

 

         


−



 
+  − + +   

 


P
SOC P Res Res   (4.58) 

 ( )
up

turb

, ,pump pump pump turb min

, , 1 , , , , , , , ,turb
SOC

p

p p p s p s p p

sp

 

         


−



 
+  − − +   

 


P
SOC P Res Res   (4.59) 

 

The state-of-charge (SOC) accounts for energy losses originating from pump and 

turbine inefficiencies, and integrates the actual contribution of reserves.  
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  (4.60) 

 

In order to account for the economic value of the energy stored at the end of the day, the 

final state-of-charge final

,p SOC  is imposed to a value optimally determined through a medium-

term (e.g. week-ahead) analysis [Deane13].  

 
final target

, SOCp p SOC   (4.61) 

 

It should be noted that the formulation associated with other storage technologies (e.g. 

battery, compressed-air energy storage, etc.) can be simplified since no binary variables are 

then necessary to model the discontinuous operating range, and only one continuous variable 

can be used to define the output power. 

 

Demand response 

Some end-users can shift part of their consumption (e.g. electric heating systems, 

refrigeration loads and electric vehicles) to periods that would be more economic. However, 

they cannot participate on their own to advanced load shifting programs. An aggregator 

therefore acts on behalf of its customers by collecting the load data and by submitting 

aggregated demand response bids to power markets. In such a case, the uncertainty about the 

load prediction boils down to the base (non-responsive) part of the total consumption. 

 

Similarly to cycling capabilities of conventional power plants, this DS resource can be 

exploited at different time scales, either for arbitrage opportunities in energy markets (load 

shifting during peak hours) or for proving real-time flexibility [Karangelos12]. In the latter case, 

the flexibility can be either used to hedge against forecast errors or unexpected events within 

the portfolio or can be valued towards the system operator by contributing to the grid stability 

(frequency control). However, due to the nature of DR flexibility such as static load profile that 

cannot be altered (but that can be shifted in time), few loads meet the technical requirements 

for participating to ancillary services. 
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In order to take the intertemporal load characteristics into consideration without 

modeling each individual system, a technology-clustered formulation of the demand response 

strategy is considered. Here, thermostatically controlled loads, namely industrial fridges and 

residential heat pumps, are the two DR clusters included in the studied portfolio. In both cases, 

the availability of these controllable loads is limited by comfort constraints imposed by the end-

user (temperatures within fridges and buildings must stay within defined ranges). 

 

The thermal behavior of utilities (evolution of temperature over time) is here simplified 

by a set of constraints (4.62)-(4.63) modeling a sliding time window 𝑇window within which 

bounds on the consumption level 𝐸dr,lim,min and 𝐸dr,lim,max are imposed (so as to avoid 

excessive temperature deviations). These constraints are moreover modeled to guarantee that 

DR-based reserve is allocated only if its deployment does not cause violation of comfort levels. 
window1... TN T = −  

 

window

down

dr dr dr,lim,max

, , ,

T

q s q

q s

E


  


+

= 

 
 +  

 
 P Res   (4.62) 

 

window

up

dr dr dr,lim,min

, , ,

T

q s q

q s

E


  


+

= 

 
 −  

 
 P Res   (4.63) 

 

It is then ensured that all load 𝐸dr,max is consumed at the end of the scheduling horizon 

(load recovery effect). 
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Then, the ancillary services that can be actually provided by DR resources are 

constrained by the dispatch of the flexible load. In this way, upward reserves are offered through 

load curtailment (and are thus limited to the load level 𝑃𝜏
dr,max

) whereas the downward reserve 

consists in increasing the consumption. 
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It is assumed that the aggregator has the ability to precisely adjust the state of all 

controllable loads (perfect control over DR resources). 

 

Renewable generation 

When renewable generation is authorized to provide downward reserves (typically for 

installations of sufficient size), the offered reserve should be limited to the output power 

𝑃𝑟,𝜏
reliable available with sufficient reliability (4.67). This level is here fixed to the lowest value 

of renewable generation among all predictive scenarios (worst-case scenario) considered in the 

stochastic optimization procedure. 

 
reliable

, , ,s r rP Res   (4.67) 
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Then, the real-time curtailment of renewable generation decided by the portfolio 

operator for strategic reasons is limited to the actual generation level 𝑃𝑟,𝜔,𝜏
actual decreased by the 

energy allocated for balancing reserves. 

 
cut-off actual

, , , , , ,0 r r s rP      −P Res   (4.68) 

 

This RES curtailment induces a loss of green certificates (or any other financial 

incentive) due to the non-generated energy, which has to be taken into account in the objective 

function. 

 

Constraints used to model the risk (CVAR) 

Including the conditional value-at-risk into the formulation necessitates to integrate the 

following additional constraints: 
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 0,z      (4.70) 

where VaRα and zω are auxiliary decision variables. 

 

 

4.5 Performance of MILP formulation 

 

Solving mixed-integer linear programming (MILP) problems by rounding the solution 

from a traditional linear programming solver (e.g. simplex method) is usually not optimal, not 

to mention that there is no guarantee that the solution will be feasible, especially for large scale 

formulations. The integer constraints have therefore to be explicitly taken into account in the 

problem resolution. 

 

Due to the combined improvements of algorithmic techniques to solve MILP problems 

as well as of the computer capabilities, solving such MILP has become considerably faster 

during the last two decades [Koch11]. 

  

However, these problems remain intrinsically very difficult to solve, especially for 

large-scale formulations (such as stochastic programming), and it is up to the problem designer 

to implement an efficient formulation. Indeed, it is interesting to keep in mind that an infinite 

number of formulations can be obtained based on the way the physical constraints of the 

problem are translated into mathematical equations. 

 

The objective is therefore to design a computationally efficient (quickly solved) 

formulation that accurately model the original problem so that the resulting solution is 

practically feasible and close to the actual optimum.  

 

In this way, two different formulations of the same MILP problem are illustrated in 

Figure 4.10. The ideal formulation (LP1) encompasses all feasible points of the original 

problem is such a way that each vertex is an integer solution. Hence, it allows solving the MILP 
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(non-convex) problem as a LP (convex-problem), and the solution of LP1 will coincide with 

the actual optimal solution. This ideal formulation is commonly referred to as convex hull, and 

is defined as the smallest convex region encompassing all feasible integer solutions [Wolsey98]. 

The formulation LP2 is called a relaxed LP version of the problem. 

 

 
Figure 4.10 – MILP formulations [Morales-Espana14]. 

 

In practice, obtaining the convex hull is a complex task that cannot be realistically 

achieved for large-scale problems. But, it is possible to tighten the region of the relaxed LP 

problem in order to reach computational improvements [Nemhauser99]. Overall, given two 

different formulations of the same problem, the one that lies the nearest from the convex hull 

(i.e. the tighter formulation) should be favored since it provides stronger lower bounds (in case 

of a minimization problem) and its solution is nearer to the optimal (desired) integer solution. 

 

Apart from the tightness, the performance of an MILP formulation depends also on its 

compactness (i.e. quantity of information to be considered when solving the problem). The 

compactness of a MILP formulation relates to its size, not only in terms of number of constraints 

but also regarding the number of integer decision variables and non-zero elements in the 

formulation [Bixby00]. 

 

Mixed-integer linear programming problems are usually solved using branch-and-cut 

algorithms (i.e. branch-and-bound algorithm combined with cutting planes27 to further tighten 

LP relaxations). The principle of this methodology for a minimization problem is described.  

 

First, the relaxed LP problem (original MILP formulation in which the integer 

constraints are neglected) is solved. If the solution XLP contains a non-integer value for a 

variable that is supposed to be integer (i.e. fractional solution), a cutting plane algorithm 

attempts to tighten the LP relaxation (find additional linear constraints which are violated by 

the current solution XLP but not by the feasible integer points).  

 

Then, the branch-and-bound algorithm is started. The basic idea of this algorithm is to 

rely on two subroutines that compute respectively a lower and an upper bound of the optimal 

solution. The upper bound is an integer solution pertaining to the feasible set. The lower bound 

is a fractional solution (originating from relaxation). The objective is to minimize the difference 

between upper and lower bounds (optimality tolerance) by partitioning the search space into 

convex sets, and find lower/upper bounds for each set. The procedure necessitates thus to solve 

a sequence of LP relaxations, and is stopped when the difference is small enough. 

 

 
27 Cutting planes methods aims at refining the feasible set of a problem by adding linear inequalities, referred to 

as cuts, in order to tighten the formulation. 
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Overall, the tightness of the MILP formulation is an image of the search space that needs 

to be explored before reaching the optimal integer solution (the length of the search can be 

reduced by relying on relaxations close to the optimal integer solution). The compactness is an 

image of the searching speed to reach the optimal integer solution (the computation time can 

be reduced the appropriately decreasing size of the formulation). 

 

The recent progress of MILP solver comes from different (tightening and compacting) 

strategies, but the inclusion of cutting planes has been acknowledged as the most effective 

strategy [Bixby07, Rothberg03], by tightening the formulation around the integer feasible 

solution. Current research for improving the solving procedure of MILP problem is thus focused 

on how to obtain more tight formulations rather than more compact ones [Morales-Espana14].  

 

On the one hand, a MILP formulation is tightened by adding supplementary constraints, 

which increases the problem size. In this way, although this tightened formulation reduces the 

search space, solvers may take more time since they are required to repeatedly solve larger LPs 

in the branch-and-bound procedure. On the other hand, compact formulations usually provide 

weak lower bounds (distant from the optimal integer solution). 

 

In conclusion, obtaining a good trade-off between tightness and compactness of a MILP 

formulation is a complex task since the obvious mathematical equations to model the original 

problem often lead to very weak (not tight) or very large formulations.  

 

In parallel, problems such as scenarios-based stochastic programs have a particular 

geometrical structure that can be exploited by decomposition algorithms, which consist in 

iterative approaches that replace the original problem into smaller sub-problems so as to 

accelerate the convergence speed [Kazempour12]. Devising and applying these techniques to 

solve our MILP problem is outside the scope of this work, and the resulting MILP problem of 

the day-ahead scheduling of a portfolio manager is solved using the traditional branch-and-cut 

algorithm of Matlab. 

 

 

4.6 Case study 
 

The formulation is applied to an electricity retailer having 2 medium-sized conventional 

generation units, a 130 MW slow power plant and a fast unit with a 80 MW capacity. The 

portfolio is moreover constituted of one PSH station with an output power in both pump and 

turbine modes of 24 MW (with an energy/power ratio of 5). The VPP has also wind turbines 

for a total installed power of 20 MW and supply both industrial and residential clients (peak 

power of 30 MW). Some are equipped with rooftop photovoltaic (PV) units for a total installed 

power of 5 MW. The electrical energy generated from PV installation distributed among low-

voltage networks is treated as a negative load and cannot be curtailed. Finally, the VPP is 

responsible for optimally operating DR resources from heat pumps (10 MW) and industrial 

fridges (15 MW). 

 

The computational size of the problem is firstly analyzed. The number of decision 

variables and constraints are respectively presented in Table 4.5 and Table 4.6. 
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Table 4.5 

Number of decisions variables associated with the different contributions of the formulation. 

Contribution # continuous decision variables # binary decision variables 

Day-ahead market 1*NT*NΩ 0 

Intraday market 1*NT*NΩ 0 

Imbalance settlement 3*NT*NΩ 0 

Slow conventional generation 11*(number of units)*NT*NΩ 2*(number of units)*NT*NΩ 

Fast conventional generation 13*(number of units)*NT*NΩ 4*(number of units)*NT*NΩ 

Pumped storage hydro units 18*(number of units)*NT*NΩ 2*(number of units)*NT*NΩ 

Demand response 3*(number of categories)*NT*NΩ 0 

Renewable generation 2*(number of technologies)*NT*NΩ 0 

Conditional value-at-risk 1 + NΩ 0 

 
Table 4.6 

Number of constraints associated with the different contributions of the formulation. 

Contribution 

# equality constraints 

for each time step 

in each scenario 

# inequality constraints 

for each time step 

in each scenario 

Day-ahead market 5*NT*NΩ 0 

Intraday market 4*NT*NΩ 0 

Imbalance settlement 1*NT*NΩ 0 

Reserve allocation 6*NT*NΩ 0 

Slow conventional generation 0 16*(number of units) *NT*NΩ 

Fast conventional generation 0 22*(number of units) *NT*NΩ 

Pumped storage hydro units 0 18*(number of units) *NT*NΩ 

Demand response 0 
(number of categories)*((NT-Twindow) *NΩ 

+ NΩ + 2*NΩ*NT) 

Renewable generation 0 1*(number of categories) *NT*NΩ 

Conditional value-at-risk 0 NΩ 

 

 

4.6.1 Stochastic model analysis 
 

The scenarios modeling the uncertainty of the second set of variables (grid imbalance 

and real-time activation of reserves) are generated as follows. The dimensionality of each 

individual variable is first decreased with PCA. The reduced-sized variables (i.e. after applying 

PCA) are determined such as preserving at least 85 % of the information of the original dataset.  

 

The copula model is then used for constructing the scenarios. It requires less than 30 

seconds to create the model and generate the related scenarios. Their validity and performance 

characteristics can then be estimated by comparing their statistical properties with a test set 

composed of the actual realizations of July 2016. 

 

First, the statistical properties of variables are evaluated individually. The statistics deal 

with the mean, standard deviation and autocorrelation function (ACF) of variables. Then, the 

linear correlation between pairs of variables is computed using the Pearson correlation 

coefficient. The Kendall coefficient is also studied since it is able to measure nonlinear 

dependencies. The range of both coefficients is the [-1, 1] interval. The model outcomes are 

compared with the training and test set and all analytical results are summarized in Table 4.7. 
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Table 4.7 

Statistical differences of generated scenarios with training set and actual realizations. 

 Mean deviation 

with training set  

Mean deviation 

with test set 

Mean 7 % 19 % 

Standard deviation 4 % 22 % 

ACF 0.11 0.11 

Pearson coefficient 0.08 0.11 

Kendall coefficient 0.07 0.09 

 

The relative difference (in %) between the mean and standard deviation of the generated 

vectors and real observations is taken as a precision measurement. The model properties are 

close to the training data with low statistical deviations but present decreased performances 

when compared to the test set. Such differences can be largely explained by the transition state 

that characterizes the current power market and grid environment. 

 

The accuracy of the time correlation and cross-variable dependence structure is 

estimated by the absolute difference between coefficients computed with the model and the 

actual realizations. It is interesting to notice that the performance of the model is quite similar 

when respectively compared to the training and test sets. This observation tends to show that 

the evolution of market conditions is not affecting the whole dependency structure but is only 

impacting the marginal distribution of variables. 

 

 

4.6.2 Optimization specifications 
 

The MILP scheduling model is implemented and solved in Matlab, and the simulations 

have been performed on an Intel® Core™ i7-3770 CPU @ 3.4 GHz with 16 Go RAM. The 

stochastic optimization has been run with NΩ = 6 scenarios during a typical day of July, which 

corresponds to the maximum number that can be included, considering the space memory of 

the computer. In theory, this number of scenarios should result from a trade-off between 

accuracy of results (obtain a solution resilient to uncertainties originating from forecasts errors) 

and the computational burden. This time has indeed to be kept sufficiently low (typically less 

than 1 hour) to take advantage of the most recent forecasts within the decision procedure. 

 

The objective is to optimize the day-ahead scheduling, which is characterized by 

decisions that are made on a 15 minutes temporal resolution (96 daily decisions). 

 

Discussion on optimal valorization 

One of the main purpose of this chapter is to evaluate the added value of properly 

accounting for the uncertainty associated with the real-time activation of balancing services. 

However, the procurement of balancing capacity is currently carried out in mid-term (week-

ahead for FCR and aFFR and month-ahead for mFRR), and the amount of reserve capacity is 

therefore considered as a constraint in the day-ahead scheduling. Without relying on a mid-term 

decision tool (as the one presented in chapter 6), it is therefore impossible to properly consider 

the benefit of our approach (cost-optimal allocation to the different market opportunities). 

Consequently, the formulation in the case study is slightly biased to consider that the 

procurement of the total balancing capacity 𝐑𝐞𝐬𝑠
tot for each service s  occurs in day-ahead 

(with fixed offering prices to keep the problem linear). It results that the equations (4.19)-(4.20) 

are therefore expressed as follows: 
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First, the global risk-strategy is established by fixing the value of the β parameter in the 

objective function (4.10) that characterizes the trade-off between the expected value of the 

profit distribution and the conditional value-at-risk (CVaR) quantifying the generated revenue 

of the less-profitable scenarios. Figure 4.11 shows the dependence between the mean and CVaR 

of the profit distribution for different risk strategies. 

 

 
Figure 4.11 – Dependence between expected profit and CVaR with regard to risk-aversion. 

 

Consistently with regard to previous works on risk-constrained decision-making, the 

expected profit increases when risk aversion decreases (i.e. lower β). Traditionally, a good 

trade-off is obtained on the elbow of the curve. A slightly risk-averse strategy is here considered 

with a β-value of 0.5. 

 

 

4.6.3 Comparison with a conservative formulation 
 

The outcomes of the proposed approach are compared with a conservative strategy that 

does not consider the uncertainty of real-time activation of balancing reserves.  

 

This approach is fully conservative in the sense that decisions are taken considering that 

the reserved capacity can be continuously requested in either upward or downward direction 

during the whole day. It should be noted that the calculation time of both formulations is very 

similar since the additional complexity of the proposed approach (to efficiently allocate 

balancing reserves to available resources while adequately integrating related revenues and 

operating costs) is quite small in comparison with constraints associated with the technical 

operation of constitutive assets.  

