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Abstract

Bulk, or large-scale, energy storage systems are indispensable for future energy
networks with very high shares of intermittent renewable generation. The
increasing penetration of wind and solar resources requires substantial flexible
capacity that can shift energy over many hours or days, hedge against forecast
errors, and provide multi-market services. In this context, long-duration energy
storage technologies, such as advanced compressed air and liquid air systems,
are attracting growing attention and moving toward large-scale demonstration
worldwide. Yet, bulk storage investments remain difficult to justify because
of high upfront costs and uncertain, market-driven revenue streams, even in
net-zero carbon roadmaps for the coming decades. This thesis therefore asks
a central question: how can we design operational and market-integration
models that enable bulk and long-duration storage assets to make informed,
profit-seeking decisions while supporting the secure and cost-efficient operation
of future low-carbon power systems?

To address this question, the thesis first establishes physical and method-
ological foundations for bulk storage operation in market environments. It
clarifies the roles and applications of storage across different timescales, presents
a technology-oriented view of bulk storage and its interfaces with wholesale
electricity markets, and identifies the main products and services relevant
for long-duration flexibility. On this basis, the work develops a common
mathematical framework based on deterministic and scenario-based stochastic
programming, multi-level models, optimality conditions, and mathematical
programs with equilibrium constraints. The interaction between optimization
and data-driven methods is also examined, thereby laying the foundation for
learning-assisted solution approaches that accelerate decision-making.

Within this framework, the thesis first develops a risk-aware market dispatch
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model for a grid-scale lithium-ion battery that participates in day-ahead and
intraday electricity markets from a non-strategic, price-taking perspective. A
risk-neutral bidding formulation serves as a reference and is extended to an
operational model with second-order stochastic dominance constraints that
control the downside risk of revenues relative to a data-driven benchmark
portfolio. Numerical studies under realistic price scenarios show that appropriate
risk constraints can substantially reduce regret and improve the reliability of
battery revenues, at the cost of a moderate reduction in expected profit.

Motivated by the need for long-duration flexibility and by the potential to
exploit cross-vector synergies, the thesis then turns to emerging bulk storage
concepts that either couple electricity and gas systems or integrate different
storage media. Within this context, it first develops a two-stage stochastic
dispatch model for an integrated liquid air energy storage and liquefied natural
gas system that co-optimizes electricity generation, liquefaction, regasification,
and cold-exergy use across power and gas markets. A probabilistic payback
period metric is introduced to assess economic feasibility under uncertainty.
Second, the thesis studies the strategic look-ahead operation of a hybrid above-
ground compressed air and liquid air storage plant that offers energy in a
day-ahead market with network constraints. A bi-level market model is cast
as a mixed-integer mathematical program with equilibrium constraints, and a
learning-assisted solution approach is proposed to warm-start integer decisions.
Case studies on systems of increasing size show how hybridization, forecast
horizon, and strategic behavior affect profitability, market prices, and dispatch
patterns, and illustrate the value of combining advanced optimization with
data-driven techniques for bulk storage operation.

Taken together, the developments and case studies in this thesis demon-
strate that risk-aware, multi-market, and learning-assisted models enable bulk
and long-duration storage assets to convert their physical flexibility into more
predictable and robust revenue streams, while aligning their operation with
prevailing market rules and network constraints. Overall, the proposed method-
ologies provide a coherent toolbox for operators, planners, and investors who
seek to integrate large-scale storage into liberalized energy markets, and they
contribute to the broader transition toward data-driven, market-aware operation
of flexible resources in future net-zero power systems.
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CHAPTER 1
Introduction

This chapter introduces the motivation, scope, and research questions of the
thesis. It links net-zero climate targets, the rise of variable renewable generation,
and the resulting need for flexibility with a focus on bulk energy storage as an
arbitrage actor in wholesale electricity markets. On this basis, it formulates three
research questions on risk-aware dispatch of grid-scale storage, market-based
operation, and economic feasibility of advanced bulk facilities, and strategic
look-ahead dispatch of hybrid long-duration storage systems supported by
learning-based warm-start techniques, and it summarizes the corresponding
contributions and structure of the thesis.

1.1. Background and Motivation

The worldwide pursuit of carbon neutrality is one of the defining challenges of
this century, driven by the urgent need to reduce the harmful consequences of
climate change [1]. Achieving this objective requires balancing the amount of
greenhouse gases released into the atmosphere with those that are removed or
compensated, thereby bringing the net release to zero [2]. This transformation is
fundamental to reducing the risks associated with climate instability and to en-
suring the sustainability of ecosystems and human societies. Maintaining global
temperature rise within the thresholds established in international agreements,
such as the Paris Agreement, is central to this objective [3]. Exceeding these
thresholds could produce severe outcomes, including rising seas threatening
coastal communities, more intense and frequent extreme weather, and extensive
biodiversity loss [4]. The most recent findings of the Intergovernmental Panel
on Climate Change (2023) emphasize that global emissions must peak imme-
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diately, decline by about 45% relative to 2019 levels before 2030, and reach
neutrality by mid-century [5]. Nevertheless, the current trajectory diverges
sharply from this requirement. In 2023, worldwide emissions, including land-use
change, reached 57.1 gigatonnes of carbon dioxide equivalent (GtCO2e), of
which 53 gigatonnes were produced by fossil fuel and industrial activities. This
represented a growth of 1.3% to 1.9% compared with 2022, far exceeding the
long-term average annual increase of 0.8% recorded between 2010 and 2019.
This persistent upward trend demonstrates the growing urgency of a structural
transition toward a low-carbon energy system, where both technological and
systemic solutions are required to reverse the emission trajectory.
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Figure 1.1: The breakdown of total greenhouse gas emissions in 2023.
Note: This chart is taken from [6].
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The global emission profile for 2023, presented in Fig. 1.1, highlights the
central role of the energy system [6]. Power generation was the largest con-
tributor, accounting for 26% of global emissions, equivalent to 15.1 GtCO2e.
Transport followed with 15%, industry with 11%, fuel production with 10%,
and buildings with 6%. Outside the energy sector, additional emissions origi-
nate from industrial processes, agriculture, land-use change, and waste, which
together formed a substantial share of the total. Understanding their evolution
over time is essential for assessing progress toward decarbonization. While
the 2023 snapshot illustrates the dominance of energy-related emissions, the
historical evolution shown in Fig. 1.2 provides essential insight into how these
contributions have evolved over time. As indicated in Fig. 1.2, the long-term
trajectory reveals a widening gap between observed emissions and trajectories
consistent with climate-stabilization pathways [7]. Since 1990, the following
sectoral trends can be observed:

• The power sector has been the fastest-growing source, with emissions
increasing by 96%.

• Industrial combustion and processes followed closely, rising by 91%.

• Transport emissions expanded by 78%.

3



Introduction

• Fuel exploitation grew more moderately, recording a 48% increase.

• Emissions from the building sector remained largely unchanged, with only
a 1% increase since 1990.

• On a global scale, total greenhouse gas emissions in 2023 were 62% higher
than in 1990, 28% higher than in 2005, and 2% above 2022 levels, as
indicated in the lower panel of Fig. 1.2 [7].

Reaching net zero requires a profound transformation of the global energy
system. This transformation extends beyond simple energy substitution and
demands a fundamental rethinking of how energy is produced, stored, and
traded across interconnected sectors. The central difficulty arises from the
continued dependence on fossil fuels, which account for the majority of energy-
related emissions. Decarbonizing energy supply through large-scale deployment
of renewable and sustainable sources is therefore essential to achieving this goal
[8]. Such a transformation entails both the reduction of carbon emissions and
the restructuring of energy infrastructure, with renewable sources serving as
the foundation [9].