 

The reliability and performance of both methods is then analyzed via an out-of-sample 

validation of their respective day-ahead scheduling. This validation procedure consists in 

confronting the day-ahead decisions with respect to a new set of scenarios representing different 

possible realizations (daily trajectories) of uncertainties. For each realization, an economic 

dispatch of the VPP has to be performed. This model stems from the formulation described in 

Section 4.4, in which day-ahead decisions variables, i.e. energy exchanged in the day-ahead 

market, amount of power allocated to the different reserve products and the commitment of 
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slow power plants, are fixed to the values determined at the end of the scheduling problem. 

Practically, the day-ahead schedules are thus tested within a Monte Carlo environment, in which 

new simulations are carried out until convergence is achieved, i.e. when the coefficient of 

variation Cv is lower than 1 %. 

 
( )
( )

var

mean

i

v

i

C


=


  (4.73) 

where Φ𝑖 is the vector of profits computed during the last 10 Monte Carlo simulations.  

 

The results of the out-of-sample analysis are represented in Figure 4.12, and illustrates 

the two main benefits of the proposed formulation compared to traditional approaches. Firstly, 

the impact of accounting for realistic scenarios of real-time activation of reserves is highlighted. 

Secondly, the economic advantages of considering a time-varying cost-optimal mix of 

flexibility providers is analyzed. To that end, a day-ahead (fixed) allocation of reserves is 

compared with the intraday dispatch of resources. The profit distribution over all scenarios is 

here represented by its expected value and standard deviation (whisker plot). 

 

 
Figure 4.12 – Added value of the proposed formulation. 

 

The proposed formulation allows to procure balancing capacity more cost-efficiently 

than the conservative approach, which is highlighted by the higher economic value of the 

portfolio. Then, allocating reserves in Intraday on a quarter-hourly basis, based on previous 

decisions and actual values of uncertain parameters, enables to increase the participating of the 

PSH station and RES to reserves by respectively 15 % and 20 %. Overall, it results in an 

increased expected profit of around 11 %, which illustrates the need to avoid static (daily) 

allocation of balancing resources. 

 

 

4.6.4 Analysis of the proposed formulation 

 

First, it is interesting to notice that the inclusion of a PSH station within the portfolio 

dramatically increases the simulation time. In this way, the global optimization is solved in 

around 20 minutes, whereas it takes only 30 seconds when no PSH unit is considered. Such a 

difference mainly originates from the discontinuity in the safe operating ranges of these stations. 
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However, neglecting these constraints leads to unfeasible real-time operating conditions, and, 

more importantly, to an over-optimistic estimation of available flexibility margins to provide 

regulation services. The real-time provision of reserves is therefore not guaranteed, which may 

infer portfolio imbalances, ultimately lowering the profit generated by PSH units.  

 

Then, the economic value associated with the provision of flexibility services by energy-

constrained units is analyzed within a risk-neutral approach. To that end, simulations are 

divided into five dispatch strategies, which differ by the way resources are allocated. In variant 

#1, flexible resources participate only in energy arbitrage, and are thus exclusively used to 

accommodate temporary surpluses or deficits in energy. The individual benefits of regulating 

services delivered by PSH units, output power modulation of RES and DR resources are 

respectively estimated in variants #2, #3 and #4. Finally, in variant #5, all resources (including 

conventional generation) can provide both energy arbitrage and regulation services.  

 

The outcomes are summarized in Figure 4.13. Practically, the variants are compared 

regarding the total balancing capacity allocated by the portfolio as well as the generated profit. 

 

 
Figure 4.13 – Cross-comparison of different methods for allocating resources. 

 

Generally, all available flexibility is not allocated to ancillary services. This can be 

explained by the necessity to avoid portfolio imbalances, which requires significant ramping 

abilities to compensate quick fluctuations of the residual demand (non-responsive load minus 

the aggregated distributed renewable generation) associated with prediction errors, reaching up 

to 10 MW/15 minutes. Indeed, since exchanges on energy markets consist of hourly electricity 

blocks whereas portfolio imbalances are penalized on a 15-minutes basis, these energy 

variations have to be handled with available assets.  

 

All the three energy-constrained resources prove to be cost-efficient flexibility 

providers. However, their joint contribution is greater than the sum of their individual abilities. 

Here, the portfolio effect allows to increase by 20 % the contribution of storage in balancing 

services (from 3.58 MW and 2 MW in up- and downward regulation to respectively 4.33 MW 

and 2.34 MW). Interestingly, the contribution of DR-based regulation services is almost 

unaffected when other flexibility providers are available, which highlights their strong 

economic value, regardless of the portfolio in which they are included.  
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Moreover, this aggregation of technologies results in a more efficient use of assets. In 

this way, new resources able to provide downward regulation (e.g. PSH stations in pumping 

mode) enable to avoid shutting-down slow conventional units when electricity prices are lower 

than their marginal costs. It is also observed that fast-starting power plants can absorb 

occasional large prediction errors more cost-effectively than other power plants due to their 

ability to provide downward regulation by shut-down (since such mFRR reserves are seldom 

needed in practice). 

 

 

4.7 Conclusions and perspectives 

 

In this chapter, a new formulation for the joint day-ahead bidding strategy in energy and 

operating reserve markets is presented. The objective is to properly consider a dynamic 

allocation of flexible resources so as to determine the actual cost-optimal mix of flexibility 

providers. The results demonstrate that, in presence of multiple energy-constrained resources, 

the dynamic allocation of reserves foster the participation to ancillary services, which results in 

higher economic value of the global portfolio. Moreover, it is observed that neglecting or 

misrepresenting the real-time activation of operating reserves can lead to overly conservative 

solutions that do not fully exploit the potential of available resources. 

 

 

4.8 Chapter publications 

 

 This chapter aims to lead to the following publication: 

 

- J.-F. Toubeau, Z. De Grève, and F. Vallée, “Fostering Provision of Operating Reserves 

in a Short-Term Multimarket Optimization Framework,” working paper. 
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CHAPTER 5  

 

MODELING NONLINEAR EFFECTS IN THE 

DAY-AHEAD SCHEDULING OF PUMPED 

STORAGE HYDRO STATIONS 

 

 
5.1 Introduction 

 

As already mentioned, the increased contribution of uncertain and fluctuating renewable 

generation, originating mainly from wind and photovoltaic (PV) sources, is substantially 

impacting the planning and operation of power systems. In order to efficiently hedge against 

these uncertainties, there is a growing need of flexibility that can be provided by pumped 

storage hydropower (PSH) plants due to their ability to quickly and cost-effectively respond to 

mismatches between generation and consumption.  

 

A pumped-storage plant is an energy storage device with water being recycled between 

upper and lower reservoirs. In a vertically integrated system, such units are used to reduce the 

fuel costs of the system by letting the pump-storage plants serve the peak load and then pump 

the water back into the upper reservoir at light-load periods. In the current competitive 

framework of the electricity sector, these units are exploited with an objective of return on 

investment (profit maximization). 

 

These stations can indeed store large amounts of energy with low operating costs. Then, 

recent progress in power electronics have enabled PSH units to operate with a reliable variable-

speed feature in both pump and turbine modes, consequently fostering their dispatchability 

(ability to quickly adjust their output power). This flexibility is highly valuable, not only to 

improve the economic efficiency of existing assets such as wind farms or thermal power plants 

[Abreu12, Plazas05, Sánchez de la Nieta13], but also to provide ancillary services (i.e. power 

reserves used to ensure the grid stability) such as frequency control or congestion management. 

This favorable environment leads to the development of new technologies such as underground 

PSH units, in which the lower reservoir is located into the ground, for instance when end-of-

life mines or quarries are exploited as natural basins for saving civil engineering expenses. 

These stations have indeed very limited impacts on landscape, vegetation and wildlife, and are 

not limited by topography so that more sites can be exploited [Alvarado15]. However, their 
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operation is governed by two main nonlinear effects that cannot be easily modeled with 

traditional analytical models [Pérez-Diaz15]. 

 

Firstly, groundwater exchanges between the reservoirs and their hydrogeological porous 

surroundings may occur. This situation typically arises for underground PSH when the 

waterproofing work is not feasible or uneconomical [Pujades17]. It is worth noting that these 

groundwater exchanges vary endogenously with water volumes within reservoirs and differ 

thus from exogenous water inflows (originating from rainfall, snowmelt, natural evaporation, 

etc.) that can be independently forecasted. Modeling these nonlinear groundwater dependencies 

is not yet tackled in the current literature, and represents a challenging task, especially since a 

small simulation time step (1 minute maximum) is required to properly model the high 

dynamics of these nonlinear effects. 

 

Secondly, these small to medium-sized PSH units are generally subject to important 

variations of the net hydraulic head (i.e. height difference between water levels of the 

reservoirs). These variations are referred to as the head effects [Ponrajah98], and are typically 

quantified through laboratory measurements on a scale model of the studied hydraulic machines 

[Pannatier10]. This characterization of head effects is important since the head value defines 

both the operating range of the station as well as the efficiency of both pump and turbine 

processes. 

 

Thirdly, in underground PSH stations, the geometry of the reservoirs depend on the 

topological conditions and can potentially take any complex form, thereby leading to a 

nonlinear relationship between water volumes within reservoirs and the hydraulic head. 

 

In this way, the safe operating limits in pump and turbine modes continuously vary over 

time with regard to head variations. The performance curves of PSH stations are difficult to 

model since they present a non-convex and non-concave behavior. In most optimization models 

developed in the literature, the head effects are thus neglected [Chang01, Habibollahzadeh86, 

Nilsson98]. However, in order to optimally operate these underground stations, it is essential to 

use accurate models. 

 

In [Catalao09], a nonlinear programming model with some simplified assumptions is 

proposed. However, such a nonlinear formulation is intrinsically very complex to solve and the 

applicability of the method is limited to small-sized problems [Luenberger16]. 

 

On the contrary, with the high performance reached by mixed-integer linear 

programming (MILP) software, linearization techniques may constitute attractive alternatives. 

Another advantage of these MILPs is that the optimality level of the solution is known (the 

solver yields the gap between the final solution and an upper bound of the maximization 

problem). In this way, several relaxation based algorithms are developed to solve the PSH 

scheduling with head-dependent reservoirs [Guan99, Xi99]. 

 

Hence, some attempts at linearizing the head effects have been presented [Alvarez18, 

Borghetti08, Chen17, Conejo02,a, Diniz08]. However, such linear approximations require to 

include additional (integer and continuous) variables as well as new constraints for ensuring the 

formulation consistency. Since head variations are time-dependent, these additional modeling 

equations have to be implemented for each time step of the scheduling horizon. In the context 

of aggregation of several assets, the problem size can thus quickly become overwhelming. In 

this way, it is worth noting that all the above-mentioned models were implemented within a 
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deterministic optimization framework and have nonetheless face substantial issues regarding 

the simulation time. 

 

In this chapter, the challenge of modeling the complex characteristics of PSH power 

plants within the day-ahead stochastic scheduling of an aggregator participating jointly in 

energy and ancillary services markets is tackled by using a hybrid approach. The methodology 

consists in decomposing the problem into two complementary modules, embedded within an 

iterative learning procedure. In this way, the decisions are first optimized at the portfolio level 

(centralized scheduling of all assets), using the formulation presented in chapter 4 that can be 

efficiently solved. Then, a holistic simulation model, encompassing hydraulic, electro-

mechanical and geological aspects with a high time resolution, is used to evaluate the resulting 

scheduling of PSH units. This simulation model has been developed by Multitel, the research 

center leading the Smartwater project (the source of funding of this thesis [Smartwater18]). A 

feedback adjustment of relevant portfolio parameters is thereafter carried out and the procedure 

is reiterated until reaching an optimal feasible solution. The main benefits of the methodology 

are three-fold. 

 

Firstly, the proposed formulation takes into full consideration all nonlinearities inherent 

in the operation of PSH stations. In this way, thanks to the simulation module, both head effects 

and groundwater exchanges are accurately modeled with a high time resolution. This enables 

to properly capture their fast dynamics (i.e. around 10 seconds to observe changes in operating 

conditions), while guaranteeing the practical feasibility and optimality of the scheduling 

obtained at the end of the optimization.  

 

Secondly, the iterative nature of the hybrid methodology allows to better manage the 

simulation time so that the method can be applied within a stochastic framework so as to 

efficiently deal with the different sources of uncertainty (market prices, renewable generation, 

activation of balancing services, etc.). The approach moreover handles large portfolios co-

optimizing different technologies in a multi-market environment  

 

Thirdly, the principle of the hybrid approach allows to easily integrate other sources of 

nonlinearity (e.g. state-space model of the thermal behavior of buildings with heat pumps 

supplying operational flexibility to the grid) without significantly affecting the simulation time. 

Indeed, different simulators can be run in parallel, each one providing feedback information 

allowing to adequately consider nonlinear effects in the day-ahead scheduling.  

 

Overall, the proposed architecture is independent of both the underlying mathematical 

tool used for the portfolio scheduling (scenario-based stochastic optimization, robust 

optimization, chance-constrained programming, etc.) and the simulation models. The procedure 

is therefore very robust to changes in the portfolio configuration (e.g. if the aggregator expands 

such as to be considered as a price-maker instead of price-taker) as well as easily adaptable in 

case of evolutions regarding the market regulation policy.  

 

This chapter is organized as follows. Firstly, the intricate nonlinear dependencies of 

underground PSH units are presented in Section 5.2. Then, possible topologies for improving 

the flexibility of PSH units are discussed. The global structure of the sequential hybrid approach 

is presented in Section 5.4. Then, the design of each of the constitutive blocks is described in 

Section 5.5. Section 5.6 analyses the practical value and feasibility of the optimization tool with 

a single PSH unit, whereas Section 5.7 evaluates the scalability of the methodology using a 
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pool-commitment of technologies (in line with those presented in chapter 4). Finally, important 

conclusions and perspectives are exposed. 

 

 

5.2 Nonlinear effects governing the operation of PSH units 
 

 In order to reliably consider pump-storage hydro plants within the scheduling of a larger 

portfolio, it is essential to understand and adequately model their operational constraints with 

an appropriate timescale so as to reflect the actual techno-economic requirements of the studied 

system and to avoid impractical outcomes. 

 

 

5.2.1 Head effects 
 

Due to the potentially complex geometry of the basins of underground PSH units, the 

dependence between the water volumes exchanged between reservoirs and the net hydraulic 

head may be intricate. However, it is important to accurately model the head variations. Indeed, 

the value of the hydraulic head has two significant impacts on the operation of variable-speed 

PSH stations. Firstly, since low and high flow rates can lead to severe erosion of the turbine 

blades due to cavitation, the head value limits the safe operating domain of hydraulic machines 

in both pump and turbine modes, leading to discontinuous operating ranges. 

 ( )1t tP f H =   (5.1) 

 

The ranges associated with a variable-speed Francis pump-turbine are indicated in 

Figure 5.1 [Mercier17,a]. It can be observed that, even for variable-speed configurations, the 

operation of sites with large head fluctuations (e.g. former quarries for which the surface of 

reservoirs is limited by topological conditions) is strongly impacted [Ardizzon14]. In this way, 

a reduction of 10% of the hydraulic head with regard to its nominal value restricts the safe 

output power domain to around [0.675 pu, 0.875 pu] in pump and to [0.375 pu, 0.8 pu] in 

turbine. This involves that the allowed domain ΔPt of the unit constantly varies over time. 

 

 
Figure 5.1 – Performance curve of a Francis pump-turbine in both turbine and pump modes [Mercier17,a]. 

 

Secondly, the head value also influences the efficiency of the PSH stations. Indeed, PSH 

units are characterized by nonlinear time dependencies between net hydraulic head Ht, flow-

rate qt and the output power Pt, which define the performance curve (efficiency range) of the 

hydraulic machine. For instance, if the unit is in pumping mode, the water is transferred from 
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the lower to the upper reservoir, which increases the hydraulic head. Hence, the flow-rate must 

be progressively reduced if a constant output power has to be maintained. This three-

dimensional relationship is unit-specific since it depends on the sizing of the storage plant (type 

of hydraulic machines, geometry of the reservoirs, etc.) and can generally be summarized as 

follows: 

 ( )2 ,t t tP f q H=   (5.2) 

As illustrated in Figure 5.2, the performance curves of PSH stations are intrinsically 

difficult to model as they present a non-convex and non-concave behavior. As mentioned in the 

introduction, some linearization techniques have been developed in the past few years. In 

[Conejo02,a], the performance curve was estimated for a hydro-producer (i.e. owning run-of-

the-river systems with therefore no possibility of pumping) by discretizing the possible values 

of the net hydraulic head. Then, for each of these pre-fixed values, a piecewise linear 

approximation is used to model the resulting function Pt = f2,approx.(qt, Ht). The non-concavity 

of this performance curve has to be modeled using binary decision variables for each period of 

the planning horizon as well as additional constraints for ensuring the formulation consistency. 

This head dependence model in turbine mode is improved in [Borghetti08] using an advanced 

approximation methodology designed to better evaluate the power generation between the pre-

fixed head values. In [Diniz08], the hydro power generation function is approximated by using 

convexification procedures and regression tools. A method ensuring that the approximated 

linear formulation remains feasible is presented in [Tong13]. Finally, in [Alvarez18, Chen17], the 

formulation was extended to integrate head effects on the pumping mode of a PSH station. 