Net-zero emissions are achieved when the release of greenhouse gases by
human activity is balanced by their removal through natural systems or tech-
nological measures [8]. An increasing number of countries, companies, and
international organizations have committed to achieving this target by mid-
century, with some aiming as early as 2030. This shared commitment reflects the
recognition that reducing emissions is essential for limiting global warming and
protecting societies and ecosystems. The importance of net zero reaches beyond
the environment: economically, it stimulates innovation in green technologies,
reduces fossil fuel volatility, and creates new employment opportunities [10].
Geopolitically, it reduces pressures linked to energy security. Socially, it protects
health by reducing pollution and strengthening vulnerable communities against
climate impacts. Air pollution from fossil fuel combustion causes respiratory
and cardiovascular diseases as well as premature deaths, especially in urban
settings. Reducing dependence on fossil fuels therefore delivers immediate
public-health benefits, promotes cleaner urban environments, and supports
long-term sustainability [11]. Together, the environmental, economic, and social
benefits make net-zero emissions central to shaping a just and sustainable global
future.

As stated earlier, the move toward net-zero emissions depends heavily on
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Note: This chart is taken from [15].

renewable energy systems that harness resources such as solar, wind, water,
biomass, and geothermal energy to produce electricity without greenhouse gas
emissions. Since the power sector accounts for the majority of global emissions,
renewables remain central to decarbonization and sustainable development [9].
Over the past two decades, significant progress in solar and wind technologies
has driven rapid cost declines, photovoltaic electricity costs have fallen by
more than 80% since 2010, and substantial performance gains, making both
technologies cost-competitive and widely adopted [12, 13, 14]. According to the
International Energy Agency’s latest outlook, renewable electricity generation
is set to almost double by 2030, raising its share of global power supply to
nearly 45% [15]. As shown in Fig. 1.3, hydropower will remain the largest
contributor, but the expansion is increasingly dominated by solar photovoltaics
and wind (both onshore and offshore,) reflecting the accelerating global shift
toward variable renewable energy. This rapid growth, while vital for achieving
climate goals and enhancing energy security by reducing dependence on fossil
fuel imports, also intensifies the need for flexibility and energy storage solutions
capable of maintaining system reliability under high variable renewable energy
penetration.

Building on the rapid expansion of variable renewable energy outlined above,
modern power systems require flexibility, i.e., the capability to adjust generation,
demand, or power flows across seconds to seasons in response to variability and
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forecast uncertainty [16, 17]. The literature identifies three principal flexibility
classes [16]: (i) energy storage that absorbs surplus generation and supplies
energy and ancillary services across multiple time scales; (ii) fast-ramping
generators (e.g., hydropower, open-cycle gas turbines, reciprocating engines)
that provide operating reserves and ramping capability; and (iii) demand
response that shifts, shapes, or sheds loads to align consumption with renewable
availability [18]. Portfolios combining these options mitigate net-load ramps,
reduce curtailment, and lower integration costs at high variable renewable
energy shares [19].

Among available options, the Energy Storage System (ESS) provides unique,
multi-service value: fast frequency control, operating reserves, congestion re-
lief, intertemporal energy shifting, and capacity adequacy, thereby enhancing
reliability and enabling efficient market operation [20, 21, 22, 23]. This role
strengthens as wind and solar expand toward supplying a large share of elec-
tricity by mid-century [24] and as electrification (e.g., electric vehicles) raises
system demand [25]. Bloomberg New Energy Finance reports that the fossil
share in the global generation mix has begun to decline and could fall to ∼31%
by 2050, while renewables rise above 62% [26]. Consistent with this shift,
Bloomberg New Energy Finance projects a surge in grid-scale storage from
9 GW/17 GWh in 2018 to about 1,095 GW/2,850 GWh by 2040, an expansion
of more than two orders of magnitude and requiring roughly $662 billion in
investment, driven in part by battery cost declines exceeding 80% since 2010
(Fig. 1.4) [27]. Together with other flexibility resources, energy storage facilities
thus become central to integrating high variable renewable energy shares while
maintaining reliability and economic efficiency [19, 22].

The development of energy storage technologies has advanced considerably,
from behind-the-meter devices to grid-scale assets, with further details discussed
in the next chapter. These technologies support the integration of intermittent
renewable energy and provide services such as energy arbitrage, capacity reserve,
uninterrupted power supply, and bulk power management. They also supply fast
frequency control and synthetic inertia (sub-second response), load-following
and ramping reserves (minutes to hours), intraday energy shifting and peak
shaving (multi-hour), congestion relief and transmission, distribution deferral,
voltage/reactive support, black start, and resource adequacy [21, 28, 29]. The
feasible service set depends on technical characteristics, including response
time and ramp rate, energy-to-power ratio (duration), round-trip efficiency,
self-discharge, cycle life, depth-of-discharge, and cost—so that short-duration
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Figure 1.4: Prediction of the worldwide deployment of ESSs by 2040.
Note: This chart is taken from [27].

technologies excel at power-quality and frequency services, while long-duration
options enable multi-hour to multi-day shifting, curtailment reduction, and
firm capacity provision [20, 23, 22].

Given these characteristics, bulk energy storage1, with capacities above sev-
eral tens of megawatts and multi-hour duration, provides system-level benefits
essential for integrating high shares of variable renewable energy. It enables
energy shifting from surplus periods to peak demand, reduces curtailment,
smooths large net-load ramps, and supports adequacy during prolonged renew-
able shortfalls. In addition, it supplies operating reserves, frequency control, and
congestion relief that can postpone network reinforcements. Mature and emerg-
ing bulk technologies include pumped-hydro energy storage, Compressed Air
Energy Storage (CAES), Liquid Air Energy Storage (LAES), pumped-thermal
electricity storage, and large flow- and lithium-ion battery plants. Achieving
the storage scale required under high renewable pathways therefore depends on
deploying these bulk technologies alongside shorter-duration assets to ensure
intertemporal flexibility and maintain system adequacy throughout the energy
transition [30].

1Bulk energy storage facilities commonly refer to storage facilities with charge/discharge
power capacities exceeding several megawatts (e.g., 50 MW) and durations of four hours or
more [30].
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Figure 1.5: Energy arbitrage practice leveraging electricity price fluctuations.
Note: This figure is taken from [32].

As discussed earlier, a wide spectrum of energy storage technologies exists,
encompassing both emerging and mature solutions that collectively strengthen
grid reliability and enhance system efficiency. These systems are instrumental
in accommodating the growing shares of variable renewable energy sources such
as wind and solar. However, as the penetration of these intermittent resources
increases, market price volatility intensifies due to their variable and uncertain
generation patterns [31]. In this evolving context, bulk ESSs can assume an
active role in energy markets, transforming from passive grid assets into market
participants and, in doing so, improving their economic viability and investment
attractiveness.