 

 
Figure 5.2 – Performance curve of PSH unit in turbine mode (similar shape during pumping). 

 

All these formulations are associated with high computational requirements, and were 

thus either focused on a limited number of PSH stations, or incorporated into a deterministic 

optimization framework. 

 

 

5.2.2 Groundwater exchanges 
 

The rehabilitation of abandoned quarries or mines into small to medium-size PSH 

(typically between 1 MW to a few dozens of MW) has recently gained increased attention. 

However, underground PSH units may interact with the surrounding aquifers due to natural 

permeability of the reservoirs. In this way, when the water within the basin lies beneath the 

groundwater, then some water infiltrates by leaking through the reservoir walls (in accordance 

with hydrogeological dynamics), which consequently reduces the capacity of the unit. It results 

that the sum of water volumes within reservoirs can fluctuate over time (open system). 
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Generally, such water exchanges with the neighboring environment depend on the 

geometry and geological structure of the site. Preliminary simulations (using the simulation 

model presented in Section 5.5.3) carried out by the research center Multitel, aiming at studying 

the impact of groundwater exchanges on the generated profit, have been performed for a single 

Belgian PSH station (Maizeret site, which is further described in Section 5.6) with an old open 

pit mine as lower basin. The objective of this study was to evaluate the relevance of accounting 

for these water exchanges in subsequent decision-making procedure.  

 

The outcomes (averaged on the year 2015) are presented in Table 5.1 for three 

configurations: a waterproof reservoir, a reservoir whose height of edges has not been modified 

to account for groundwater exchanges and a reservoir with an optimized geometry (i.e. edges 

height has been increased so that water infiltrations do not reduce the unit capacity). 

 
Table 5.1 

Influence of groundwater exchanges on generated profit of a single PSH unit. 

 
Waterproof 

reservoir 

Under-optimized 

geometry 

Optimized  

geometry 

Profit [Euros] 178.046 136.248 171.762 

Difference  

with reference 
reference -23,48 % -3,53 % 

 

The results demonstrate that groundwater exchanges not only impact the generated 

profit but also modify the optimal schedule of the PSH station. In this way, it is essential to 

accurately consider the groundwater exchanges for both the long-term analysis (to make the 

necessary sizing adjustments) and the shorter-term optimization (to avoid unexpected empty or 

full upper reservoir that will infer adverse recourse decisions, while ensuring the desired final 

state at the end of the planning horizon). 

 

 

5.2.3 Transient effects 
 

Both head effect and water infiltrations are characterized by fast dynamics (around 10 

seconds to observe changes in operating conditions). However, the importance of these 

phenomena strongly depends on the type of hydraulic machine (e.g. in turbine operation, the 

efficiency of pump-as-turbine (PAT) is more sensitive to power variations than variable-speed 

Francis turbine).  

 

Moreover, when the station is participating to balancing services, its output power is 

constantly varying to alleviate grid imbalances. This is illustrated in Figure 5.3 with the real-

time activation of the automatic frequency restoration reserves (aFRR), i.e. spinning reserves 

that are automatically activated (within 7.5 minutes) to restore the balance in the control zone 

of the system operator.  

 

It can be observed that averaged signals (e.g. at a 15-min basis) may not be 

representative since they do not fully consider the variability of the real-time activation of the 

reserves. The resulting smoothing effect may indeed hide some extreme situations (e.g. short 

periods with full activation) that have to be accounted for. 
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Figure 5.3 – Actual signal for aFRR and same signal averaged on a15-min basis.  

 

 

 

5.3 Improving flexibility of PSH units 

 

There exist currently two main options to increase the flexibility of PSH units, namely 

the variable-speed technology and the hydraulic short-circuit mode. 

 

 

5.3.1 Variable speed technology  

 

Currently, there are two main configurations of reversible pump-turbine operating at 

variable-speed. The first configuration, represented in Figure 5.4(a), is characterized by a 

conversion chain where the pump-turbine is connected to a synchronous machine whose stator 

is connected to the grid through a power converter. The second possibility, illustrated in 

Figure 5.4(b) and the current most popular one, is to equip the pump-turbine with a doubly-fed 

induction machine (DFIM) and a power converter between the rotor and the grid (architecture 

based on wind turbines). It should be mentioned that pump-as-turbines (PATs) with an 

asynchronous machine connected to the grid (with a converter) can also be considered. 

 

 
Figure 5.4 – Configurations of variable-speed pump-turbine [Mercier17,b]. 

 

As presented in Figure 5.5 for a fixed value of the hydraulic head, the variable speed 

operation allows to regulate the output power even while in pumping mode (thereby acting as 

a fully controllable load), and therefore provides wider operation ranges in both generation 
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Figure 5.5 – Operating range of a pump-turbine unit with variable speed (solid lines and grey dots) and with fixed 

speed (dotted lines and white dots) for a given (fixed) hydraulic head [Chazarra18]. 

 

By integrating head variation, the ranges associated with a Francis pump-turbine can be 

summarized as in Figure 5.6 [Mercier17,b]. The grey area corresponds to the safe domain of the 

variable-speed technology, whereas red segments indicate the ranges if the speed has to be kept 

at its nominal value. It can be observed that variable-speed machines are needed so that the 

pump mode can support head variations and thus operate within its stability margins. 

 

 
Figure 5.6 – Operation ranges of a Francis pump-turbine. 

 
 

5.3.2 Hydraulic short-circuit operation 

 

The configuration of a pumped storage hydro station operating in hydraulic short-circuit 

mode is presented in Figure 5.7. The system is composed of a turbine, a fixed-speed pump, both 

vertically connected to a synchronous electric machine (operating as a generator when the 

system is in turbine mode and as a motor when the water is pumped form the lower to the upper 

reservoir). Thanks to a clutch able to engage and disengage the power transmission between the 

turbine and the pump, both can be operated either individually or simultaneously. If the plant 

is in generation mode, the clutch is disengaged, and the generation output is controlled by the 

position of the turbine guide vanes. If the plant is in pumping mode, the clutch is engaged, and 

the pump guide vanes are wide open so that there is no power regulation capability. If the plant 

is in the pump mode and that regulation is needed, the clutch is engaged and both the pump and 

the turbine operate by employing the hydraulic short circuit. 
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Figure 5.7 – Pumped storage hydropower plant operating in hydraulic short-circuit mode [Argonne13]. 

 

As represented in Figure 5.8, the hydraulic short-circuit gives the possibility to the 

installation to regulate power while it is consuming energy (with a power regulation range equal 

to that of the turbines in operation). 

 

 
Figure 5.8 – Performance curve of a PSH unit in hydraulic short-circuit for a specific hydraulic head of the PSH 

installation (grey dot for pure pumping mode). 

 

The main question faced by a potential investor in (underground) PSH applications in 

the current competitive context is the profitability of the unit. In this way, it is of interest for 

him to know if the flexibility offered by a more complex configuration (such as the variable-

speed control) will bring sufficient additional revenues to recover the higher investment costs. 

In order to appropriately answer this question, it is important that the scheduling procedure 

exploits the full potential of the unit, while accurately estimating its economic value. This work 

is therefore focused on the optimal valorization (short-term scheduling) of these units within a 

larger portfolio (so as to mutualize the characteristics of the different technologies). 

 

 

5.4 Model description 

  

As highlighted by works on head-dependent models, accurate linear approximations of 

PSH operation are associated with high computational requirements. This issue is even more 

exacerbated when considering larger portfolios with several PSH units and other technologies 
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with their own complexity, and can even prove to be overwhelming when a stochastic approach 

is implemented. However, in the context of day-ahead scheduling of a Virtual Power Plants 

participating to electricity markets, it is essential to ensure the robustness of the day-ahead 

decisions by hedging against the numerous uncertainties (e.g. load, renewable generation, 

electricity prices, real-time activation of balancing reserves, etc.) influencing the portfolio 

operation [Khodayar13].  

 

In this way, the day-ahead scheduling problem faced by electricity aggregators having 

PSH units consists in finding a tradeoff between two conflicting objectives, i.e. devising a 

formulation that is sufficiently sophisticated to yield accurate and reliable solutions (avoid 

impractical outcomes) while ensuring that such a model is computationally efficient. In the 

current literature, the modeling equations of PSH stations are often simplified (e.g. considering 

a very limited number of head values to model the performance curve) so as to ensure 

tractability of the resulting problem, although these simplifications may result into inaccurate 

or even infeasible solutions. Here, this issue is addressed using the hybrid approach presented 

in Figure 5.9. 

 

 
Figure 5.9 – Iterative hybrid approach for the day-ahead scheduling of VPPs.  

 

Once the uncertainties have been modeled (Step 0 described in Section 5.5.1), the 

scheduling strategy is optimized with a 15-min timescale. The optimization is carried out at the 

portfolio level within a risk-constrained stochastic environment (Step 1 presented in chapter 4 

and reminded in Section 5.5.2), in which uncertainties are characterized through NΩ time-

dependent scenarios. At this stage, nonlinear dependencies (i.e. head effects and groundwater 

exchanges of PSH stations) are therefore neglected to avoid tractability issues. 

 

Since the economic value of PSH stations mainly originates from their flexibility (ability 

to quickly and efficiently change their output power), their schedule is typically not fixed in 

day-ahead but is rather used as energy reserves to hedge in real-time against unexpected 

portfolio imbalances (self-balancing capabilities) while providing ancillary services cost-

effectively. In the day-ahead formulation, this intraday flexibility is therefore modeled by 

adjusting the PSH schedule with respect to the stochastic scenario ω. In this way, at the end of 

the VPP scheduling (Step 1), various PSH load profiles are defined, each one corresponding to 

a different scenario considered in the stochastic optimization procedure. Each of the resulting 

schedules is thereafter integrated into a simulation model that emulates in details the PSH unit 

operation with a high time-resolution (10 seconds) so as to efficiently mimic the system 

dynamics (Step 2 described in Section 5.5.3). 
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The outcomes of the simulation (averaged efficiencies, final water volumes, violation 

of operating constraints, etc.) are used to adjust the parameters of the portfolio optimization 

through a control loop feedback mechanism (Step 3 described in Section 5.5.4) and the 

procedure (Steps 1-2-3) is iterated until convergence of results is achieved. 

 

 

5.5 Mathematical models 

 

The modeling of the different blocks of the sequential decision procedure, as represented 

in Figure 5.8, are thoroughly described in subsections 5.5.1 to 5.5.4. 

 

 

5.5.1 Uncertainty modeling 

 

In order to efficiently account for unexpected events and prediction errors in the decision 

procedure, reliable day-ahead predictive scenarios have to be considered.  

 

In the portfolio optimization (Step 1), the uncertainties have to be modeled with a 15-

minutes time resolution (which corresponds to the time intervals of the scheduling). However, 

in the simulation model (Step 2), the time step is much more refined (intervals of 10 seconds). 

This allows considering the quick fluctuations of the real-time activation of balancing reserves 

(it should be noted that only these variables are available with such a fine resolution). But, these 

cannot be modeled with traditional tools due to the considerably high dimensionality resulting 

from the use of a 10 seconds time resolution (since it corresponds to 8640 daily time steps). 

 

In this way, three different models are combined to characterize the different sources of 

uncertainty. Firstly, the aggregated load and renewable generation (wind and photovoltaic) 

within the portfolio, the electricity prices in the day-ahead markets are predicted under the form 

of scenarios with a 15-min time resolution (i.e. 96 sequential values over the next day) in 

accordance with the copula-BLSTM strategy presented in Chapter 3. Secondly, the prices and 

liquidity of the intraday market as well as the financial penalties in case of portfolio imbalance 

are generated (also with a quarter-hourly time resolution) using the copula model constructed 

in Section 4.3. Thirdly, the scenarios corresponding to the 10 seconds variations of the 

balancing reserves (FCR and aFRR) are obtained using a simple clustering of historical data (k-

means with the Euclidean distance28, where k is equal to the number NΩ of scenarios considered 

in the stochastic decision procedure). It should be noted that these 10 seconds scenarios are only 

used in the simulation model (Step 2), and are then averaged with a 15-minutes time scale for 

the portfolio optimization (Step 1).  

 

 

5.5.2 Day-ahead portfolio optimization 

 

As a reminder, two-stage stochastic programming is used as a modeling framework for 

the day-ahead scheduling of the portfolio (Figure 4.1). Such a method, which enables to model 

 
28 This technique of time series classification is very basic, and necessitates methodological improvements to 

obtain more representative scenarios. Practically, the choice of an appropriate metric to aggregate the similar 

historical realizations with reliable criteria (so as to properly differentiate the different regimes) is a complex but 

critical task. Several recent research indicates Dynamic Time Warping (DTW) as the best distance for time series 

classification [Seto15]. Other approaches such as deep learning-based classification, relying on a previous feature 

selection (or dimensionality reduction) presents also a huge potential [Karim18]. 
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uncertainties and time-dependent decisions, aims at maximizing the expected profit of the 

portfolio over the following day. In this way, in the first stage (at 12h in day-ahead), facing 

future uncertainties, the price-taker VPP has to decide for the 24 hours of the following day on 

the optimal bidding strategy to adopt in the day-ahead market as well as the schedules of the 

inflexible (slow) power plants. It represents the day-ahead decisions that cannot be modified in 

the future when the uncertainty is resolved. In this framework, uncertainties are modeled 

through NΩ different possible scenarios (daily trajectories) weighted in accordance with their 

probability of occurrence. Hence, the second stage of the model corresponds to intraday 

decision (e.g. participation to the Intraday market and operation of PSH units) that aims at 

avoiding portfolio imbalances while providing the power requested for balancing services. 

These second-stage decisions are therefore scenario-dependent and can be adjusted according 

to the realization of the uncertainties.  

 

Overall, this two-stage formulation therefore allows to include, within the day-ahead 

optimization, the recourse decisions that can be leveraged in intraday, while hedging against 

the uncertainties associated with the global decision procedure. The global problem can be 

formulated as a mixed-integer linear program (MILP), and is fully presented in Section 4.4. 

 

For pumped hydro units, we recall that the objective function integrates the operating 

costs as well as the start-up and shut-down costs in both pump and turbines modes. Then, their 

operation is constrained in terms of output power (operating range defined by the characteristics 

of the hydraulic machine), energy capacity (state-of-charge of the unit) and ramping limitations, 

by ensuring that the ranges associated with these three parameters are not doubly allocated (for 

both energy and ancillary services contributions). The constraints are formulated such that the 

uncertainty associated with the real-time activation of balancing reserves is properly taken into 

consideration. 

 

 

5.5.3 Simulation model of pumped hydro storage units 

 

At the end of Step 1, each of the NΩ sequences of decisions of PSH units (each one 

corresponding to a different stochastic scenario) are evaluated using a simulation model. This 

model has been fully developed by Multitel, the research center specialized, among other things, 

in system modeling, (and which was leader of the Smartwater project on which is based this 

work [Smartwater18]).  

 

The model is implemented in RAO (Resource-Action-Operation) language [Artiba98], 

an object-oriented language dedicated to the modeling and simulation of complex systems in 

which sophisticated applications can be built. This system level simulation tool is here exploited 

to obtain a global model of PSH units, which allows to take into consideration the impact of 

any (geo-mechanical, hydrogeological and electrical) parameters in the system. Specifically, 

this method takes as inputs realistic models coming from partners specialized in electro-

mechanics (for the accurate operation of hydraulic and electrical machines) and hydro-geology 

(for water exchanges between reservoirs and surrounding aquifers). 

 

The input of the simulation model (represented in Figure 5.10) is the quarter-hourly 

scheduling of the PSH station, and the external balancing signals. The simulator then executes 

this sequence of decisions with a 10 seconds time resolution, which allows to obtain the 

complete state of the system (water levels in reservoir, head values, etc.) at each time step of 

the simulation horizon. 
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Figure 5.10 – Structure of the simulation model. 

 

 The procedure applied to solve the simulation problem, with a particular interest on the 

way nonlinear effects are modeled, namely: 

- The nonlinear relationship between water levels and the head value (due to the 

potentially complex geometry of the basins coming from the natural form of the quarry 

or mine that is exploited). 

- The forbidden zones (discontinuous operating range in both pump and turbine modes), 

which depends on the head value; 

- The nonlinear relationship (performance curve) between net head, output power and 

water flows in both pump and turbine modes; 

- The nonlinear groundwater exchanges. 

 

 The nomenclature relative to the simulation model is exposed hereunder (and 

illustrated in Figure 5.11). 

 

Constant parameters 
baseH  Vertical drop between reservoirs [m] 
up,grdH  Height of the phreatic table surrounding the upper basin [m] 
low,grdH  Height of the phreatic table surrounding the lower basin [m] 

sim

  Time step of the simulation model [seconds] 

 

State variables 
upH  Water level in the upper basin [m] 

lowH  Water level in the lower basin [m] 

H  Net hydraulic head [m] 

upS  Surface of the upper basin at level upH  [m²] 

lowS  Surface of the lower basin at level lowH  [m²] 

pumpQ  Water flow in pump mode [m3/s] 

turbQ  Water flow in turbine mode [m3/s] 

pumpV  Total pumped water volume [m3] 

turbV  Total turbined water volume [m3] 

up,grdQ  Groundwater flows in the upper basin [m3/s] 

low,grdQ  Groundwater flows in the lower basin [m3/s] 

 

Firstly, the levels of the groundwater (phreatic) tables with respect to both upper Hup,grd 

and lower Hlow,grd reservoirs are not impacted by daily (or even weekly) cycles of the pumped-
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storage units and are considered as constant in the day-ahead scheduling. Similarly, the 

sedimentation in the reservoirs as well as their impact on the available water volumes can be 

neglected at the operational stage. It should be noted that these constraints have nonetheless to 

be considered in the investment phase (sizing of the station topology) by discarding the 

configurations that violate geomechanical, hydrogeological and hydraulic requirements. 