In current deregulated electricity markets, large-scale ESSs can receive com-
pensation through various channels such as ancillary service payments, capacity
payments, and electricity trading through energy arbitrage. The primary mode
of participation for bulk ESSs in electricity markets revolves around energy
arbitrage. This strategic practice involves procuring and storing energy during
periods of low electricity prices, subsequently selling and discharging the stored
energy back into the grid during peak-price periods, as illustrated in Figure 1.5.
The widespread deployment of ESSs in electric grids is contingent upon the at-
tainment of attractive revenue streams, primarily derived from market services
such as energy arbitrage and ancillary services, which are categorized as external
factors. Additionally, facility-related factors, including the round-trip efficiency
of ESSs, play a significant role in shaping their investment appeal. These
facility-related factors, also known as internal factors, influence the optimal
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daily, weekly, and yearly operation strategies of ESSs, thereby impacting their
market revenue potential. As elaborated earlier, there is a consensus within
the industry that no ideal ESS exists, excelling in all internal facility factors.
These factors encompass various parameters, including nominal capacity range,
rated discharge duration, round-trip efficiency, lifetime, technology maturity,
and geological constraints, among others.

Overall, the external and internal factors discussed above jointly shape the
revenue streams of bulk ESSs. As a result, the operation of large-scale storage
assets faces pressing challenges in energy markets, particularly under increas-
ing uncertainty, stronger price volatility, and evolving market rules. These
challenges directly influence the bankability of storage investments and moti-
vate the need for decision-making tools that support reliable and economically
meaningful operation.

In this thesis, the problem is positioned as a market-driven optimization task:
bulk storage operation is determined by the interaction between market revenues,
operational constraints, and uncertainty. Accordingly, decision-making models
are developed and evaluated for three representative settings: (i) risk-aware
dispatch of grid-scale batteries in short-term electricity markets, (ii) market-
oriented dispatch of an integrated long-duration storage concept that couples
electricity and Liquefied Natural Gas (LNG) through cryogenic processes, and
(iii) strategic operation of a hybrid storage plant that interacts with market
clearing as a price-making participant. This positioning enables contributions
to both operational optimization methods and evidence-based insights on the
economic potential of emerging storage technologies, as will be detailed in the
subsequent section.

Scope Clarification

The thesis focuses on bulk energy storage from the perspective of energy
arbitrage within wholesale electricity markets, while other services remain
outside its analytical scope.

Scope and boundaries of the thesis. To keep the analysis focused and
reproducible, the following scope boundaries are adopted:

• Market products: Participation is primarily modeled through energy
arbitrage and market bidding. Ancillary services, reserves, and capacity
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mechanisms are not explicitly co-optimized in the core models, although
several of the studied technologies could provide such products.

• Decision layers: The emphasis is placed on operational and strategic
decision-making, rather than long-term capacity expansion planning. Eco-
nomic implications are assessed through operational profits and feasibility
indicators.

• Uncertainty modeling: Uncertainty in market-relevant variables is
represented to the extent required to support risk-aware and strategic
decision-making, while maintaining computational tractability and en-
abling out-of-sample evaluation.

• Technology fidelity: The proposed models target the stable design
operating regime of the selected technologies. Accordingly, thermo-based
storage concepts are represented through dispatch-level constraints and
design-point efficiencies, while detailed thermodynamic modeling and
off-design behavior are kept outside the scope. This boundary supports a
consistent market-oriented analysis and avoids introducing physical detail
that would require technology-specific calibration beyond the aims of the
thesis.

1.2. Research Questions and Challenges of Bulk En-
ergy Storage Integration in Energy Markets

This thesis investigates the arbitrage potential of bulk energy storage facilities
and addresses the main challenges associated with their operation in energy
markets. The analysis focuses on the dispatch strategies of both mature and
emerging bulk storage technologies, specifically lithium-ion batteries, LAES,
and hybrid Compressed Air-Liquid Air Energy Storage (CAES-LAES) systems.
Lithium-ion batteries represent the most established electrochemical technology,
accounting for over 85% of installations in 2016 [33], due to their maturity,
high round-trip efficiency, and applicability across scales ranging from behind-
the-meter to grid-level systems. In parallel, this work examines two advanced
thermo-mechanical technologies, LAES and hybrid CAES-LAES, as competi-
tive alternatives to pumped hydro and conventional underground CAES. LAES
provides key advantages such as scalability, absence of geological constraints,
cost-effectiveness, and multi-service capability [34]. The hybrid CAES-LAES
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concept mitigates the cost and scalability limitations of above-ground CAES
while enhancing flexibility and efficiency [35]. These characteristics have inten-
sified research and industrial interest in thermo-mechanical storage solutions.
The following subsections outline the principal challenges in optimizing the
dispatch of these bulk storage technologies in wholesale energy markets and
define the corresponding research questions that guide this thesis.

1.2.1 Market Dispatch of Grid-Scale Lithium-Ion Batteries

Battery storage systems, spanning from grid-scale installations to small-scale
home setups, have become an integral component of today’s electricity industry.
They play a pivotal role in facilitating the integration of renewable energy
sources, enhancing overall system flexibility, providing rapid-response power
quality services, and deferring the need for expansion planning. Despite their
technological advancements and economies of scale, the widespread adoption of
battery storage systems in existing electric grids continues to face significant
barriers, primarily due to high investment costs [36]. A critical aspect influenc-
ing the revenue streams of battery storage systems, particularly electrochemical
batteries like lithium-ion, is their degradation over time [37]. This degrada-
tion primarily stems from the diverse discharging and charging cycles they
undergo, which diminishes their lifespan and impacts their efficiency. There-
fore, implementing appropriate strategies to mitigate degradation is imperative
[38]. Several comprehensive studies have investigated the degradation and
aging mechanisms of lithium-ion batteries, one of the most widely utilized
electrochemical batteries [38, 39].

A complementary approach to promoting battery deployment is to optimize
their revenue potential by leveraging the services they provide to the grid.
Energy arbitrage, accomplished through market bidding, stands out as a key
strategy offering promising economic returns for battery owners. Energy arbi-
trage, as depicted in Figure 1.5, involves charging and discharging at different
times of the day to capitalize on price fluctuations in the electricity market [40].
Under increasing renewable penetration, however, short-term prices become
more volatile and more uncertain, which amplifies arbitrage opportunities but
also exposes the operator to low-profit realizations. Consequently, the key
operational difficulty is not only to maximize expected profit, but to design a
dispatch strategy that protects the battery against low-profit outcomes that
arise from price uncertainty. In particular, price forecast errors translate into a
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dispersed profit distribution, where downside outcomes matter for investment
viability.

The literature has addressed risk management in battery bidding using
several paradigms, including Conditional Value-at-Risk (CVaR) [41], robust
optimization [42], distributionally robust optimization [43], and information
gap decision theory [44]. These approaches provide valuable tools, yet they
often emphasize either tail events or worst-case protection, which can lead to
overly conservative schedules or require risk parameters that are difficult to
interpret for market participants. In contrast, stochastic dominance criteria
allow the operator to express risk preferences directly at the level of the profit
distribution.

Among these, Second-order Stochastic Dominance (SSD) provides a coherent
benchmark-based mechanism that can protect against downside profit outcomes
while retaining diversification benefits. However, two practical obstacles still
limit its routine use in market dispatch models for grid-scale batteries. First,
SSD requires a benchmark specification, and the literature lacks a generic and
well-justified procedure to characterize the feasible benchmark region. When
the benchmark lies outside this feasible set, the model becomes infeasible or
yields economically meaningless outcomes. Second, even within the feasible
region, existing works provide limited guidance on how an operator should
select a meaningful benchmark, although benchmark choice largely determines
the risk–profit trade-off.

These observations motivate the use of stochastic dominance as a
distribution-based way to represent risk preferences in battery arbitrage. In
particular, SSD offers a benchmark-oriented mechanism to protect the operator
against downside profit outcomes under uncertain prices. However, the
literature still lacks practical guidance on benchmark feasibility and benchmark
selection in SSD-constrained battery dispatch. The following research gaps
therefore remain:

(i) Beyond the risk-based bidding structures reviewed above [41, 42, 43,
44], only limited research has used SSD to express the operator’s risk
preference directly at the level of the profit distribution. The SSD criterion
provides a coherent benchmark-oriented way to hedge against uncertainty
by requiring the battery’s profit distribution to dominate a reference
benchmark. However, the existing SSD literature does not provide a
generic and well-justified procedure to characterize the feasible set of
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benchmarks in SSD-constrained dispatch problems. When the benchmark
lies outside this feasible set, the model becomes infeasible or yields
economically meaningless outcomes. For instance, in [45], one of the few
works applying SSD-constrained optimization, the benchmark-feasibility
reasoning is not generalized into a reproducible procedure. A structured
derivation of the feasible benchmark region therefore remains necessary
for practical adoption.

(ii) Even when benchmark feasibility is guaranteed, the final benchmark choice
has received limited attention, although it largely determines the risk–
profit trade-off. Prior studies [45, 46, 47] evaluate SSD performance under
selected benchmark values, but they do not propose a practical method to
identify a meaningful compromise benchmark within the feasible region.
As a result, benchmark selection remains ad hoc, which can weaken the
risk-management value of the SSD constraint in operational decision-
making.

Based on these gaps, this thesis formulates the first research question to
develop a structured risk-aware dispatch framework for grid-scale lithium-ion
batteries under uncertain and volatile electricity prices.

Research Question 1

How can we design a risk-aware market dispatch strategy for grid-scale
lithium-ion batteries to protect them against uncertain and volatile elec-
tricity prices?

1.2.2 Market Dispatch of Advanced LAES Facilities

In addition to lithium-ion batteries, several specialized storage systems are de-
signed for long-duration, large-scale power applications. These include pumped
hydroelectric storage, CAES, and LAES systems. Unlike electrochemical bat-
teries, pumped-hydro storage, CAES, and LAES do not exhibit intrinsic elec-
trochemical capacity fade with cycling; instead, their long-term performance
is primarily governed by equipment aging and wear (e.g., rotating machinery,
valves, heat exchangers) and is managed through maintenance and refurbish-
ment. Among these technologies, pumped hydroelectric storages are recognized
as high-efficient and cost-effective bulk storages that can only be built in specific
locations with favorable geological features, though most viable areas have
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been already erected and exploited. On the other hand, compressed air energy
storage is another fairly efficient technology that demands: 1) gigantic above-
ground air storage tanks, requiring significant investment costs, or 2) natural
underground caverns that charge geographical limitations [48].

The foregoing obstacles have drawn increasing attention to LAES2, that
lends itself well to bulk-scale applications. Since liquefied air with high energy
density is leveraged as the working fluid in the LAES facility, considerably
smaller storage tanks are required, resulting in reduced initial investment costs.
Furthermore, the LAES is restricted to no geographical or geological constraints,
making it more amenable to industrialization and grid integration purposes
[49]. Also, similar to CAES, LAES is deemed a potentially suitable asset for
sector coupling or integrating multiple energy carriers [34].

Despite the benefits mentioned above for the LAES [34], its ongoing deploy-
ment in energy networks [50], and evolving research, the comparatively low
efficiency of standalone LAES facilities is the main barrier to their widespread
installation in power and energy networks. Although joint dispatching of LAES
alongside renewable resources and other technologies like air separation units
increases the system’s flexibility [51], the LAES efficiency is not affected by
this coordinated operation. Therefore, improving LAES round-trip efficiency
has emerged as a crucial area of research, leading to exploring four general
pathways and directions within this domain [34, 50].

The first pathway involves integrating LAES with external cold sources, such
as the cold released during LNG regasification process to aid air liquefaction
during the charging mode [52]. The second strategy involves incorporating
external heat sources, like co-firing natural gas with regasified air during
discharging [53]. Third, integrating renewables like geothermal [54] and solar
thermal [55] systems with LAES can improve power generation efficiency in
LAES. Finally, hybridizing LAES with other energy storage technologies, such
as pumped thermal energy storage, by sharing/replacing certain components
or providing heat and cold sources, represents another promising avenue to
enhance the efficiency of LAES [56]. While each pathway offers its specific
advantages, significant focus has been placed on harnessing both external cold
and heat sources to enhance LAES efficiency within charging and discharging
modes [34, 50]. In pursuit of this objective, the integration of LAES with the
LNG regasification process has emerged as a notable area of research. This

2LAES is a form of “cryogenic energy storage”.
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integration holds considerable potential, as highlighted in [57, 52, 49]. In
this approach, (i) during LAES charging, the released cold energy from the
LNG regasification is further leveraged in the air liquefication process, and
(ii) during LAES discharging, the regasified air and natural gas are co-fired
to power a gas turbine and generate electricity. As a result, by leveraging
the first two pathways mentioned earlier, the performance of the LAES can
be simultaneously enhanced, potentially leading to a competitive performance
in the energy storage landscape. While thermodynamics and functionality of
Liquid Air Energy Storage coupled with LNG regasification (LAES-LNG) have
been examined and validated in a broad body of literature [57, 52, 49], the
following have remained open issues so far:

(i) The optimal operation strategy of the LAES-LNG facility toward a cost-
effective dispatch remains unexplored in the existing literature. Assuring
the facility’s financial feasibility requires a well-laid mathematical pro-
gramming setup that has not been presented so far.

(ii) In the context of the LAES-LNG facility, the trading platform involving
both electricity and LNG as energy carriers remains uncovered in the
relevant literature. While previous works in power system studies have
extensively addressed the electricity market, studies involving LNG have
primarily focused on its utilization as a natural gas provider [58, 59]
or its integration into the natural gas market/network [60, 61], without
delving into LNG market setups. Consequently, there is a notable gap in
the literature concerning the LNG market as a fundamental component
of LNG provision. Additionally, the optimal daily operation of the
LAES-LNG facility requires a proper market-oriented sequence-aware
decision-making framework in LNG and electricity markets that are
usually cleared at different times of the day, which also has not been
addressed before.

(iii) Although some economic indicators have been examined for the
LAES-LNG facility in [57, 52, 49], the economic viability of the facility
can not be assessed without a (i) well-laid optimal operation strategy for
the LAES-LNG facility and (ii) proper market-oriented sequence-aware
interaction with electricity and LNG markets as the involved carriers. In
this regard, a proper economic feasibility study should be conducted to
assess the LAES feasibility and its long-term potential for deployment
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in energy markets. Evaluating the payback period, which serves as a
key metric for assessing economic feasibility, is an essential initial step
in the process of LAES commercialization to determine the timeframe
for recovering investment costs. It is worth stressing that the payback
period has not been analyzed for the LAES-LNG facility in [57, 52, 49].
The payback period of the LAES is influenced by uncertain investment
costs and annual profits, with the former attributed to the project’s
complex composition and susceptibility to market fluctuations, inflation,
technological advancements, and unforeseen events, while the latter
is affected by the high price volatility of the involved energy carriers.
Earlier studies neglected these sources of uncertainty and treated them
as fixed values, leading to a deterministic payback period analysis.