 

 
Figure 5.11 – Typical structure of an underground PSH station. 
 

For a given head value, the allowed output power range is imposed (in accordance with 

Figure 5.1). Then, for the selected output power set point, the variable-speed technology allows 

to control the rotational speed that maximizes the efficiency. By determining the best efficiency 

points for the possible combinations of head values and allowed output power, we obtain the 

nonlinear performance curve (as also represented in Figure 5.1). Here, the performance curves 

in both pump and turbine modes are discretized so as to be modeled using specific arrays 

representation. In this way, a three-dimensional matrix reflects yields the efficiency associated 

with possible head and power values, and the water flows within the hydraulic machine can 

then be determined as follows: 

 
pump pump

pump

1

Q
gH

 






 −

=
P

  (5.3) 

 
turb turb

turb

1

Q
gH

 






 −

=
P

  (5.4) 

with ρ = 1000 kg/m³ and g=9.81 m/s². The water volumes (pumped or turbined) are then 

straightforwardly calculated: 

 
pump pump simV Q  =    (5.5) 

 
turb turb simV Q  =    (5.6) 

The groundwater exchanges are modeled as additional flows that vary with respect to the height 

difference between the water level within the reservoir and the groundwater. These water flows 

are determined during the sizing of the PSH unit. It is necessary to define two different models 

for each reservoir, one for a positive height difference between the groundwater and the water 

level, and the other for a negative difference. These groundwater flows are here approximated 

using third-order polynomials. However, it should be noted that any other representation could 

be used, regardless of its complexity. 
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( )

( )

up,grd up up up,grd

1 1 1up,grd
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if

f H H H
Q

f H H H

 



 

− −

− −
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  (5.7) 

 
( )

( )

low,grd low low low,grd

1 1 1low,grd
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2 1 1

if

if

f H H H
Q

f H H H

 



 

− −

− −

 
= 



  (5.8) 

 

The water levels within the basins are then adjusted with respect to volumes exchanged 

with both the other basins and the surrounding aquifers.  

 ( )up up pump turb up,grd sim up

1 1H H V V Q S      − −= + − +    (5.9) 

 ( )low low turb pump low,grd sim low

1 1H H V V Q S      − −= + − +    (5.10) 

where the surface of the upper basin is determined based on the water level in accordance to 

the function f basin,up (5.11), whereas f basin,low gives the surface of the lower reservoir as a function 

of its water level (5.12). 

 ( )up basin,up up

1 1S f H − −=   (5.11) 

 ( )low basin,low low

1 1S f H − −=   (5.12) 

The net hydraulic head is then given by: 

 
base up lowH H H H  = + −   (5.13) 

 

The procedure is sequentially conducted for each 10 seconds time interval of the 

simulated day. 

 

 

5.5.4 Control loop 

 

The purpose of the feedback loop is to exploit the information from the simulation 

model (e.g. violation of operating constraints, deviation from the target value of water stored 

at the end of the day) to adjust the parameters of the simplified optimization problem of 

Step 1 so as to ensure practical feasibility of the final optimal solution. Indeed, impractical 

outcomes would result into the inability to fulfill the scheduled power and to provide ancillary 

services, which may significantly deteriorate the profit of the whole portfolio and have to be 

absolutely avoided. Likewise, water volumes at the end of the day may differ from the desired 

(targeted) value, which impacts the economic value of the stored energy at the end of the day 

and leads to suboptimal management over a longer term perspective. 

 

Specifically, the parameters of Step 1 that have to be adjusted (to take the nonlinear 

effects of PSH units into account) are the output power ranges and the efficiencies in pump and 

turbine modes (to adequately represent head variations) as well as water volumes within 

reservoirs (to avoid negative or excessive volumes within the reservoirs due to inaccurate 

estimation of water flows, while ensuring to reach the targeted amount of stored energy at the 

end of the day).  
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These water volumes are here reflected by the state-of-charge of the unit. In practice, 

these parameters are discretized with the 15-min time step within the VPP scheduling (Step 1), 

and are adjusted at each iteration using the outcomes of the simulator (Step 2). Practically, each 

model parameter is adjusted through an iterative learning process of the form: 

 1iter iter r iteru u e+ = +   (5.14) 

where uiter is the value of the model parameter of Step 1 during iteration iter, λr is the learning 

rate (design parameter) and eiter is the error between the simplified MILP optimization and the 

simulation model. 

 

Henceforth, the performance of the hybrid tool strongly depends on the choice of an 

appropriate learning rate (i.e. magnitude of the refinement of model parameters at each 

iteration). An important step consists therefore in tuning this learning rate in such a way that 

the hybrid tool converges quickly and reliably towards optimal solution. This procedure, which 

is portfolio-dependent, is performed offline (before the online utilization of the global hybrid 

tool).  

 

In this way, the control loop has to be tuned only once for a particular portfolio, 

and consequently does not hamper the daily operation of the tool. 

 

 

5.6 Case study for a single PSH station 

 

The presented methodology is studied for a single actual PSH station whose topology 

is depicted in Figure 5.12. It consists in a real Belgian site (Maizeret) for which the lower 

reservoir is a former underground open pit mine (Figure 5.13). The surface of both reservoirs 

is relatively limited, which incurs significant head effects. The groundwater exchanges are, for 

their part, determined and validated using ad hoc hydro-geological models [Poulain18] that are 

then included into the simulator (Step 2). The nominal output ranges of the unit (for the nominal 

value of the hydraulic head) are respectively [6, 8] MW and [4, 8] MW in pump and turbine 

modes and the energy capacity is of 80 MWh. 

 

At this stage, the potential of flexibility of a single PSH station can already be discussed. 

By observing the range of variation (at the nominal head), it can be concluded that the 

participation in balancing services is highly restricted (1 MW for symmetrical products). In the 

case study, it is therefore considered that the unit is procuring 0.5 MW of symmetrical FCR and 

0.5 MW of symmetrical aFRR. 

 

 
Figure 5.12 – Topology of the modeled PSH unit (Maizeret site). 
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Figure 5.13 – Actual topological situation of the Maizeret site (source: Google map). 

 

The VPP optimization model (Step 1) is implemented and solved using Matlab. The 

simulation model (Step 2) is constructed in the RAO environment and converted into an 

executable (exe) that can be interfaced with Matlab. All computations have been performed on 

the same Intel® Core™ i7-3770 CPU @ 3.4 GHz (16 Go RAM) as the one used in chapter 4.  

 

The stochastic MILP optimization (Step 1 for a single PSH station) has been run with 

NΩ = 6 scenarios during a typical day of the month of July. The calculation load of the RAO 

simulation model (Step 2) is not analyzed since it takes less than 1 second. 

 

 

5.6.1 Discussion on the final state (boundary conditions) 

 

In practice, this final value is important since the energy stored at the end of the day 

directly influences the scheduling of the following day. The simplest option is to implement a 

free cycle, i.e. the algorithm will optimize the scheduling without considering the future. It 

results that such strategies are likely to empty the upper reservoir to maximize the profit over 

the scheduling horizon, thereby discarding future opportunities. 

 

Another (more optimal) solution is to consider a fixed cycle. The most common 

strategies are: 1) to systematically refill entirely the upper reservoir, 2) to store half the energy 

capacity, or 3) store at the end of the day the same amount than the initial value. However, these 

possibilities do not take future uncertainties into account, and do not harness the whole potential 

offered by the flexibility of storage utilities. Indeed, it may be useful to empty the storage unit 

at the end of the week to take advantage of the low prices during the weekend to fill in the upper 

reservoir. 

 

Throughout this study, the boundary condition is considered with a fixed cycle 

imposing that the targeted amount of water stored in the upper reservoir at the end of the 

day has to be identical to its initial value (15 MWh were chosen arbitrarily). 

 

However, it should be noted that, in order to determine the optimal storage value at the 

end of the day, it may be valuable to consider a longer-term perspective (so as to deal with 

the increased uncertainty over this longer period). This way achieved in [Deane13] using a 

stochastic framework with a weekly look ahead in which the storage trajectory is controlled 
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between the different scenarios using non-anticipativity constraints (such that the energy stored 

at the end of each day is equal for all scenarios). The time resolution of the simulation has been 

decreased (hourly time steps) so as to guarantee problem tractability. It should be noted that the 

seasonal contribution of the storage (optimize week or month-ahead final state) is not relevant 

for small to medium-sized stations. 

 

 

5.6.2 Design (sizing) of the control loop 

  

After the validation phase (numerous analyses performed to evaluate the reliability and 

robustness of both optimization and simulation tools in various conditions), the design of the 

control loop is carried out. The objective is to determine the optimal values of learning rates λr 

associated with each parameter of the MILP optimization. In other words, we identify the step 

size of the adjustment of the optimization parameters (of Step 1) based on the outcomes of the 

simulation model (of Step 2), such as to ensure stability of the procedure and convergence of 

the solution. 

 

The convergence criteria, for each scenario ω ∊ Ω of the global hybrid tool, are the 

following: 

1) Obtain a feasible scheduling, which amounts to ensure that the output power is always 

included within its safe operating range and that water volumes within reservoirs are consistent 

with topological limitations; 

2) Restrict the difference between the target final stored energy and the actual value to 

1% in order not to impede the economic potential of the station for the next days; 

3) Restrict the difference between actual efficiencies (at the end of Step 2) and the values 

used in Step 1 beneath 1% so that accuracy of the solution is guaranteed.  

The influence of learning rates related with output power ranges and water volumes 

limitations on the convergence speed (number of iterations to obtain the final solution) and final 

expected profit is represented in Figure 5.14. 

 

 
Figure 5.14 – Impact of the design parameters of the control loop on the number of iterations of the hybrid tool 

(a), and on the expected profit of the final solution (b).  

 

Overall, if the learning rate is too small, the convergence of the optimization process 

will necessitate many iterations (Figure 5.14(a)), which is very time-consuming. On the other 

hand, with an oversized learning rate (significant changes in parameters between two 

consecutive optimizations), instabilities in the learning phase can occur. In this way, instead of 

smoothly converging towards the solution, the outcomes of the hybrid tool at each iteration 
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oscillate around the solution. Furthermore, from Figure 5.14(b), it is also observed that, even if 

a feasible solution is obtained, high learning rates often lead to conservative solutions, resulting 

in loss of revenues. Indeed, the big step sizes between iterations lead to excessively stringent 

operating ranges, potentially preventing the algorithm from reaching the optimal outcome. The 

choice of the learning rates influences not only the convergence speed of the algorithm, 

but also the optimality of the final solution. 

 

Based on these observations, a two-step procedure is implemented. At the first stage, 

the multidimensional (non-convex) relationship between the learning rates and the convergence 

speed is analyzed. Then, for the set of learning rates leading to a low computational burden 

(average number of iterations of the hybrid tool smaller or equal to 5), the configuration 

resulting in the highest value of the expected profit is selected. 

 

Discussion on convergence 

As sketched in Figure 5.15, the first run of the portfolio optimization (in which the 

operation of PSH units is simplified by neglecting non-linear characteristics) yields the starting 

point of the optimization, around which the search will be performed. In this way, if the initial 

solution is close to a feasible area, a local optimum can be easily found.  

 

 
Figure 5.14 – Convergence of the proposed hybrid optimization tool. 

  

However, there is no guarantee that the global optimum will be reached since the 

procedure can be trapped in a local optimum (maximum). This issue could be overcome by 

setting up a multi-start local search algorithm consisting in launching the first VPP 

optimization under different initial configurations of PSH parameters. These trial points can be 

composed by final configurations from previous similar days as well as new random points 

selected within the allowed bounds. The proposed hybrid sequential tool can then be used (in 

parallel to keep the computational time in the same range) for the different starting points. Each 

initial point may potentially lead to a different local optimum, resulting overall in a higher 

probability to reach the global optimal solution. 

 

Due to the heuristic nature of the procedure, it is not easy to measure the optimality of 

the final solution. However, the initial outcome (obtained at the end of the first portfolio 

optimization (Step 1) with the parameters set at their nominal value) yields an upper bound that 

may be instructive. 

 

 

5.6.3 Added value of considering the nonlinearities of PSH stations 
 

Once the design of the tool is achieved, the impacts of considering the nonlinear 

behavior of the PSH unit in terms of operational profit and computational tractability are 
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studied. To that end, simulations are carried out with four different formulations, which differ 

by their level of complexity.  

 

- In variant #1, all nonlinear effects are neglected, including the definition of the safe 

(discontinuous) domain of operation characterized by constraints (4.54)-(4.57). The 

simulator is thus not necessary, and the methodology is condensed into a single run of 

the day-ahead scheduling (Step 1). 

- Then, the discontinuous operating ranges of PSH station are integrated in variant #2, 

but the hydraulic head is assumed not to vary over time (reservoirs are assumed to have 

an infinite surface area) , which involves that these ranges are fixed with constant values. 

This variant is therefore also limited to a single optimization of Step 1. 

- In variant #3, the effects of head-dependent reservoirs are adequately considered in the 

simulation model of Step 2 (but groundwater exchanges are still neglected). The whole 

sequential procedure is thus performed until convergence is achieved. 

- Finally, in variant #4, all nonlinearities (head effects and groundwater exchanges) are 

included into the simulator, and this formulation therefore yields the solution of 

reference.  

 

To compare solutions on a fair basis, the day-ahead scheduling of each variant is 

evaluated through a post-hoc analysis using the RAO simulator of variant #4, referred to as 

simulator of reference, which accounts for all nonlinear effects. This simulator allows to run 

each solution, henceforth obtaining the actual state of the PSH unit throughout the day. This 

enables to determine the violations of operating constraints (of variants #1, #2 and #3), and to 

subsequently compute the financial penalties that would have been faced by the PSH operator 

(due to energy imbalances).  

 

The results are summarized in Table 5.2, and includes the total simulation time as well 

as the expected profit E(Φinit) obtained at the end of the optimization procedure, the adjusted 

profit E(Φfinal) actually realized by the portfolio after accounting for imbalances due to 

violations of operating constraints (that arise from having neglected the nonlinear effects of the 

PSH operation), and the associated standard deviation σ(Φfinal). 

 

It should be mentioned that the grids fees and taxes associated with both consumption 

and generation modes of PSH stations have been neglected into the simulations. This 

assumption was necessary given the current Belgian context in which these contributions are 

so important that the optimal solution for the storage is to stay offline during the whole day (no 

opportunity for making profit).  

 
Table 5.2 

Comparison of formulations of varying complexities in terms of simulation time and profit distribution. 

 Time ( )init   ( )final   ( )final   

variant #1 < 1 sec 1395.9 € 273.1 € 59.0 € 

variant #2 74 sec 1079.6 € 813.4 € 54.6 € 

variant #3 299 sec 932.0 € 860.0 € 79.5 € 

variant #4 294 sec 873.1 € 873.1 € 58.9 € 

 

Overall, it is observed that disregarding the nonlinear behaviors of the PSH station 

not only leads to a systematic overestimation of the expected profit but also to a sub-

optimal solution (due to subsequent violations of real-time operating constraints). It results 

that adequately considering these effects constitutes an important step to optimally exploit the 

economic value of PSH units.  
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Then, it is interesting to notice that the inclusion of constraints defining the safe 

operating ranges of PSH stations within the simplified optimization tool (Step 1) considerably 

increases the simulation time. In this way, the problem is solved in around 74 seconds when the 

discontinuous operating domain is considered, whereas it takes less than 1 second with a 

continuous range. However, it can be seen that neglecting these constraints results in strong 

violations of the technical requirements of PSH stations, which considerably lowers their 

economic value. An interesting perspective to this work is therefore to improve the 

mathematical formulation associated with the (naïve) constraints (4.54)-(4.57) to speed up the 

MILP solving procedure.  

 

Thereafter, the solution of variant #2 (in which the value of the hydraulic head is 

considered as constant, while groundwater exchanges are neglected) is evaluated using the 

simulator of reference, and the PSH power profile corresponding to the first stochastic scenario 

is represented in Figure 5.16.  
 

 
Figure 5.16 – Schedule of PSH station in variant #2 after first iteration of global hybrid tool. 

 

It can be observed that the operational schedule is not feasible since the output power 

profile is often outside its safe operating range due to head effects. It should be mentioned that 

water volumes constraints were also violated, which explained the relative difference of -6.84 

% in comparison with the reference solution. 

 

Similarly, effects of groundwater exchanges are studied by emulating the solution of 

variant #3 in the simulator of reference. This solution was obtained after 3 iterations of the 

hybrid tool. Although the procedure adequately takes head effects into account, the schedule 

lead to violations of the operating ranges since the head values are incorrectly calculated due 

the contribution of groundwater exchanges. Figure 5.17 illustrates the evolution of the water 

level in the upper reservoir for the first scenario, and it is observed that the schedule is actually 

infeasible (water volume violations at the end of the day). This ultimately results in a relative 

loss of 1.5% with respect to the reference solution (without taking into account the loss of 

opportunity for the following day).  

 

 
Figure 5.17 – Evolution of water height in upper reservoir if groundwater exchanges are neglected (variant #3). 
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It can be concluded that accurately modeling groundwater exchanges for the day-

ahead optimization of underground stations is important to avoid unexpected water levels 

within reservoirs, while ensuring the desired final state at the end of the scheduling 

horizon.  