Addressing these open challenges, the second research question in this thesis
is envisioned to develop an integrated framework that links the operational
strategy of the LAES-LNG facility with market-based decision-making to ensure
its cost-effective participation under current market conditions.

Research Question 2

How can an optimal market-oriented dispatch framework be developed for
the integrated LAES-LNG facility to ensure cost-effective operation under
current market designs?

1.2.3 Strategic Market Dispatch of Hybrid CAES-LAES Sys-
tems

Following the progress in thermo-mechanical storage concepts such as
LAES-LNG, recent research has shifted toward hybrid configurations that
CAES and LAES to exploit their complementary advantages in efficiency and
cost. Conventional CAES is widely recognized for its cost-effectiveness at large
scales; however, underground storage depend on suitable salt caverns, which are
geographically limited. In regions lacking such formations, above-ground CAES
and cryogenic systems like LAES offer feasible alternatives. Above-ground
CAES employs high-pressure steel vessels, but the low energy density of
compressed air leads to large tank volumes and high storage costs, limiting
capacity compared with underground CAES [62]. In contrast, standalone LAES
stores energy in liquid form with much higher density, allowing large-scale
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storage in low-pressure cryogenic tanks at significantly lower cost. Nonetheless,
cryogenic systems generally exhibit lower round-trip efficiency than CAES
[63]. To overcome these trade-offs, research has increasingly focused on hybrid
CAES-LAES configurations that integrate the cost advantage of cryogenic
storage with the high efficiency of CAES, enabling scalable, efficient, and
geographically unconstrained long-duration storage solutions [35, 64, 65, 66].

In line with this concept, the hybrid CAES-LAES design integrates both
storage forms to deliver an efficient and scalable solution free from geological
limitations. The hybrid plant features: (i) an LAES facility equipped with
a high-capacity cryogenic tank capable of storing large volumes of energy,
(ii) a CAES unit utilizing a cost-effective above-ground high-pressure tank
with lower energy capacity, and (iii) machinery that enables the conversion
between liquid air and compressed air storage. This design aims to create a
scalable energy storage solution without geological constraints by combining
the cost-effectiveness of LAES with the high efficiency of above-ground CAES
units. The analyses in the previous subsections adopt a price-taking perspective
for bulk storage participation. For the hybrid CAES-LAES configuration, we
move beyond this assumption and allow strategic (price-making) behavior:
the plant optimizes coordinated offer/bid decisions while accounting for their
effect on market clearing. This extension captures the economic reality of
large storage assets that can shape prices and dispatched volumes, and it
motivates a Stackelberg-type dispatch model aimed at improving profitability
under look-ahead market designs.

Building on this strategic (price-making) perspective, and notwithstanding
prior examinations and validations of the hybrid plant’s thermo-mechanical
design, particularly the machinery enabling bi-directional conversion of air
storage forms [35, 64, 65], the following modeling and market-design challenges
remain open:

(i) Although the economic feasibility of a hybrid CAES-LAES plant has
been analyzed using an algorithmic approach in [64], the optimal dispatch
strategy for such a plant has yet to be addressed. Effective dispatch
requires coordinating internal energy transfers (via machinery) with the
distinct operational states of each storage facility.

(ii) Despite extensive studies on the strategic behavior of energy storage
facilities [67, 68, 69], no prior research has addressed: (i) the look-ahead
strategic dispatch of a hybrid CAES-LAES plant in electricity markets,
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which requires adapting the general dispatch formulation to a Stackelberg
game where the plant submits coordinated offers/bids to the market;
(ii) the impact of varying look-ahead window lengths (on a daily basis)
on the social welfare constituents3 across all entities in the electric grid
[69, 70, 71].

(iii) bi-level optimization approaches frequently rely on numerous integer
variables, resulting in significant computational burdens. However, the
potential for leveraging deep learning network to warm-start these integer
variables for the solver remains unexplored in the context of bi-level pro-
gramming. While warm-starting techniques4 have proven to be effective
in various power system problems [72, 73, 74], the application of deep
learning to warm-start a large number of integer variables in a bi-level
setup remains uncharted.

To overcome the above limitations, the final research question of this thesis
seeks to underscore the importance of an integrated modeling framework that
links coordinated operation, strategic bidding behavior, and computational
scalability for hybrid CAES-LAES systems.

Research Question 3

How can a strategic market dispatch framework be developed for the
hybrid CAES-LAES plant to achieve coordinated operation under look-
ahead market designs while improving computational efficiency through
learning-based warm-start techniques?

1.3. Research Contributions

As part of the efforts to address the research questions outlined above, this
section summarizes the principal contributions of the thesis corresponding to
Research Questions 1–3. First, a coherent risk-aware day-ahead and intraday
market dispatch framework is developed for grid-scale lithium-ion batteries,
embedding the SSD criterion and introducing a systematic methodology for
feasible benchmark selection. This contribution directly addresses Research
Question 1 and is detailed in Section 1.3.1. Next, to tackle Research Question 2,

3Suppliers’ expected profit and consumers’ expected surplus.
4Warm-starting {continuous variables, integer variables, active constraints}.
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an integrated market-oriented dispatch model is proposed for the LAES-LNG
facility, as discussed in Section 1.3.2. The model captures sequence-aware
participation across electricity and LNG markets and enables comprehensive
assessment of the facility’s economic feasibility under uncertainty. Finally, Sec-
tion 1.3.3 establishes a strategic (price-making) look-ahead dispatch framework
for a hybrid CAES-LAES plant, formulated as a bi-level Stackelberg problem
and enhanced with learning-based warm-start techniques to improve compu-
tational scalability. This contribution provides a comprehensive response to
Research Question 3.

1.3.1 On a Risk-Aware Dispatch of Lithium-Ion Batteries

Addressing Research Question 1, we develop a coherent risk-aware dispatch
framework for grid-scale lithium-ion batteries operating in day-ahead and in-
traday markets. The framework advances beyond conventional risk treatments
by embedding the SSD criterion within a stochastic bidding formulation. The
SSD-constrained model enables the storage operator to articulate risk pref-
erences through a predefined profit benchmark and to enforce decisions that
probabilistically dominate this benchmark under uncertainty, thereby aligning
operational choices with explicit performance expectations.

The adoption of SSD is motivated by its coherence properties [75] and its
intuitive interpretation for market participants. Unlike tail-focused measures
such as CVaR, which emphasize extreme-loss aversion, SSD evaluates the entire
profit distribution relative to a benchmark and preserves diversification benefits
that incoherent metrics, such as value-at-risk, fail to guarantee. In the context
of battery dispatch, this property yields operational strategies that remain
economically sound across a wide range of price trajectories while still mitigating
downside risks relative to an operator-defined target.

A key challenge in implementing SSD lies in the rational selection of the
profit benchmark. To address this, a two-stage procedure is introduced that
combines a generic derivation of the feasible benchmark region with a preference-
informed screening process. First, the admissible set of benchmarks is analyti-
cally characterized to ensure feasibility and avoid ill-posed solutions. Second,
candidate benchmarks are sampled from this region and assessed through an
out-of-sample performance analysis using a regret-based metric, defined as the
shortfall relative to the hypothetical best-informed action [76]. This evaluation
jointly considers profitability and regret to balance realized performance with

19



Introduction

aversion to hindsight loss. The final benchmark is selected using the VIKOR
multi-criteria ranking method, yielding a transparent and reproducible rule for
benchmark determination.

Embedded within a day-ahead and intraday co-optimization, the resulting
SSD-based bidding framework produces risk-consistent and market-feasible
schedules that enhance profit distribution relative to the selected benchmark
without excessive conservatism. Numerical experiments demonstrate that
the model effectively captures the operational dynamics of battery arbitrage
under price uncertainty, providing dispatch strategies that remain robust to
scenario variations while preserving economic opportunity. These developments
collectively offer a practical and implementable response to Research Question 1,
establishing a coherent risk-aware framework and a principled methodology for
feasible benchmark selection in battery market bidding. The development of
this model has resulted in the following contribution:

• H. Khaloie, J. Faraji, F. Vallée, C. S. Lai, J.-F. Toubeau, and L. L. Lai,
“Risk-Aware Battery Bidding With a Novel Benchmark Selection Under
Second-Order Stochastic Dominance,” IEEE Transactions on Industry
Applications, vol. 59, no. 3, pp. 3009–3018, May–June 2023.

1.3.2 On an Integrated Operation of the LAES-LNG Facility

As part of the efforts to tackle Research Question 2, we propose an integrated,
market-oriented dispatch framework for the LAES-LNG facility. The study
moves beyond the thermodynamic and design-oriented analyses commonly
found in the literature [57, 52, 49] by formulating a mathematical dispatch
model that captures the operational behavior of the LAES-LNG system within
a market-based context. This framework enables a realistic evaluation of the
facility’s participation in both the electricity and LNG markets, bridging the
gap between conceptual design and market-driven operation.

The first step in this development establishes a comprehensive mathematical
formulation for the LAES-LNG facility applicable to power system analyses.
While previous studies primarily focused on configuration and thermodynamic
efficiency, this model explicitly represents the operational decisions and in-
tertemporal energy exchanges between charging and discharging stages. By
treating the LAES-LNG system as a dispatchable asset, the formulation aligns
its operation with short-term market optimization problems and multi-energy
coordination studies.
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Building on this foundation, a day-ahead dispatch model is designed to rep-
resent the facility’s simultaneous participation in LNG and electricity markets.
To reflect real-world conditions, the formulation captures the sequence-aware
structure of these markets, recognizing that their clearing times differ. The
resulting two-stage stochastic optimization accounts for market-price and opera-
tional uncertainties, enabling the LAES-LNG facility to coordinate its bids and
offers across both markets while maintaining technical feasibility. This approach
introduces a practical short-term LNG trading representation into power system
studies, addressing a gap that has persisted in the existing literature.

Finally, the long-term economic viability of the LAES-LNG concept is eval-
uated through a probabilistic feasibility analysis centered on the payback period.
In contrast to earlier deterministic assessments, this analysis incorporates uncer-
tainties in both investment cost and annual profit, reflecting market volatility
and financial variability. The stochastic framework thus provides a more realistic
and transparent measure of the facility’s financial performance and deployment
potential, marking the first probabilistic payback-period analysis conducted for
a thermo-mechanical storage system under uncertainty.

Collectively, these efforts deliver a coherent and implementable response
to Research Question 2, establishing a sequence-aware market framework and
a probabilistic evaluation approach for the LAES-LNG facility. As a result of
constructing this model, the research introduces the following contribution:

• H. Khaloie and F. Vallée, “Day-Ahead Dispatch of Liquid Air Energy
Storage Coupled With LNG Regasification in Electricity and LNG Mar-
kets,” IEEE Transactions on Power Systems, vol. 39, no. 3, pp. 5177–5190,
May 2024.

1.3.3 On a Strategic Dispatch of Hybrid CAES-LAES Systems

While moving forward to address Research Question 3, we put forth a strategic,
look-ahead dispatch framework for a hybrid CAES-LAES system. The study
advances beyond design-oriented analyses by formulating an operational model
that integrates technical coordination and strategic decision-making within
day-ahead electricity markets. The hybrid facility is modeled as a unified
price-making entity capable of influencing market-clearing outcomes through
coordinated bids and offers from its CAES and LAES subsystems.

The first step establishes a detailed mathematical representation of the
hybrid plant, capturing its internal energy exchanges and conversion path-
ways between compressed air and cryogenic forms. This formulation enables
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coordinated operation that combines the cost advantage of LAES with the
higher efficiency of CAES, creating a scalable and geographically unconstrained
long-duration storage solution. By explicitly modeling shared components and
conversion machinery, the framework links thermo-mechanical interactions with
market-driven dispatch decisions.

Building upon this foundation, a strategic market dispatch model is for-
mulated in which the hybrid plant acts as a leader in a bi-level Stackelberg
game, anticipating market responses to its decisions. This look-ahead structure
allows the facility to evaluate the impact of different forecasting horizons on
system-wide economic indicators, including producer profits and consumer
welfare. The formulation departs from conventional price-taking assumptions,
offering a realistic representation of how large storage assets may strategically
shape electricity market outcomes to their benefit.

To address the computational complexity of the bi-level problem, a learning-
assisted optimization scheme is introduced. A deep learning model generates
high-quality initial solutions for the mixed-integer variables of the market-
clearing problem, effectively warm-starting the solver and accelerating conver-
gence. This integration substantially improves scalability, allowing the model
to be applied to larger test systems while maintaining numerical precision.
The learning framework builds on a comprehensive review of machine learning
applications in Optimal Power Flow (OPF), which informs the methodological
integration of learning-based initialization within power system optimization.

Together, these developments provide a coherent and scalable response to
Research Question 3, establishing a Stackelberg-based strategic dispatch model
for hybrid CAES-LAES systems enhanced with deep learning techniques for
computational efficiency. The development of this framework and its supporting
methodological review have resulted in the following contributions:

• H. Khaloie, A. Stankovski, B. Gjorgiev, G. Sansavini, and F. Vallée,
“Hybrid Energy Storage Dispatch: A Bi-Level Look-Ahead Learning-
Assisted Model,” IEEE Transactions on Energy Markets, Policy and
Regulation, vol. 3, no. 3, pp. 376–392, Sept. 2025.

• H. Khaloie, M. Dolányi, J.-F. Toubeau, and F. Vallée, “Review of
Machine Learning Techniques for Optimal Power Flow,” Applied Energy,
vol. 388, p. 125637, 2025.
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1.4. Thesis Organization

This thesis is organized as follows.

1. Chapter 2 reviews the roles and applications of energy storage, introduces
a taxonomy of storage technologies, and discusses their participation in
wholesale electricity markets, with emphasis on large-scale technologies
relevant to this thesis.

2. Chapter 3 presents the optimization foundations, including deterministic
and stochastic formulations, multi-level models, optimality conditions,
and mathematical programs with equilibrium constraints, together with a
short overview of machine learning techniques for large-scale optimization.

3. Chapter 4 develops a market dispatch framework for grid-scale lithium-
ion batteries, compares risk-neutral and SSD-constrained bidding models
in day-ahead and intraday markets, and evaluates the impact of risk
attitudes and benchmark selection on profits and regret.

4. Chapter 5 investigates an integrated LAES-LNG system, formulates a
two-stage stochastic day-ahead dispatch model for electricity and LNG
markets, and assesses economic feasibility through a probabilistic payback
period under price and demand uncertainty.

5. Chapter 6 studies the strategic look-ahead dispatch of a hybrid
CAES-LAES plant, proposes a bi-level market model cast as a mixed-
integer Mathematical Program with Equilibrium Constraints (MPEC),
and introduces a learning-assisted solution approach that is tested on
transmission networks of different sizes.