 

To illustrate the convergence of the hybrid tool in variant #4, the violations of 

operational constraints among the 4 iterations are presented in Table 5.3. The possible 

violations encompass the final energy level at the end of the day, the safe operating ranges, the 

water volumes within reservoirs and efficiencies in both pump and turbine modes. A violated 

constraint is represented by “1” and is thus equal to “0” otherwise.  

 
Table 5.3 

Constraints violations across iterations for variant #4. 

 
Final  

energy 

Power 

ranges 

Water 

volumes 

Efficiency 

turbine 

Efficiency 

pump 

Iter. 1 1 1 1 1 0 

Iter. 2 1 1 1 1 0 

Iter. 3 0 0 0 1 0 

Iter. 4 0 0 0 0 0 

 

 

5.7 Case study for a portfolio 
 

Finally, the scalability of the methodology is studied through a pool-commitment of 

technologies. To that end, the same portfolio as the one presented in chapter 4 is used, namely 

2 similar PSH stations are included within the portfolio of a Belgian electricity retailer 

providing ancillary services to the main grid. The VPP is also composed of 2 conventional 

power plants (CPPs) with a maximum output power of respectively 130 and 80 MW, as well as 

of 5 wind turbines for a total installed power of 20 MW. The retailer supplies energy to 

residential clients (peak power of 30 MW), among which 20 % are equipped with rooftop 

photovoltaic installation between 3 and 5 kVA. 

 

The hybrid tool (corresponding to variant #4) requires 4 iterations to obtain the optimal 

solution, which shows that the convergence speed is not affected by the portfolio effect 

(aggregation of assets) in the considered case study. The total simulation time, however, now 

reaches 25 minutes, due to the increased complexity of the MILP optimization problem 

resulting from the additional technologies. 

 

 

5.8 Conclusions and perspectives 
 

The objective of the chapter was to implement an approach that integrates all relevant 

nonlinear characteristics of pump-storage hydro stations with a high time resolution within a 

computationally efficient formulation of the day-ahead scheduling of virtual power plants. The 

proposed approach combines two worlds (i.e. optimization and system modeling), and 

demonstrates that these can be highly complementary. 

 

First, the advantage of the variable-speed technology for enhancing the flexibility of 

PSH units has been presented. However, it has been observed that, even for such flexible 

technologies, strong barriers are affecting the profitability of PSH units in the current Belgian 

regulatory framework. Indeed, such units have no legal recognition, and are therefore 
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alternatively considered as load and generation (without even being supported by subsidies as 

are renewable energies). PSH units are thus subject to grid fees and taxes for both injection and 

energy offtakes, which prevents them to be economically operated (especially since lower price 

spreads are encountered on energy markets). The simulations have thus been performed by 

neglecting these fees to avoid that the optimal solution is to stay offline during the whole 

scheduling horizon. 

 

The outcomes of the case study demonstrate that accurately considering these nonlinear 

effects is a key component to extract the full economic potential of underground stations, and 

suggest that the proposed hybrid tool (sequential operation of an optimization tool and a 

simulation model, both included into a control loop ensuring the convergence towards a feasible 

and optimal solution) offers an effective solution to achieve this goal. 

 

The promising results also open the door to interesting perspectives.  

 

In this way, a multi-start local search algorithm could be developed to help the algorithm 

finding the global optimum within the high-dimensional search space. However, any other 

approach allowing to avoid getting trapped in a local optimum can be envisaged. 

 

Then, it seems important to improve the mathematical formulation employed for 

modeling the safe operating range of PSH units in both pump and turbine modes. It has indeed 

been highlighted that considering the discontinuous operating range with the (naïve) proposed 

equations leads to a very weak (not tight) formulation that substantially increases the 

computational burden of the search procedure. 

 

The principle of the method can be extended to integrate other technologies with 

complex characteristics (e.g. complex model of responsive load that are associated with comfort 

constraints due, for instance, to the inertia between the control of the heat pumps and the 

resulting effect on the temperature within the building).  

 

Finally, the methodology could also be very useful in the context of intraday 

rescheduling of virtual power plants. Indeed, thanks to ability of the RAO modeling language 

to simulate any agent-based decision strategy, the simulator can be used to model real strategic 

behaviors that are complex to implement using traditional optimization tools. 

 

 

5.9 Chapter publications 

 

 This chapter has led to the following publication: 

 

- J.-F. Toubeau, S. Iassinovski, E. Jean, J.-Y. Parfait, J. Bottieau, Z. De Grève, and F. 

Vallée, “A Nonlinear Hybrid Approach for the Scheduling of Merchant Underground 

Pumped Hydro Energy Storage,” in IET Generation, Transmission & Distribution, in 

press. 
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CHAPTER 6 

 

MEDIUM-TERM MULTI-MARKET 

OPTIMIZATION OF VIRTUAL POWER 

PLANTS 

 

 
6.1 Introduction 

 

Currently, one of the major challenges in the management of Virtual Power Plants 

(VPPs) lies in the efficient planning of decisions relating to different time horizons [Conejo10]. 

However, the common trend in recent studies is to focus on the short-term operation of the 

portfolio. This can be explained by the emergence of renewable-based generation, whose 

stochastic nature has to be addressed close to real-time for avoiding deviation penalties arising 

from market settlements. Although such short-term decision-making is decisive for exploiting 

the potential of the portfolio, the mid-term perspective is also essential for scheduling general 

guidelines of the VPP for a longer period. More particularly, participating in forward/futures 

markets enables securing long-time prices and quantities, limiting interactions with the much 

more volatile spot market and consequently hedging risks of uncertainties and possible unit 

contingencies [Ausubel10]. Moreover, VPP with sufficient flexibility capabilities may find 

highly profitable to offer reserves to the balancing capacity market.  

 

However, such mid-term decisions infer constraints on the short-term management 

through the obligation to uphold these longer-term commitments, and disregarding this 

dependence may lead to suboptimal or even unfeasible solutions. In this way, the units 

providing fast power reserves (i.e. FCR and aFRR) have to be committed (online) during the 

contracted periods (even during unprofitable times). Then, although it may seem tempting to 

contract as much power as possible in balancing markets (to maximize the revenues for 

availability of the reserves), one should not neglect the substantial financial penalties inflicted 

in case of failure to provide the requested power, which is of particular importance for energy-

constrained units such as hydropower systems. Specifically, in Belgium, in case of several 

failures to provide the requested reserves (contract infringement), Elia will apply a temporary 

exclusion of the market player, which may eventually lead to a complete contract suspension. 

Such a scenario must be strictly avoided for portfolios whose incomes significantly depend on 

flexibility offers. 
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In this context, some studies tackle the medium-term problem but lack to rigorously 

focus on both the time dependence affecting the global decision process and the accurate 

modeling of the short-term decision process. In [Cabero05], the problem faced by a 

hydrothermal generation company concerning the planning over a one-year period of its 

resources in the presence of uncertainty is addressed. The formulation integrates risk-

management perspective but strong assumptions are made for modeling the technical aspects 

of the units operation. In [Baslis11], a yearly self-scheduling solved thanks to a three-stage 

stochastic programming for a pumped-storage plant operator is presented. The producer is 

modeled as a price-maker but the source of short-term profit is limited to the optimal 

participation in the day-ahead spot market and the uncertainty is only modeled for the total 

demand and availability of units. A mixed-integer linear programming (MILP) model that 

maximizes the weekly VPP profit in the day-ahead market while fulfilling its long-term bilateral 

contracts is presented in [Pandzic13,a]. The work reported in [Hatami01] discusses the problem 

of a retailer having to determine sale prices of electricity while managing the different contracts 

in order to continuously satisfy the demand. In [Helseth16], the optimal scheduling of 

hydropower plants is addressed by taking into account water inflows and electricity prices as 

stochastic variables. Several works also investigate the optimal generation of power plants in 

the context of grid stability and efficiency over a planning horizon of a few weeks up to several 

months [Baslis09, Dashti16, Khodayar13,b, Martins14], or for determining the maintenance plan 

of different facilities [Barot08].  

 

The objective of this chapter is to implement a mid-term optimization tool for a VPP 

participating as a price-taker in energy markets (market results are independent of the VPP 

actions) but as a price-maker in reserve capacity markets (pay-as-bid system where the portfolio 

receives its bidding price, provided that it is competitive enough to be in-the-market). In line 

with Chapter 4, the methodology does not make any assumption on the portfolio constitution 

and is designed to incorporate any type of electricity generation, consumption and source of 

flexibility. Moreover, in Europe, although there exists a growing interest in standardizing 

(harmonizing) the market rules (e.g. reduction of the contractual period for the procurement of 

balancing capacity, change of balancing products, etc.), as highlighted in [ENTSOE15], many 

areas have their own subtleties and there exists almost as many regulation policies as there are 

countries. This work aims at accounting for this issue by introducing an adaptive, robust and 

flexible structure that can be easily tailored to follow possible evolutions of the market rules. 

From a practical point of view, the results are illustrated for the case of Belgium, whose 

regulation policy is close to countries such as Germany, Switzerland or Denmark in which the 

procurement of balancing capacity is carried out at a mid-term horizon, typically in month or 

week-ahead.  

 

Up until now, the mid-term decisions of VPPs were usually taken by making simplifying 

assumptions concerning the short-term operation (neglect inter-temporal constraints of units, 

integrating a very limited number of stochastic parameters in the formulation, etc.) in order to 

rely on a single mathematical tool. Here, a different vision is tested for VPPs disposing of more 

stochastic (renewable sources) and flexible (storage) units. Indeed, for these increasingly 

numerous actors, the intraday decisions (i.e. ensuring the continuous energy balancing of the 

portfolio under large amount of uncertainty while being able to provide balancing energy for 

efficiently contributing to the grid stability) have a significant contribution in the total profit. 

In this context, it is essential that the short-term operation is exhaustively and adequately 

modeled in the mid-term decision procedure. Otherwise, some mid-term decisions that may 

look, at first sight, optimal are in fact seriously over-optimistic. 

 



CHAPTER 6    MEDIUM-TERM MULTI-MARKET  

    OPTIMIZATION OF VIRTUAL POWER PLANTS 

143 

Here, tactical and operational decision levels are considered jointly in order to cope with 

the conflicting objectives between the different time horizons (e.g. a higher profit in mid-term 

reduces the short-term possibilities and a trade-off between these contribution has to be 

determined). This joint optimization allows taking adequate mid-term decisions based on 

accurate feedback coming from the short-term simulation. However, with a complex short-term 

formulation, it is not computationally realistic to add a new mid-term decision stage and the 

problem has to be adequately decoupled. Hence, in order to hedge against intractability of the 

resulting problem regarding both time and computer memory requirements, this work proposes 

to firstly learn (as a pre-processing task) the intricate relationship between mid-term decisions 

and the resulting profit that can be generated in short-term. Practically, this relationship is 

established by training a surrogate model of adequate complexity. Then, the medium-term 

decision process can be solved using the pre-determined model without having to simulate the 

optimal short-term VPP scheduling problem, whose resolution is very demanding [Carrion06].  

 

The chapter is structured as follows. First, Section 6.2 aims at thoroughly motivating 

the formulation adopted for solving the mid-term decision problem, and Section 6.3 gives the 

theoretical background necessary to adequately exploit the mathematical tools involved in the 

problem solving procedure. Then, Section 6.4 deals with the methodology for handling 

uncertainty whereas Section 6.5 provides the mathematical formulation of the decision-process. 

A case study aiming at demonstrating the advantages of the proposed optimization tool 

compared to other approaches for a diversified portfolio participating in the Belgian electricity 

markets is illustrated in Section 6.6. Finally, the relevant conclusions and perspectives are 

summarized in Section 6.7. 

 

 

6.2 Problem description 
 

This section provides a high-level description of the implemented mid-term decision 

tool and is divided into two parts. The first one is devoted to the context and motivations of the 

study with a particular focus on the technical (computational) reasons that have led to the 

proposed formulation. Finally, the relationship between medium and short term perspectives is 

explained in more details. It should be noted that the underlying mathematical tools are further 

described in Sections 6.3 and 6.4. 

 

 

6.2.1 Motivation of the proposed formulation 

 

The mid-term decision procedure can be regarded as a multi-market optimization whose 

main issue is to determine the optimal use of available resources within a given portfolio. More 

particularly, the VPP has the choice of using its flexibility either for participating in energy 

markets (from long-term to intraday), or as reserve capacity for balancing services, or even as 

hedging capacity for avoiding imbalance penalties in case of unexpected event. 

 

Generally, as illustrated in Figure 6.1, the mid-term decision procedure of a VPP 

consists in a three-stage stochastic decision process, which involves making optimal decisions 

at different time horizons (i.e. medium-term, day-ahead and intraday) before uncertain events 

are revealed.  
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Figure 6.1 – Rationale of the medium-term decision making tool. 

 

In the mid-term (week-ahead), the VPP has to decide about its participation to electricity 

futures and balancing capacity markets. Practically, decisions for price and volume have to be 

taken. Hence, as the VPP is a price-maker in the reserve capacity market, nonlinearities are 

introduced into the formulation due to the product of both variables (price and volume) for 

computing the profit. 

 

It is nonetheless essential to accurately determine these medium-term decisions z since 

they guarantee a fixed revenue to the VPP over the contractual period. Moreover, they also 

induce constraints on the operational portfolio management that will impact its daily revenues, 

because of the necessity to fulfill these longer-term contracts. 

 

Henceforth, failing to accurately model the day-ahead and operational decision-making 

processes may lead to suboptimal mid-term actions. A key objective of the work is thus to 

implement a detailed short-term decision tool complementarily to the mid-term one. More 

particularly, the procurement of balancing services, both in terms of capacity and energy have 

to be considered and optimized at the portfolio level. 

 

This approach involves to include the amount of balancing energy provided by each 

portfolio unit for the different products as additional decision variables into the formulation. 

Moreover, scenarios realistically modeling the needs in terms of real-time balancing energy 

also have to be considered. 

 

Consequently, as exemplified in the case study of Section 6.6, considering nonlinearities 

in the objective function as well as the important number of decision variables and stochastic 

parameters influencing the problem, it is impractical to implement a reliable global optimization 

tool able to converge towards an optimal solution in a reasonable amount of time without 

resorting to simplifying assumptions. Hence, in order to ensure tractability of the general 

problem, a surrogate-based optimization is here privileged. To that end, a surrogate model of 

tailored complexity is used for modeling the dependence between the expected daily profit and 

the mid-term decisions. This model is preliminarily constructed offline (first step) in order to 

be used afterwards in the mid-term optimization tool (second step). This decomposition into 

two consecutive steps allows a better accuracy and increased controllability of each individual 

block while efficiently capturing their inter-temporal constraints. 
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6.2.2 General structure of the proposed formulation 

 

The structure of the decision tool is represented in Figure 6.2.  

 

 
Figure 6.2 – General structure of the mid-term optimization tool whose blocks are fully described in the 

corresponding subsections of Sections 6.3 and 6.4. 

 

In the mid-term, NΣ typical days of uncertain variables are created based on the available 

information (Section 6.4.1). For each of these typical days, the day-ahead bidding strategy 

under risk and uncertainty of the VPP has to be optimized. In order to efficiently account for 

stochasticity in the decision-making process, NΩ scenarios of possible prediction errors need to 

be simulated (Section 6.4.2).  

 

At this stage, the objective is to construct a surrogate model of the expected short-term 

profit with regard to mid-term decisions (Section 6.5.2). For this purpose, NΘ experimental 

samples fixing mid-term decisions are optimally selected. For each sample, the short-term 

optimization tool is used for computing the expected profit (Section 6.5.1).   

 

Once a statistically representative model is estimated for every typical day, a genetic 

algorithm calculates the optimal mid-term decisions for maximizing the total profit over the 

considered horizon (Section 6.5.3). 

 

Discussion on the transition between typical days 

 In the proposed framework, the transitions between typical days are not considered. 

Rather, each day σ is associated with its probability of occurrence 𝑝𝜎
ex, and the results (short-

term profit in each day) are then averaged in accordance with these weighted factors 𝑝𝜎
ex. Such 

an assumption does not lead to significant loss of information, except potentially for energy-

constrained technologies. Indeed, as discussed in Section 5.6.1, the conditions may be such that 

it is preferable to preemptively modify the amount of energy stored at the end of the day 

(compared to static approaches where the final value is equal to the initial one) to better account 

for future opportunities. In such situations, it may be interesting to properly consider the 

temporal organization of the scheduling horizon. However, this issue has not been tackled here, 

and constitutes one of the most salient perspective of the work. 
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6.3 Mathematical background 

 

 The mid-term optimization is taken with a week-ahead perspective (FCR and aFRR 

contracts), and the resulting three-stage week-ahead decision procedure is divided into two 

steps. First, a surrogate model of the variation of the daily profit with respect to mid-term 

decisions variables is constructed. Then, this model (that can be quickly evaluated) is used in 

the nonlinear mid-term optimization (solved using a genetic algorithm). This section aims at 

providing the theoretical background necessary to get more familiar with these mathematical 

tools. First, the principle of surrogate modeling is introduced, along with the toolbox used in 

this work. Then, the theory and field of application of genetic algorithms are presented. 