6. Chapter 7 concludes the thesis by synthesizing the main findings, re-
lating them to the initial research questions, and outlining prospects
and directions for future research on bulk storage in liberalized energy
markets.
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CHAPTER 2
Energy Storage: Technologies, Applications, and

Market Participation

This chapter reviews the roles of energy storage in modern power systems,
classifies the main technology families, compares their suitability across ap-
plications, and provides focused capsules on lithium-ion batteries, LAES, and
CAES. It then introduces the principal wholesale electricity markets in which
bulk storage participates and frames energy arbitrage as the dominant rev-
enue stream considered in this thesis. The chapter closes by linking technical
capabilities with market needs to motivate the modeling work in Chapters 4–6.

2.1. Energy Storage: Roles and Applications

Although energy storage has been a well-known concept for many decades, its
significance has surged in recent years, largely attributed to the widespread
integration of renewables into power systems. The increasing penetration of
renewable energy sources has introduced challenges related to voltage and
frequency quality, system reliability, and power system security. While power
systems can function adequately without energy storage, cost-effective energy
storage solutions have the potential to enhance network efficiency and reliability,
leading to reduced transmission losses. This shift in perspective transforms
electricity from a just-in-time commodity to a time-adjustable resource. Fur-
thermore, certain storage technologies offer rapid implementation compared
to conventional grid upgrades. Given the current trend of decentralized and
fluctuating electricity production, energy storage can play a pivotal role in
enhancing generation, transmission, and distribution systems.

The relevance of energy storage can be assessed from both technical and
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Table 2.1: Representative power system challenges and indicative storage
responses across timescales.

Timescale Typical Challenge Potential Storage Response

Seconds Power quality and harmonics from
variable renewable output

Fast-response, low-capacity storage inte-
grated with generation or transmission
assets

Minutes Rapid changes in wind or solar gen-
eration affecting frequency

Medium-scale storage systems provid-
ing short-term balancing or frequency
support

Hours Daily demand peaks and electric
vehicle charging

High-power bulk storage to meet short-
term demand peaks or distributed stor-
age at building level

Hours–Days Variability of renewable supply
and weekly demand fluctuation

Large-scale or decentralized storage to
back up renewables and community-
level heat storage

Months Seasonal variation in heat and elec-
tricity demand

Long-duration or inter-seasonal heat
storage coupled with combined heat and
power systems

Note: This table is adapted from [77].

temporal perspectives. Different operational timescales in the grid correspond
to specific challenges that require different storage characteristics. Table 2.1
summarizes representative challenges across timescales and illustrates possible
storage responses. As shown, fast-response storage is required to maintain power
quality and frequency stability on the second-to-minute scale, while bulk storage
with longer discharge duration becomes critical for daily or seasonal balancing.
Although storage represents a highly versatile solution, it should be considered
as part of a broader flexibility portfolio that also includes interconnections,
dispatchable generation, and demand-side response [77].

In general, the key factors driving the popularity of energy storage instal-
lations include fast charging and discharging times, timely energy provision,
and quick installation, giving them an advantage over conventional technolo-
gies. However, less favorable aspects of energy storage include high costs,
self-discharge, and varying energy densities. Various types of energy storage
technologies are under development, with some available commercially and
others still in the developmental stage.

The specific energy and specific power, referring to the energy and power
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available per unit weight, respectively, are crucial considerations for certain
applications of energy storage, as they directly impact the efficiency, perfor-
mance, and feasibility of energy storage solutions in meeting diverse operational
requirements and constraints. Particularly, specific energy denotes the amount
of energy stored per unit mass, while specific power represents the rate at
which energy can be extracted or delivered per unit mass of the storage. There-
fore, based on the energy and power ratio, ESSs are commonly classified into
energy-type and power-type facilities. Energy-type storage typically offers high
energy density but shorter life cycles, encompassing technologies like chemical
energy storage and CAES. On the other hand, power-type storage boasts high
power density, longer life cycles, and high-rate charge and discharge capabilities,
exemplified by electromagnetic and flywheel energy storage.

ESSs offer numerous benefits to power system networks. When considering
their applications, they can be categorized based on their ability to fulfill
specific functions, as summarized in Table 2.2. While historically, most ESSs
targeted bulk or centralized storage for relatively long durations (e.g., pumped
hydroelectric storage) or rapid response (e.g., flywheels), there is a growing
argument for decentralized or distributed storage embedded within distribution
networks or integrated into building electrical systems.

Among the various applications outlined in Table 2.2, energy arbitrage and
renewable energy time shifting are the primary contributors to energy storage
profitability and widespread deployment in power systems. Additionally, ESSs
can generate significant profits by providing voltage regulation and frequency
regulation services [78].

2.2. Taxonomy of Energy Storage Technologies

As discussed in the previous section, ESSs serve a wide range of functions across
various temporal and operational scales in power systems. These diverse roles
are enabled by the existence of multiple storage technologies, each relying on
distinct physical principles to store and release energy. To better understand
their operational characteristics and potential integration into the energy system,
it is essential to classify storage technologies according to the form of energy in
which they store electricity. This section provides a taxonomy of ESSs based on
their underlying conversion processes and highlights representative technologies
within each category.

Electricity, although one of the most versatile and easily transmitted en-
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Table 2.2: Energy and power applications of energy storage.

Energy Applications Power Applications

Energy arbitrage Frequency regulation

Renewable energy time shift Voltage support

Demand charge reduction Small signal stability

Time-of-use charge reduction Frequency droop

T&D∗ upgrade deferral Synthetic inertia

Grid resiliency Renewable capacity firming

T&D∗: Transmission and Distribution. Note: This table is taken from [79].

ergy carriers, remains difficult to store directly in large quantities. Therefore,
electrical energy is typically converted into another form, mechanical, chem-
ical, thermal, or hybrid, before being stored. The stored energy can later
be reconverted into electricity as required [80]. Based on the form of energy
stored and the nature of the conversion mechanism, storage technologies can be
broadly classified as follows. While individual storage classes are often presented
separately, certain technologies combine multiple conversion mechanisms. For
instance, thermo-mechanical systems merge both mechanical compression/-
expansion and thermal management, bridging the boundary between purely
mechanical and thermal categories. The following taxonomy therefore pro-
gresses from single-principle technologies to hybrid systems that integrate two
or more energy forms.

2.2.1 Mechanical Energy Storage

Mechanical storage systems, such as pumped hydroelectric storage and flywheels,
store energy in the form of potential or kinetic energy. This is among the oldest
and most mature classes of energy storage. Pumped hydroelectric storage
operates by transferring water between two reservoirs at different elevations,
converting excess electricity into gravitational potential energy. When electricity
is needed, water is released through turbines to generate power. Despite its
high round-trip efficiency and capability to provide large-scale, long-duration
storage, its implementation is restricted to locations with suitable topographical
conditions. Flywheel systems, on the other hand, store kinetic energy in a
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rotating mass accelerated by an electric motor. They offer rapid response and
high cycle efficiency, making them suitable for power-quality enhancement and
frequency-regulation applications [81].

2.2.2 Electrochemical Energy Storage

Electrochemical systems store energy in chemical bonds and retrieve it through
reversible redox reactions. Batteries are the most prominent representatives of
this class, including lead–acid, sodium-sulfur, lithium-ion, nickel-cadmium, and
flow battery technologies. Lithium-ion batteries, in particular, have achieved
dominant market penetration due to their high energy density, efficiency, and
scalability, representing more than 85% of new energy storage deployments as
of 2016 [82]. Flow batteries, which store energy in liquid electrolytes circulated
through electrochemical cells, provide flexible energy-power decoupling and
long cycle life, making them promising for medium- to large-scale applications.