 

 

6.3.1 Surrogate modeling 

 

The principle of the global surrogate model is to accurately mimic the original system 

(i.e. short-term scheduling of a portfolio participating in electricity markets) over the entire 

design space (i.e. operating range of the mid-term decisions). The underlying objective of this 

modeling procedure is to create a mathematical model that can be safely used instead of the 

original stochastic scheduling procedure. In other words, the surrogate model is only an 

intermediate step towards solving a more important problem, and consists in an accurate 

approximation to replace an expensive reference process (true objective function). The meta-

model can be evaluated much quicker than the true objective function, and requires only a one-

time computational investment to be constructed. 

 

 
Figure 6.3 – Construction of the surrogate model: a set of data points is estimated by the simulator, and an 

approximation model (surrogate model) is then fit to these data points [Couckuyt13]. 

 

The quality of the approximation depends on design choices, mainly consisting in 

choosing the most efficient data sampling strategy, the right model for the problem at hand 

(polynomial, kriging, etc.), while adequately tuning the design parameters of the model 

(hyperparameter optimization) and finding the optimal balance between model accuracy and 

computational burden [Couckuyt13]. 

 

Regarding the sampling strategy, it may be interesting to investigate more intelligent 

policies than the traditional experimental designs such as Latin hypercubes29 or factorial 

 
29 Latin hypercube sampling (in contrast with random sampling) aims to evenly distribute the sample points across 

the design space. To that end, each input distribution (of the multidimensional space) is divided into intervals of 

equal probability, and one sample is taken from each interval.  
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designs30 where the sampling points are all chosen in a single step. The data points should 

indeed be selected iteratively (based on the information gathered from previous simulations) at 

locations where the need of new information is the most important [Sugiyama02]. This learning 

process is referred to as active learning (or sequential design, or adaptive sampling). 

 

The structure of the SUMO toolbox [Gorissen10] that is used within this work is 

illustrated in Figure 6.4. First, an initial design (typically a sparse Latin hypercube) is generated 

and its constitutive data points are evaluated (with the short-term portfolio optimization 

presented in chapter 4 and reminded in Section 6.5.1). Then, different surrogate models are 

constructed, and the accuracy of each one is estimated using an error metric (such as sum of 

squared errors between the sample points and the surrogate model). It should be noted that for 

interpolation models (such as kriging), for which the response surface automatically passes 

through all input points, it is mandatory to keep some data points outside the model building 

phase to serve as a validation set (to compute a representative error metric). Each type of models 

is characterized by a set of hyperparameters which can be tuned, such as the degree for 

polynomial models (e.g. second order model), or the smoothness parameters for radial basis 

function (RBF) models. Then, if none of the stopping criteria is met for any of the different 

built models (i.e. minimum accuracy reached, maximum number of samples, or maximum run 

time exceeded), additional samples are selected in the worst regions (i.e. where the model 

presents the highest error or significant nonlinearities). After each new sample selection, the 

model is trained and adapted to the new available information in order to obtain an optimal 

model complexity. 

 

 
Figure 6.4 – Structure of the surrogate model builder (SUMO toolbox). 

 

Among the different possible types of model, several can be quickly discarded. In this 

way, neural networks and support vector regression (SVR) are robust but the training phase 

necessitates numerous inputs (samples), which is not computationally efficient. Then, splines 

are a form of interpolation that is only valid for two-dimensional problems. 

 

We focus therefore, here, on rational (ratio of two polynomials functions) and Gaussian 

models (in particular RBF and kriging methods). 

 

 

 

 
30 Factorial designs represent a sampling strategy where the samples are given by every possible combination of 

the variables (typically limited to a lower and an upper bound). 
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6.3.2 Genetic algorithm 

 

There exist many different visions to classify the algorithms to solve optimization 

problems due to the numerous different characteristics that can be encountered (e.g. multi-

objective, stochastic, dynamic, differentiable, mixed-integer, non-linear, etc.). One simple 

possibility is to divide the optimization algorithms into three categories: exact algorithms, 

heuristics and metaheuristics.  

 

Exact algorithms are designed in such a way that it is ensured that the optimal solution 

will be found in a finite amount of time. However, for difficult optimization problems (e.g. 

large-scale non-linear formulations), this finite simulation time may drastically grow with 

respect to the problem dimensions. Moreover, for some optimal search procedures such as 

gradient descent, the algorithm can get trapped into a local optimum (best solution within a 

neighboring set of possible candidates but not necessarily for all possible solutions). 

 

Heuristics do not provide the guarantee of finding an optimal solution, but usually find 

a good solution in an amount of time that can be controlled. Heuristics are problem-dependent 

techniques, i.e. they are adapted to the problem at hand and try to take full advantage of its 

particularities [Maringer05]. Such class of algorithms typically start off with a more or less 

arbitrary initial solution, iteratively produce new solutions and make the best choice at each 

stage with the expectation of finding the global optimum. This greedy approach often results in 

the algorithm converging towards a local optimum. 

 

Meta-heuristics, for their part, are problem-independent algorithms with a higher level 

perspective that does not take advantage of any specificity of the problem. As such, they can be 

used as black boxes for any type of problem with nonlinearities, discontinuities in the search 

space, and noise in the data. They are characterized by an algorithmic mechanism to avoid 

getting trapped in confined areas of the search space (local optima). For instance, in the 

simulated annealing technique, we accept temporary deteriorations of the solution so that the 

solution space can be explored more thoroughly, which improves the probability to reach the 

global optimum [Sousa12].  

 

Based on the previous analysis, for solving our nonlinear mid-term decision procedure, 

a meta-heuristic (genetic algorithm) is selected. Developed in the 1960s in [Holland62], genetic 

algorithms were applied for the first time in 1975 to solve an optimization problem in [De 

Jong75]. At that time, computational capabilities of computers did not allow them to solve real 

large-scale problems, and it was only in the 1990s, thanks to the advent of informatics and their 

popularization by [Golberg89] that they were revealed to the scientific world. Since then, genetic 

algorithms are commonly employed as mono- or multi-objective optimization tools to solve 

issues pertaining to various domains. 

 

The genetic algorithm translates the procedure of natural selection where the best 

individuals are selected for reproduction to create the next generation. First, the initial 

population is obtained with a random choice of a given number of individuals. The fitness of 

these candidates is evaluated, and the best ones are then selected [Regnier03]. Then comes an 

evolution phase when variation operators are applied to parents so as to create a new set of 

individuals (children) that will, in turn, be evaluated. In this way, the offspring inherits the 

genetic material of the parents (the genes of parents are shared through a mechanism known as 

crossover), at the exemption of some possible mutation (genes have a low random probability 
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to unexpectedly mutate). The population is repeatedly modified from one generation to the next 

one so that the population evolves towards optimality. 

 

Practically, four different phases are considered in a genetic algorithm: initial 

population, selection, crossover, mutation.  

 

Initial population 

 As represented in Figure 6.5, the algorithm starts with a set of Ni individuals, known as 

the initial population. From an algorithmic point of view, each individual represents a possible 

solution of the optimization problem. In this way, each individual is characterized by a 

chromosome, which is composed of Nx genes (each one corresponding to a particular decision 

variable).  

 

 
Figure 6.5 – Nomenclature of genetic algorithm. 

 

 The fitness of each individual is then evaluated by computing its fitness score (results 

of the objective function with respect to values of the Nx decision variables, in which penalties 

can be added in case of violation of optimization constraints so that the algorithm can avoid 

infeasible solutions). 

 

Selection 

The objective of the selection procedure is to duplicate the best individuals and to 

eliminate the less adapted individuals, while maintaining the size constant. The selected 

individuals will then reproduce (share their genetic material) to form the next generation. It 

must be noted that the selection must be able to select the best candidate while maintaining 

diversity [Regnier03]. Different selection procedures are summarized in [Golberg91, Sareni99] 

but are all based on the fitness score of each individual. 

 

Crossover 

The crossover is a random process applied sequentially to pairs of parents (taken 

randomly) from part of the population that was selected [Sareni99]. It consists in exchanging the 

genetic material of the parents to form two new individuals (children), which allows to explore 

the search space [Deb01, Herrera98]. Within the objective to keep best individuals, the crossover 

procedure is not applied to all selected parents.  

  

Mutation 

Mutation is a random alteration (generally of the order of 0,001 to 0,01) of some genes 

from a chromosome. The new value of the mutated gene is randomly chosen within the range 

of variation associated with the variable [Michalewicz92]. 
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The main purpose of the mutation is to maintain diversity among the individuals of the 

population. Indeed, without such mutations, no new genetic characteristics would appear, and 

the search procedure would be drawn into local optima [Sareni99]. 

 

The general structure of the genetic algorithm can be summarized as follows: 

 

Pseudocode 

Generate the random initial population 

Score each individual of the population by computing its fitness function 

REPEAT: At each step, the algorithm uses the individuals in the current generation to create 

the next population, by relying on the following steps: 

Selection of the parents, based on their fitness 

Children are generated by combining the genes of a pair of parents (crossover) or by 

random changes in the chromosome (mutation).  

Compute fitness function 

UNTIL convergence (stopping criteria is met) 

 

 

6.4 Uncertainty management 
 

In medium-term (even in week-ahead), the accuracy of predictions along the whole 

considered horizon is questionable due to the significant variability and uncertainty surrounding 

the variables of interest. 

 

The proposed method to deal with the mid-term uncertainty is summarized in Figure 6.6 

and consists in firstly defining NΣ typical days representing different realizations σ of the 

exogenous variables of the problem (whose realizations are independent of the other variables 

of the problem). As previously presented in Table 4.2, these variables are the total consumption 

and renewable-based generation within the portfolio as well as day-ahead electricity prices. The 

NΣ typical days are appropriately weighted in accordance with their probability of occurrence 

𝑝𝜎
ex. Each of these typical days is associated with deviation scenarios ω ∊ Ω in order to reliably 

account for forecast errors.  

 

 
Figure 6.6 – Methodology for modeling mid-term uncertainty. 
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Then, the scenarios of errors are constructed using historical prediction errors 

[Exizidis14] and are correlated with the endogenous variables of the problem (using a general 

probabilistic model encompassing the intricate multivariate dependence structure). The 

endogenous variables include the Intraday market prices and liquidity, the imbalance 

settlements, and the amount of power requested in real-time for the different balancing services. 

 

 

6.4.1 Mid-term uncertainty management 
 

In the mid-term, the purpose consists in modeling the exogenous variables (i.e. wind 

and solar generation, total load and prices in the day-ahead energy market) whose realizations 

are independent of other variables of the problem. Since the transitions between consecutive 

days are neglected, the scenarios can be represented by (independent) statistically representative 

typical days. To that end, a k-means clustering (with a Euclidean distance) is used on relevant 

historical realizations, which are composed of days with similar conditions. This procedure 

allows to properly define k = NΣ typical days with their associated probabilities 𝑝𝜎
ex of 

occurrence.  

 

 

6.4.2 Short-term uncertainty management 
 

The methodology is similar to the one presented in Section 4.3, and is summarized in 

Figure 6.7. The short-term uncertainty relates to the generation of scenarios ω ∊ Ω of the 

endogenous variables of the problem in the context of the two-stage (day-ahead) stochastic 

programming.  

 

 
Figure 6.7 – Scenarios generation methodology in the context of stochastic programming using historical data. 

 

First, an important task consists in properly processing (cleaning) the available 

databases. In this way, it is necessary to handle the missing data by either recreating the missing 

information (using, for instance, linear interpolation or matrix factorization [Koren09]), or by 

accepting to lose the information (suppression from the database). Then, it is also important to 

deal with time changes (i.e. shift from winter time to summer time, and conversely), and to 

standardize the format of all data in an efficient way to simplify the subsequent processing 

procedures. 
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Then, the dimensionality of historical data is reduced by applying principal component 

analysis (PCA), which converts the original dimensions into linearly uncorrelated variables 

(called principal components). The transformation iteratively attempts to determine the 

component that contains the maximum variability in the data, so that, at the end of the 

procedure, most of the information is contained into a limited number of components (which 

allows to eliminate many dimensions without much loss of information). Based on this space 

of reduced-dimensionality, an empirical copula model is constructed. 

 

As explained in Annex B, the copula model can then be easily exploited to generate 

random vectors (encompassing the statistical information of the historical data), and the inverse 

PCA is applied to convert the data into their original dimensions. Finally, post-hoc analysis can 

be performed to analyze the accuracy of the methodology. 

 

 

6.5 Mathematical formulation 
 

The blocks of the mid-term optimization tool, as represented in Figure 6.2, are described 

in subsections 6.5.1 to 6.5.3. 

 

 

6.5.1 Short-term decision procedure 

 

As presented in Section 4.4 (and reminded in Section 5.5.2), two-stage stochastic 

programming is used as a modeling framework for the day-ahead management of the portfolio. 

Such a technique aims at maximizing the expected value of the variable component of the profit 

Φvar on a one day period. In the first stage, facing future uncertainties, the price-taker VPP has 

to decide on the optimal bidding strategy to adopt in the day-ahead market as well as the unit 

commitment. More specifically, the schedules of the slow and inflexible plants have to be 

specified. It represents therefore day-ahead decisions x that cannot be modified in the future 

when the uncertainty set is resolved. The second stage of the model corresponds to hour-ahead 

operation of the flexible plants (i.e., thermal units and hydro plants with storage) that aim at 

avoiding portfolio imbalances while providing the power requested for balancing services. The 

second-stage decisions y are therefore scenario-dependent and can be adjusted according to the 

realization of the stochastic parameters. The problem can be compactly formulated as a mixed-

integer linear program (MILP) and the objective function can be expressed as follows: 

 ( )variablemax 
x,y

E   (6.1) 

 ( ) ( )variable var 1 .Risk  =  = −  +E   (6.2) 

  

Then, all constraints associated with the portfolio management (energy balance 

equation, cost-optimal allocation of resources, risk-management, etc.) and related to the 

technical requirements of each technology are fully presented in Section 4.4.  

 

 

6.5.2 Surrogate model of the variable short-term profit 
 

In the context of mid-term stochastic optimization, it is necessary to compute the 

variable contribution of the profit a large number of times (for different sets of mid-term 



CHAPTER 6    MEDIUM-TERM MULTI-MARKET  

    OPTIMIZATION OF VIRTUAL POWER PLANTS 

153 

decisions z), which involve solving the resulting MILP at each iteration. Hence, in order to 

reduce the simulation time, a surrogate model is used to approximate the expected short-term 

profit of the VPP with regard to constraints inferred by mid-term decisions. This constitutes 

indeed a beneficial solution since the number of samples 𝑁𝛩 for building an accurate model is 

much lower than the number of iterations required for optimization [Queipo05, Simpson08]. 

 

However, since the mid-term uncertainty cannot be captured by a single representative 

day, a different model has thus to be constructed for each of the 𝑁𝛴 mid-term typical days. 

These mathematical models are therefore determined in pre-processing (i.e. before mid-term 

optimization) with the purpose to obtain the best trade-off between model accuracy and 

computational burden for building the models.  

 

With this objective, various models (polynomial and rational functions, as well as 

Gaussian models) can be studied thanks to the SUMO toolbox, which is a tool designed for 

adaptive surrogate modeling with sequential design [Gorissen10], as explained in Section 6.3.1.  

 

Illustrative example 

The surrogate models for two typical days of July are represented in Figure 6.8, where 

the variation of the short-term profit with respect to the amount of contracted FCR and aFRR 

capacity (in MW) is displayed. 

 

  
Figure 6.8 – Response surfaces of the short-term profit with respect to the capacity contracted in FCR and aFRR 

for two typical days of July. 

 

It can be seen that the response surfaces have the same smooth profile, but differ 

regarding the short-term profit that can be realized (mainly due to the different wind/load 

conditions). As expected, when more reserve capacity is contracted, the short-term profit is 

reduced due to the lower amount of flexibility available in short-term to face forecasting errors 

to take advantage of opportunities in both intraday market and imbalance settlement.  

 

These results highlight the importance that the flexibility providers are remunerated for 

the availability of the reserve, and illustrate the importance of the mid-term decision process 

where the optimal trade-off between mid-term and short-term contributions has to be 

determined. It can nonetheless be observed that the impact of the contracted FCR capacity is 

less significant than the aFRR, which suggests that the optimization strategy will firstly try to 

optimize the participation to FCR before offering the remaining flexible capacity to other 

products (unless the remuneration of aFRR capacity compensates this effect).  

 

Then, the relationship between the number of samples to construct the surrogate model 

and the modeling error (computed on a test set composed of Ntest data points that are not used 
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during the training) is presented in Figure 6.9(a), whereas the simulation time is illustrated in 

Figure 6.9(b). It should be noted that the root mean square error (RMSE) is used as error metric: 
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where yi the output of the surrogate model and fi the actual value computed by the short-term 

optimization (two-stage stochastic programming). 

 

 
Figure 6.9 – Evolution of the modeling error (a) and simulation time (b) with respect to the number of samples. 

 

 

6.5.3 Medium-term decision procedure 

 

The mid-term horizon can be characterized by different types of decisions depending on 

the profile of the portfolio manager. For instance, an electricity retailer, in addition to determine 

its optimal bidding strategy in forward/futures and balancing services markets, is also eager to 

define the best selling prices to its potential clients. The decision tool must thus be general and 

resilient enough to accommodate different objectives. 

  

Generally, the expected total profit Φ𝑡𝑜𝑡 over the considered period is composed of a 

fixed and a variable contribution. The fixed component Φfixed is subject to uncertainty related 

to the clearing of reserve capacity markets in which the VPP is considered as a price-maker. In 

this work, relevant historical market data are used to build stepwise curves representing the 

probabilities 𝑝𝜂,𝑧 of acceptation of offer (for product z) with regard to the bid price. As depicted 

in Figure 6.10, these curves implicitly model the competition among rival flexibility providers. 

 

 
Figure 6.10 – Empirical stepwise curve of offer acceptation probability. 

 

Henceforth, the fixed component can be expressed as follows: 
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where 𝐏𝑧 and 𝛌𝑧 are respectively the power and price proposed for each of the 𝑁𝑍 mid-term 

contracts (e.g. capacity in the different balancing services and power exchanged in the forward 

market) and T is the mid-term decision horizon. 

 

The variable component Φ𝜎
var depends on the VPP policy during the considered period 

but also on the clearing of mid-term markets since the VPP has to fulfill its concluded contracts. 

This term is computed using the pre-determined surrogate model. The optimal mid-term profit 

is thus a trade-off between both fixed and variable contributions (Figure 6.11). 
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where 𝒛 is the vector including mid-term decision variables whereas 𝑝𝜎 represent the 

probabilities of occurrence of the 𝑁𝛴 mid-term typical days.  

 

  
Figure 6.11 – Fixed and variable contributions to the mid-term profit. 

 

The problem consists thus in maximizing the nonlinear multivariate function (6.5) in 

which there is a mixture between continuous (e.g. offered price for balancing services) and 

integer (e.g. amount of power in the different balancing products) decision variables. It is solved 

using a genetic algorithm (GA), which offers the benefit to be free-derivative and is shown to 

reduce the risk of being involved in a local optimum [Gen00]. Furthermore, in addition to its 

efficiency in solving complex constrained problems, the heuristic nature of this algorithm is 

highly valuable for easily adapting the formulation (MILP, MINLP, etc.) to different VPP 

profiles. 

 

 

6.6 Case study 

  

The presented methodology is illustrated for the same Belgian electricity retailer than 

the one presented in Section 4.6. As a reminder, it is composed of 2 medium-sized conventional 

generation units, a 130 MW slow power plant and a fast unit with an 80 MW capacity. The 

portfolio is moreover constituted of one PSH station with an output power in both pump and 

turbine modes of 24 MW (with an energy/power ratio of 5). The VPP has also wind turbines 
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for a total installed power of 20 MW and supply both industrial and residential clients (peak 

power of 30 MW). Some are equipped with rooftop photovoltaic (PV) units for a total installed 

power of 5 MW. The electrical energy generated from PV installation distributed among low-

voltage networks is treated as a negative load and cannot be curtailed. Finally, the VPP is 

responsible for optimally operating DR resources from heat pumps (10 MW) and industrial 

fridges (15 MW). 

 

The results are illustrated for tactical decisions taken by an electricity retailer with a 

week-ahead perspective. These decisions include the determination of the energy exchanges in 

futures markets (FM) as well as the quantities and prices of FCR, aFRR and mFRR contracted 

with the system operator through a pay-as-bid auction (even though the mFRR is currently in 

month-ahead). The retail price to end-users is considered as constant and is thus not included 

in the optimization. 

 

The objective is to optimize its week-ahead decisions for a typical week of of July. The 

results of the implemented tool are then compared with two other approaches in order to 

highlight the benefits of our methodology. 

 

The short-term operation is characterized by intraday decisions that are made on a 15 

minutes basis (96 daily decisions). Hence, when historical data are available with a 1-hour 

discretization, these data are considered as constant over the 4 constitutive quarters of an hour. 

Similarly to stochastic models, the short and mid-term optimization procedures are modeled 

and solved using Matlab. 

 

 

6.6.1 Stochastic models analysis 
 

The mid-term uncertainty is addressed by defining statistically representative days of 

wind and solar generation as well as total consumption within the portfolio. In order to capture 

sufficient information without excessively increasing the size of the decision process, the 

number of typical days is here fixed to 𝑁𝛴 = 8. Historical data of hourly wind speed are known 

for the 5 wind parks and converted into active power using a traditional power curve [Fang11]. 

The data for residential load and their PV generation originates from smart metering (SM) 

devices installed in some customers. These devices are recording quarter-hourly energy flows 

that can be used to extrapolate statistical load and PV generation profiles of all clients (even 

those without SM device) using respectively their yearly electricity metering and PV installed 

power [Toubeau16].  

 

Afterwards, the day-ahead scenarios are generated. The endogenous variables 

considered in this work are the intraday and imbalance prices (and the liquidity of the Intraday 

market) as well as the amount of FCR, aFRR and mFRR activated by the system operator. The 

dimensionality of each variable is first decreased with PCA. The reduced-size variables (i.e. 

after applying PCA) are determined such as preserving at least 85 % of the information of the 

original dataset. 

  

The copula model is then used for constructing the scenarios. For limiting the size of 

the short-term optimization, 𝑁𝛺 = 10 scenarios are here created. 
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6.6.2 Medium-term optimization tool 
 

The first step consists in constructing the empirical stepwise curve of the acceptation 

probability of the reserve capacity (Figure 6.8), which was realized by using historical prices 

(available on the Elia website). The principle is that prices higher than the highest accepted 

offer have a probability of 0% to be accepted, whereas the lowest price has 100 % of acceptance. 

The curves are then built by accounting for all offers, and the results for FCR and aFRR are 

represented in Figure 6.12. 

 

 
Figure 6.12 – Probability of acceptation of reserve capacity for FCR (a) and aFRR (b). 

 

The second step consists in defining a surrogate model of the short-term portfolio 

management. A preliminary pragmatic selection of potential models is carried out. For instance, 

neural networks are discarded since they require too many samples to yield robust results. 

Likewise, splines are only relevant for two-dimensional problems. Consequently, only rational 

and Gaussian models are further considered. Concerning Gaussian models, Radial Basis 

Functions (RBFs) and kriging models present the most interesting features in terms of 

interpolation capabilities and the study is thus limited to these two approaches. Moreover, it 

should be emphasized that there is no need to predefine the complexity of rational models since 

the building algorithm adaptively learns their optimal structure. The different models are then 

compared and the results for one typical day are shown in Table 6.1. These are focused on the 

number of samples required to train each model (i.e. determination of its optimal parameters) 

as well as a post-hoc measure of accuracy. Indeed, in order to obtain an unbiased measure of 

the generalization capability of the surrogate models, it is important to compute their accuracy 

on new samples (test set) that are independent from the training data. Here, the performance of 

the different models is estimated using the coefficient of determination R2. This coefficient is 

computed from the sum of squares SSE of the errors between the experimental data points and 

the fitting function determined by the regression analysis. Then, this term is normalized by the 

sum of squares SStot of the distances between the data points and their mean value. If the model 

fits the data well, SSE will be much smaller than SStot and their ratio will be close to zero. 

Practically, the R2 coefficient is calculated as follows: 

 
2 1 E

tot

SS
R

SS
= −  (6.6) 

The R2 coefficient is thus included in the [0, 1] interval (assuming that 𝑆𝑆𝐸 is always 

smaller than 𝑆𝑆𝑡𝑜𝑡) and is equal to one when all the experimental points correspond exactly to 

those determined by the fitting model. Conversely, if the quality of the model is decreasing, the 

value of R2 will drop accordingly. The R2 value can be interpreted as the proportion of 

variability for the dependent variables 𝑥𝑖, that can be captured by the mathematical model. 
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Table 6.1 

Comparison of model accuracy on test set. 

Model builder # samples R² metric 

Rational  916 0.91 

RBF NA NA 

Kriging 396 0.90 

 

The RBF model was not able to reach the target accuracy value within the time delay 

imposed by the learning procedure and no post-hoc analysis was thus performed. Then, one can 

see that the rational model necessitates an important number of samples to ultimately achieve 

an accuracy equivalent to the kriging interpolation. 

 

In this work, a kriging model, i.e. interpolation method based on linear regression of 

surrounding samples, is therefore selected to optimize the parameters of the 𝑁𝛴 = 8 models. 

 

The quality target was set in such a way that this technique requires simulating 𝑁𝛩 = 36 

points for constructing each of the 8 models. Since the optimal day-ahead bidding strategy 

necessitates slightly more than 4 minutes, the mean computational time for obtaining a 

surrogate model for a particular typical day is around 2.5 hours. In order to validate the quality 

of the different models, R2 coefficients are computed in post-processing (after determination of 

the models) with 50 new experimental points randomly generated. The range of the R2 

coefficients obtained for the 8 surrogate models lies between 0.87 and 0.99, which constitutes 

a good indicator of the performance and reliability of the modeling procedure. 

 

The mid-term optimization is then carried out and the results are provided in Table 6.2. 

The simulation time is around 1 minute. The quantity range of balancing services are 

determined by aggregating the capabilities of each portfolio utilities. These capabilities are 

computed based on the technical requirements (maximum output power and ramping limits) for 

providing the reserve. 

 
Table 6.2 

Operating range of decision variables and their week-ahead optimal values. 

 Quantity range Price range 
Optimal 

quantity 

Optimal 

price 

FCR [0, 6] MW [18.4, 84.9] € 6 MW 34.6 € 

aFRR [0, 16] MW [7.7, 19.5] € 12 MW 10.6 € 

mFRR [0, 25] MW [2.8, 7.5] € 25 MW 2.8 € 

FM [-50, 50] MW 37.5 € 35.8 MW 37.5 € 

 

The results attest the importance of accounting for dependencies between time periods. 

Indeed, although it seems tempting to reserve as much power reserve as possible in week-ahead 

for maximizing the fixed revenues, it does not constitute an appropriate strategy for the 

envisaged VPP. This can be explained by the operational costs of power plants that may be 

uneconomic with regard to current market prices or by the limited energy of storage utilities 

that may lead to the impossibility of providing the power requested in real-time. Here, the 

optimal solution indicates that the portfolio should provide 12 MW of secondary reserve for a 

maximum technical capacity of 16 MW. However, the maximum amount of primary reserve 

was selected. This originates from the limited amount of energy required for supplying the 

reserve. We also notice that the prices for the procurement of balancing services are relatively 

small (which induces smaller guaranteed fixed revenue) in order to ensure their economic 

competitiveness in the selection procedure (i.e. pay-as-bid auction). 
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6.6.3 Comparison of different approaches 
 

Within the objective to illustrate the added value of our surrogate-based optimization 

approach (method #1), the optimal outcome is compared with the profit that would have been 

realized with two other approaches. The first one (method #2) consists in a global three-stage 

stochastic optimization. In order to compare both methods on a sound basis, the formulations 

are adapted to ensure that both simulations necessitate the same space requirements (16 Go 

RAM). As expected, the resulting formulation of the three-stage program is far too large to 

accommodate the same number of scenarios than our methodology. Indeed, the number of 

scenarios is then equal to 𝑁𝛴𝑁𝛺 = 80, which would necessitate more than 15 times the memory 

allocated for the task. Hence, the number of mid-term typical days (i.e. first-stage stochastic 

variables) has to be reduced from 8 down to 4 along with the scenarios of endogenous variables 

(i.e. second-stage stochastic variables) from 10 down to 5. Some technical constraints such as 

ramping rates of units as well as minimum up/down times are also neglected. Moreover, the 

nonlinearities are relaxed by imposing a fixed reservation price in the reserve capacity market. 

We have therefore opted for a risk-averse choice that secures the acceptation of the offers.  

 

Finally, an intuitive but non-optimized perspective (method #3) for mid-term decisions 

is considered. The portfolio manager, with the principle of due diligence, decides to participate 

to balancing services in accordance with its full technical capacity with a risk-averse bidding 

strategy and to sell its expected base generation (i.e. total generation minus total load) in futures 

market. 

 

The mid-term decisions corresponding to the three methods are given in Table 6.3.  

 
Table 6.3 

Decisions taken by the different mid-term strategies. 

Methods R1 R2 R3 FM 

#1 6 MW 12 MW 25 MW -37.5 MW 

#2 6 MW 19 MW 30 MW -50MW 

#3 6 MW 20 MW 30 MW -55 MW 

 

From Table 6.3, it can be observed that the simplifications that were mandatory to make 

method #2 tractable (i.e. disregarding extreme scenarios or operational inter-temporal 

constraints) lead to overly optimistic mid-term decisions. Indeed, method #1 leads to the most 

conservative mid-term decisions, the others strategies seeking instead to maximize the fixed 

revenues received for providing capacity for balancing reserves. 

 

The short-term optimization tool described in Section 4.4 is then used to compare the 

short-term portfolio management with regard to these mid-term decisions. The results are 

presented in Table 6.4. Those include the number of mid-term contract violations (non-

provision of the requested balancing reserve) due to operational constraints as well as the 

expected (fixed and variable) profits over the whole period. 

 
Table 6.4 

Comparison of different mid-term strategies.  

Methods 

# weekly 

contract 

violations 

Expected 

variable 

profit 

Expected 

fixed  

profit 

Expected 

total profit 

#1 0 4.8 106 € 1.9 105 € 5 106 € 

#2 15 4.5 106 € 2.5 105 € 4.8 106 € 

#3 58 4.1 106 € 2.6 105 € 4.4 106 € 
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Over the period of interest, the proposed formulation brings an additional profit of 

respectively 2*105 € and 6*105 € compared to methods #2 and #3 (Table 6.4). This can be 

explained by the fact that these methods induce violations of longer-term contracts due to 

limited capacity of some flexibility sources (storage utilities). Such situations have to be 

absolutely avoided since it incurs severe financial penalties. Furthermore, CPP units providing 

spinning reserve have to be online, which may be unprofitable in the long run if periods with 

low prices are too frequent.   

 

Hence, the proposed mid-term strategy, in addition to secure feasible solutions in real-

time, is also conferring a substantial extra benefit over the considered week compared to the 

three-stage and logic-based approaches. 

 

It should be mentioned that the expected short-term profits have to be put into 

perspective with the important installed power of renewable sources within the studied portfolio 

that generates substantial incomes by selling energy in sport markets. Indeed, these generators 

are characterized by very low operational costs. Additionally, the depreciation of the installation 

is not included in the mid-term optimization since it constitutes a fixed contribution that do not 

influence the decision process. 

 

 

6.7 Conclusions and perspectives 

 

This chapter investigates the added value of simulating a detailed short-term operation 

of the portfolio in the context of mid-term decision procedure in order to reach a global optimum 

over the studied period. The principle is to couple the time horizons by defining an adequate 

surrogate model that fulfills therefore two objectives. It indeed allows to account for time-

dependent constraints while being computationally efficient in the context of a mid-term 

decision process. The economic benefit of the procedure has been emphasized for a typical 

Belgian retailer disposing of its own flexible plants. A major advantage of the proposed 

approach is that the decision tool implemented for the short-term operation can be used in stand-

alone in the context of a day-ahead bidding strategy. 

 

Moreover, within the objective of reducing simulation time, a new method for 

generating scenarios in the context of two-stage stochastic programming was developed and 

yields satisfying results. In this regard, an interesting perspective of this work is to include 

catastrophic scenarios characterizing the potential loss of portfolio components. Such events 

can indeed significantly influence the longer term decisions for hedging against the resulting 

losses. Furthermore, including flexibility of end-users installed in distribution systems is also 

likely to improve the portfolio management. 

 

 

6.8 Chapter publications 

 

 This chapter has led to the following publications: 
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Power Syst., vol. 33, no. 2, pp. 1399-1410, March 2018. 
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and Simulation (part of HPCS 2019), Dublin (Ireland), Jul 2019. 
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Sparse Smart Metering Data", Proc. of the 42nd Annual Conference of IEEE Industrial 
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CHAPTER 7 

 

CONCLUSIONS AND PERSPECTIVES 

 

 
Our society is currently undergoing an important energy transition with as main 

objective to rely on a low-carbon (and nuclear-free) energy system. In Europe, it progressively 

results in the electrification of both transportation and heating sectors, with an electrical system 

that mainly depends on renewable-based generation. 

 

In parallel, the European liberalization of the electricity sector that occurred in the 

nineties has introduced competition at both production and supply levels, whereas the 

transmission and distribution of electricity remained regulated monopolies31. However, due to 

the specificities of the electrical grid that has to be continuously balanced (generation must be 

equal to consumption at any time) and whose power flows cannot be easily controlled, it 

resulted in a complex environment involving many agents with potentially conflicting 

objectives. Moreover, power systems are subject to an increased share of uncertainties that 

become more complex to understand (due to intricate dependencies between electrical and 

market data), and more dynamic. 

 

In light of these challenges, our work was focused on three main complementary 

questions with the objective of addressing the decision-making problem faced by market 

players. In particular, we firstly put our research interest on improving the quality of 

probabilistic forecasts so as to reduce the uncertainty space that has to be processed in the 

subsequent optimization tools. We then focused on the modeling framework of these decision 

tools. In particular, we have developed a new formulation that is able to adequately valorize 

(i.e. extract the full economic potential) emerging technologies that are typically characterized 

by strong energy limitations. Specifically, this work has placed emphasis on underground 

pumped-hydro storage stations, new environmental-friendly solutions that are associated with 

important dynamic and nonlinear constraints. Thirdly, we focused on how we can efficiently 

couple the considerations from different time horizons with conflicting objectives so as to 

achieve the best planning policy over a longer term perspective. 

 

 
31 The objective of the liberalization was to foster the energy transition through expected smaller electrical energy 

costs, and stimulated investment in renewable generation. 



CHAPTER 7                                  CONCLUSIONS AND PERSPECTIVES 

 

164 

In this final chapter, we firstly summarize the developments and findings presented 

throughout the dissertation, with a particular focus on the salient contributions and conclusions. 

As a second stage, we formulate some suggestions for future research. 

 

 

7.1 Concluding remarks 
 

In the current context of power systems (increase of uncertainties regarding both load 

and generation in a system that needs to keep the continuous energy balance while ensuring the 

safe and efficient operation in each part of the network), both long-term and operational 

planning stages are more and more affected by forecasting errors. In order to properly consider 

these uncertainties (to properly feed and guide subsequent optimization tools), different 

modeling techniques (to properly characterize mid and long-term uncertainties) and forecasting 

tools (typically for day-ahead to close to real-time considerations) therefore need to be 

developed. Even though reaching oracle tools (able to perfectly predict the future) do not seem 

realistic, there is currently still room for improvement. 

 

Regarding day-ahead predictions, Deep Learning techniques, and, in particular, 

advanced recurrent neural networks such as Long Short Term Memory (LSTM) networks are 

already able to significantly improve the forecast accuracy of electrical quantities compared to 

traditional approaches. This is achieved thanks to the ability of such networks to automatically 

select and propagate through time the most relevant information for the prediction purpose.  

 

In this work, the question of combining the modeling power of deep neural networks 

with advanced memory structures able to control the flow of past relevant information is 

investigated in Chapter 3. In particular, the objective is to take advantage of the specificities of 

the day-ahead operational planning to design prediction tools with tailored architectural 

variations that improve their performance. Practically, since the predictions are needed 

simultaneously for each time step of the scheduling horizon, LSTM networks are combined 

with a bidirectional processing of data.  

 

Although the method can provide prediction intervals and densities, it is here extended 

with the aim to provide predictive scenarios. Practically, the tool relies on a copula-based 

sampling of the multivariate forecasted distribution so as to generate time trajectories that 

mimic actual time and cross-variable dependencies. This work has focused on the aggregated 

demand and renewable generation (which suits the market player perspective). 

 

The results demonstrated that the proposed methodology yields accurate, calibrated 

forecast distributions learned from the historical dataset, and that the generated scenarios 

enable to increase the economic profit of energy aggregators participating in electricity 

markets. 

  

However, even if the actors of the electricity sector can rely on more reliable forecasts, 

the situation is such that there is an increasing need of flexibility (i.e. ability to adjust 

generation/consumption within a short time frame based on an external signal) in power 

systems. This flexibility can be efficiently provided by pumped storage hydro (PSH) units, and 

new solutions such as underground stations are consequently emerging.  Specifically, this thesis 

was conducted in the framework of the Smartwater project (funded by the Walloon Region), 

which aims at evaluating the feasibility of the rehabilitation of end-of-life quarries and mines 

into small to medium-sized PSH stations connected to the distribution grid. 
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In this dissertation, it is assumed that the storage units are operated by market actors 

who are considering all opportunities to maximize their profit. It should be noted that, if the 

market is properly designed, the decisions that maximizes the revenues of the market 

participants are those that help the most the system (e.g. the real-time energy imbalances in the 

Elia system have significantly decreased since the introduction of the single pricing scheme for 

the imbalance settlement). 

 

The operation of small PSH units are significantly constrained by their limited energy 

capacity (typically 4 to 6 hours at full power to completely exhaust the storage capacity), and 

their economic potential is thus fully leveraged when included within a larger portfolio, i.e. 

aggregation of assets centrally optimized in order to maximize the total profit. In chapter 4, a 

methodology for the day-ahead scheduling of an electrical portfolio is built with the aim of 

incorporating any type of electricity generation, consumption or source of flexibility (storage 

technologies, demand response, etc.). By considering all market opportunities, i.e. both energy 

markets (day-ahead, intraday, imbalance settlement) and ancillary services (including spinning 

and non-spinning reserves), the proposed scenario-based formulation targets the cost-optimal 

allocation of assets (so as to maximize the total revenues of market participants). 

 

With the proposed methodology, it has been confirmed that the portfolio effect 

(aggregation of technologies) results in a more efficient use of assets due to 

complementarities between the different technologies. In this respect, it has been shown that 

a dynamic allocation of reserves (i.e. when the contribution of each unit can vary over time) 

fosters the participation in ancillary services, which results in higher economic value of the 

global portfolio. Furthermore, it is observed that neglecting the real-time activation of 

operating reserves can lead to conservative solutions that do not fully exploit the potential 

of available resources. 

 

Then, a particular focus is given in chapter 5  to the operation of these small to medium-

sized units is governed by multiple nonlinearities arising from the geometry of the basins, the 

head effects (forbidden zones and performance curves in turbine and pump modes) as well as 

the groundwater exchanges between reservoirs and their surrounding aquifers.  

 

The work was firstly devoted to understand the specificities of underground pump-

storage hydro stations, and the resulting limitations of strategies that are currently used for the 

short-term scheduling of traditional facilities. However, even convexification or linearization 

procedures are intrinsically onerous computationally, which prevents them to consider the 

proper dynamics of the system (with an optimization step lower than 1 minute). Moreover, these 

techniques are associated with modeling approximations that may lead to infeasible solutions. 

 

There is therefore a need of new tailored decision tools, and a hybrid procedure is here 

developed for tackling this complex and realistic problem in a reasonable amount of time. The 

procedure consists in the sequential operation of an optimization tool and a simulation model, 

both included into a control loop ensuring the convergence towards a feasible and optimal 

solution. The simulation model enables to faithfully represent the complex behaviors of 

underground PSH plants as well as their associated dynamics. Indeed, the proposed method 

takes as inputs realistic models coming from partners specialized in electro-mechanics (for 

operation of hydraulic and electrical machines) and hydro-geology (for water exchanges 

between reservoirs and surrounding aquifers). This ensures the practical feasibility of the 

scheduling, while improving the economic valorization of the flexibility, thereby compensating 

the lack of global optimality guarantee of the procedure. 
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It should be mentioned that the grids fees and taxes associated with both consumption 

and generation modes of PSH stations had been neglected because of the current Belgian 

context in which these contributions are so important that the optimal solution for the 

storage is to stay offline during the whole day (no opportunity for making profit even if the 

installation costs of the units are negligible). 

  

Then, the results demonstrate that accurately considering these nonlinear effects is 

essential to extract the full economic potential of such underground stations, provided that 

the solution lies near to the global optimum. It has also been noticed that considering forbidden 

zones significantly increase the simulation time, and the implementation advanced modeling 

techniques to alleviate the burden of these constraints can be highly valuable in the future.  

 

Finally, with the current organization of electricity markets (in which the procurement 

of reserve capacity is carried out in week-ahead), an important care has to be given to the mid-

term perspective. Indeed, an important way of valorizing flexibility originates from the 

participation in ancillary services. At this stage, the challenge is how to efficiently handle 

medium-term multi-stage (potentially stochastic and nonlinear) decision procedures in a 

computationally efficient way. To that end, a surrogate modeling approach is presented in 

chapter 6 (consisting in learning as a pre-processing task the relationship between the first-stage 

decision variables and their impact on the objective function with respect to the optimal 

operation of the latter decision stages), and offers an elegant and promising solution. 

 

The outcomes shows that the proposed surrogate-based mid-term strategy, in addition 

to secure feasible solutions in real-time, is also conferring a substantial extra benefit over the 

considered month compared to the more traditional approaches. 

 

 

7.2 Perspectives for future research 
 

The forecasting tools developed in this thesis have all the characteristics to be 

successfully applied to very short-term application (e.g. for the subsequent optimal control of 

wind turbines), provided that some architectural adjustments are made to fit the specificities of 

the task (by taking into account the strong relationship with past realizations). In the same vein, 

it will be interesting to see if such models have the potential to break down the barrier of 

achieving acceptable accuracy levels for longer term prediction horizons such as a week-ahead 

perspective. 

 

Moreover, whereas aggregated predictions are of interest for market players eager to 

efficiently operate their portfolio, the system operator can be more interested in local 

contributions so as to be able to perform adequate load-flow studies (determining the active and 

reactive power flows in each line of an interconnected system as well as voltage levels at each 

node) to guarantee the stable operation of its network. In this context, accounting for space 

dependencies is crucial. Indeed, complex correlation patterns exist between renewable 

productions/demands located in different network areas. For instance, a link exists between 

solar productions in a given geographical zone, which can also be true for wind productions 

depending on the landscape configuration. The demand patterns, beyond the correlation 

between end-users with similar consumption habits, may also be influenced by the solar 

production, in order to increase the self-consumption of households/districts/microgrids, 

depending on demand response policies that have been established by the local authorities. 
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Generally, handling and exploiting the high dimensionality which arises from the wide 

geographical span of the grids, as well as from the heterogeneous data sources, is a key 

challenge in data analytics for modern electricity grids.  

 

In general, the optimization tools developed in this thesis enable to estimate the 

economic potential of PSH units (or any other technologies or aggregation of assets) in the short 

and medium term perspectives. Such information can also useful for longer-term studies to 

estimate the period before return on investment (if any). 

 

Accounting for such time dependencies in a multi-stage procedure can be beneficial for 

complex tasks such as the operational planning of transmission grids consisting in undertaking 

preventive (change of network topology, adjust the tap changer position of a transformer, etc.) 

as well as corrective (P-Q control, etc.) actions at a minimal cost in order to guarantee a 

continuous, secure and reliable electricity supply. This decision-making process involves 

different embedded time horizons, going from week-ahead towards real-time that need to be 

jointly considered.  

 

The implemented tools can also be used by regulators in order to assess the profitability 

of different kind of portfolios (composed only of PSH units or mainly based on renewable 

generation, etc.) with respect to future evolution of the regulatory framework (removal of grid 

fees for energy offtakes for storage devices, removal of financial subsidies to renewable 

generation, etc.). They can in this way determine if the market design in well aligned with their 

targets (carbon-free energy mix that ensure the stable and efficient operation of the electrical 

system) before being put into operation. 

 

In this way, the exploitation of the tools has highlighted that, in the current Belgian 

regulatory framework, underground pump-storage units are completely unprofitable. Due to the 

grid fees and taxes associated with both energy injections and offtakes, such units cannot even 

generate operational profits, and it is therefore even less possible to recover investment costs. 

In the absence of such costs, however, the outcomes have shown that underground PSH stations 

can offer valuable services in an economic way. 

 

Moreover, the procurement of balancing services is expected to move towards a day-

ahead sourcing in order to leverage all flexible resources distributed throughout the system 

(technology-neutral market). In this context, only the scheduling horizon is impacted as the 

sequentiality of decisions of market players remains unaltered (procurement of balancing 

capacity – day-ahead market – procurement of balancing energy). The complexity of the 

problem keeps its three-stage stochastic structure, which lies at the frontier of game theory (due 

to the “pay-as-bid” system where the market player is remunerated at its offered price), resulting 

in a nonlinear formulation. The surrogate-based optimization tool developed with a mid-term 

perspective can then be transposed in case of short-term procurement of balancing services 

(with the same benefit of alleviating the computational burden of the decision procedure). The 

approach can nonetheless still be improved regarding the temporal dependencies. Indeed, in the 

proposed approach, the mid-term uncertainty is represented by representative typical days since 

the mid-term horizon is actually made up of different days characterized by the same decision 

process (which allows to decouple/decompose the problem). However, in such an approach, the 

transition between consecutive days is neglected (each one being optimized independently of 

the others), which necessitates to define assumptions about the operation of energy-dependent 

technologies (e.g. in this work, it was imposed that the energy stored in pumped-storage hydro 
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units is the same at the start and at the end of the day), potentially resulting in suboptimal 

solutions. 

 

Finally, by working extensively on the short-term operational planning, we noticed that the 

intraday scheduling, which defines the actual positions of the unit following the day-ahead 

decisions, is relatively neglected in the literature. However, this temporal horizon is important 

since the objective is not only to ensure adherence to the pre-defined bidding strategy in 

previous horizons (regarding both electrical energy and ancillary services), but also to take 

advantage of (predictable) system imbalances 
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COPULA 

 

 
B.1 Introduction 

 

The term copula has a Latin origin that means “connection”. Copula is an emerging 

statistical concept whose popularity originates from Sklar’s theorem stating that any continuous 

multivariate distribution can be expressed as a simple (copula) function of its one-dimensional 

constitutive marginal [Sklar59]. Copulas provides thus convenient way to compute multivariate 

distributions by containing the whole inter-dependence structure between different variables. 

 

A valuable asset of copulas is that it allows decoupling the individual marginals from 

their dependence structure. In this way, two different set of variables with the same dependence 

structure are thus characterized by the same copula model but can have different multivariate 

distribution if there are discrepancies in their marginal distributions. 

 

Overall, the use of copulas allows substituting the difficult task of identifying a 

multivariate distribution by performing two simpler tasks. The first one consists in 

appropriately modelling the marginal distributions of each variable and the second is to estimate 

the copula, which summarizes the whole dependence structure. Hence, copulas enable 

generating vectors with any specific dependence structure, and not only the linear correlation 

such as traditional methods. 

 

 

B.2 Definition 
 

A copula is a function that joins (couples) a multivariable distribution to its one-

dimensional marginal distribution. In fact, a copula is a D-dimensional distribution function 

with univariate uniform margins restricted to the unit D-cube [0, 1]D [Pfeifer03]. 

 

Sklar theorem 

Let 𝑿 = (𝑋1, … , 𝑋𝐷) be a random vector, and H be a D-dimensional distribution 

function with marginal distributions 𝐹1, … , 𝐹𝐷. The Sklar’s theorem states that the multivariate 

distribution H can be expressed as a function C on the unit D-cube [0, 1]D of its marginal, such 

that: 



ANNEX B       COPULA 

 

192 

 ( ) ( ) ( )( )1 1 ,..., D DH C F Fx x=x   (B.1) 

 
The function C is called a copula and is defined on the set 

( ) ( )1 ... DRange F Range F  . Hence, if ( )dRange F  is continuous on [0, 1] ∀ d = 1,…,D, 

then the copula is unique. In short, the copula is invariant under strictly increasing 

transformation of the margins. 

 

 

B.3 Generation of random vector 
 

The most interesting part is the converse of Sklar’s theorem (Figure B.1), which states 

that it is possible to link any group of univariate distributions with a copula defining the inter-

dependence of the variables in order to define a valid multivariate distribution. 

 

 
Figure B.1 – Illustration of the converse of Sklar’s theorem. 

 

Together with the marginal distributions that encompass the information of the variables 

taken individually, copulas allow accurately modeling dependent random variates. In this way, 

if Fd (xd), d = 1,…,D  are continuous distribution functions, then C is unique and given by: 

 ( ) ( )( )1 1

1 1
( ) ,..., D D

C H F Fu u− −=u  (B.2) 

where ud = Fd (xd), d = 1,…,D are the probability integral transformations of the margins. 

 

The probability integral transform states that if a continuous random variable 𝑿 has 

a cumulative distribution function 𝐹𝑋, then the variable 𝑌 = 𝐹𝑋(𝑋) is uniformly distributed on 

[0,1]. The theorem is illustrated in Figure B.1 for a Weibull distribution with shape and scale 

parameters respectively equal to 5 and 2.  
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Figure B.2 – Illustration of the probability integral transform. 

 

It should be noted that ( )1

d dF u−
 is computed using the inverse transform sampling 

which is illustrated in figure 3, as follows: 

 ( )
( ) 

( ) 
1

inf | 0

sup | 0 0

d d d

d d

d d

x F u ux
F u

x F ux

−
  

= 
= =

 (B.3) 

 

 
Figure B.3 – Illustration of the inverse transform sampling. 

 

 

B.4 Determination of copulas 
 

The estimation of copulas can be achieved parametrically by assuming models for both 

the copulas and the marginal. In this way, several parametric models of copulas are developed 

such as the Gaussian copula or the Archimedean copulas [Nelsen98]. In such cases, the 

considered copula is fitted to the data and the parameters are computed using a maximum 

likelihood approach. This method can be computationally cumbersome for high-dimensional 

distributions because the marginal and copula parameters must be estimated together, and is not 

used in practice. Then, semiparametric estimations are also of common use and specify a 

parametric copula with empirical marginal.  

 

However, it should be mentioned that standard parametric copulas are typically suitable 

for bivariate models but suffer from rather inflexible structures that are difficult to generalize 

for higher-dimensional distribution. Moreover, such models do not allow to consider different 

dependency structures between the different pairs of variables, which makes them unsuitable 
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for high-dimensional problem [Brechmann13]. Consequently, parametric copulas are not used 

for accurately modelling the dependence among a large number of variables.  

 

To that end, vine copulas were developed as the enable the extension to arbitrary 

dimensions [Chollete09]. The principle is to represent a density 𝑓(𝑥1, … , 𝑥𝐷) as a product of pair 

copula densities and marginal densities. In other words, the dependency structure is determined 

by decomposing a multivariate probability density into a cascade of bivariate copulas, where 

each pair-copula can be chosen independently from the others. Statistical inference (maximum-

likelihood, Bayesian approach ...) is used to fit the bivariate copulas to the empirical data, which 

allows a great flexibility in dependence modeling. The decomposition is therefore not unique 

and a graphical structure called regular vine structure has been introduced in [Bedford01] in 

order to help organize them.  

 

Although there is a rich variety of copula families, such vine copulas intrinsically 

generates a succession of approximations due to the need of assigning each pair-copulas to an 

existing parametric family, which may be problematic in high-dimensional problems. 

Henceforth, along with those studies, full nonparametric approaches were also investigated. 

These present many assets if the number of available data for constructing the empirical model 

is sufficient. Indeed, a nonparametric estimation of copula treats both the copula and the 

marginal parameter-free, and therefore offer a greater generality allowing to represent any type 

of dependence 

 

 

 

 

  