2.2.3 Electrical Energy Storage

Electrical energy storage encompasses technologies that store energy directly in
electric or magnetic fields. This category includes capacitors, supercapacitors,
and superconducting magnetic ESSs [80, 83]. Capacitors are suitable for
supplying short bursts of power and are commonly used in power electronics
for voltage smoothing. Supercapacitors extend this principle by offering higher
capacitance in compact form, enabling very fast charge-discharge cycles and
long operational lifetimes. Superconducting magnetic ESSs, which store energy
in the magnetic field generated by a superconducting coil, offer extremely fast
response times and high efficiency, making them suitable for transient stability
and frequency control applications [84]. However, their high cost and cryogenic
requirements have limited their large-scale deployment.

2.2.4 Chemical Energy Storage

Chemical storage technologies store energy within molecular compounds that
can be later transformed into mechanical, thermal, or electrical energy. The
most prominent example is hydrogen-based storage, where excess electricity is
converted into hydrogen through electrolysis and subsequently used in fuel cells
or combustion processes [83, 85]. Other chemical carriers, such as ammonia
and synthetic methane, can also serve as long-term storage media and enable
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sector coupling between electricity, heat, and transport. Although hydrogen is a
promising clean energy vector, its large-scale adoption is currently constrained
by the lack of infrastructure, high production costs, safety considerations, and
the energy intensity of conversion processes.

2.2.5 Thermal Energy Storage

Thermal ESSs accumulate energy in the form of heat or cold for later use
in power generation or heating and cooling applications. These systems are
classified into sensible, latent, and thermochemical storage types [83]. Sensible
heat storage involves raising the temperature of a medium such as water or rocks
without phase change. Latent heat storage stores energy during phase transi-
tions, for instance through melting or solidification of phase-change materials.
Thermochemical storage, in contrast, relies on reversible chemical reactions
or sorption processes to store heat at high density and for extended periods.
Thermal ESSs are widely deployed in concentrated solar power plants [86] and
solar tower facilities [87], where stored heat enables dispatchable electricity
generation after sunset.

2.2.6 Thermo-Mechanical Energy Storage

This category serves as a hybrid between the mechanical and thermal families,
using both compression/expansion work and heat management to maximize
efficiency [88]. Prominent examples include CAES, LAES, and pumped thermal
energy storage. CAES uses off-peak electricity to compress air and store it
in underground caverns or high-pressure vessels. During discharge, the air is
heated (either using stored thermal energy or fuel combustion) and expanded
through turbines to produce electricity. LAES follows a similar principle but
stores energy in the form of liquefied air at cryogenic temperatures, which
vaporizes and expands through turbines during discharge. Pumped thermal
energy storage, on the other hand, converts electricity into heat using a heat
pump, stores it in thermal reservoirs, and reconverts it to electricity through
a heat engine when needed. These hybrid systems offer long-duration storage
and potential scalability for large-scale grid integration.

In summary, the taxonomy of energy storage technologies demonstrates the
diversity of physical principles available for storing electricity in alternative
forms. Each category exhibits distinct trade-offs among efficiency, scalability,
energy density, and discharge duration. Understanding these differences is
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fundamental to assessing their suitability for different system-level applications,
which will be analyzed in the following section.

2.3. Suitability of Energy Storage Technologies Across
Different Applications

The preceding section illustrated the wide array of technologies available for
storing electrical energy, each addressing specific operational requirements
within power systems. These technologies not only facilitate the integration of
intermittent renewable sources but also serve functions such as energy arbitrage,
capacity reserves, uninterrupted power supply, and bulk energy management.
Their suitability depends on intrinsic parameters including energy and power
density, charge-discharge rate, round-trip efficiency, cycle life, and overall
cost-effectiveness [80, 89, 90].

An ideal ESS would be cost-effective, highly efficient, energy- and power-
dense, long-lived, and environmentally benign. No single technology, however,
satisfies all these attributes simultaneously; consequently, the choice of storage
system remains application-dependent. Historically, long-duration storage was
almost exclusively provided by large-scale pumped hydroelectric and CAES facil-
ities, both offering mature solutions for multi-hour operation. Recent advances,
however, are expanding this domain toward emerging concepts such as LAES,
pumped thermal, and hydrogen-based storage, which promise comparable capac-
ity with fewer geographical constraints. At the same time, short-duration and
fast-response technologies, including flywheels and supercapacitors, continue to
play an essential role in power-quality and ancillary service applications.

Table 2.3 summarizes key cost and performance indicators across major
storage technologies, while Figure 2.1 maps these technologies in relation to
grid-scale applications. The figure compares discharge duration and power
rating, illustrating where each technology family provides the most technical
and economic value. The horizontal range of each bar denotes achievable
power capacity, while the vertical span represents discharge duration at rated
power. This mapping not only delineates current commercial use cases but also
indicates potential future deployment windows. Although not all technologies
are currently available across the full indicated ranges, their scalability and
continuous cost reductions suggest expanding future applicability.

ESSs with high energy capacity, such as pumped hydroelectric and CAES,
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can mitigate diurnal supply fluctuations by storing surplus wind or solar
energy for later use, thereby extending renewable output beyond daylight hours.
Nevertheless, these mature solutions remain constrained by geographical and
geological limitations. Conversely, technologies such as LAES and pumped
thermal storage exhibit lower siting dependence but require further development
to achieve comparable efficiency and cost competitiveness.

Taken together, Figure 2.1 and Table 2.3 illustrate that the practical
suitability of a storage technology depends on discharge duration, power rating,
efficiency, lifetime, and siting constraints rather than on any single performance
metric. The following observations can be derived.

1. Short-to-medium duration services: Technologies providing seconds-
to-minutes discharge times and high ramp rates, such as flywheels, super-
capacitors, and several battery chemistries, are well suited for high-power
and rapid-response applications, including frequency regulation, synthetic
inertia, and power-quality support. These technologies exhibit high
round-trip efficiencies and operational flexibility across a broad range of
power ratings and are commercially mature for both grid-connected and
behind-the-meter applications [92].

2. Bulk, multi-hour storage: Pumped hydro remains the most established
solution for multi-hour to day-scale storage. Emerging or early-commercial
technologies, including CAES, LAES, and pumped thermal energy stor-
age, expand this operational domain with lower siting constraints and
increasing efficiency potential. Among these, pumped hydro and under-
ground CAES are characterized by relatively modest levelized costs but
are limited by geographical dependence, while LAES and pumped ther-
mal technologies remain under active demonstration and investment [21].
Hydrogen fuel cells, though offering very long-duration potential, face
conversion inefficiencies and infrastructure requirements.

3. Very long-duration and seasonal storage: Storage on the order of
days to months, requiring GWh–TWh-scale capacities, remains largely
undeployed. Addressing these inter-seasonal energy imbalances calls for
advances in thermo-mechanical and chemical storage pathways, such as
large-scale pumped thermal, LAES clusters, and hydrogen or ammonia-
based energy carriers.
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Table 2.3: Comparative overview of energy storage technologies.
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Figure 2.1: Suitability of energy storage technologies across applications: dis-
charge time versus rated power with indicative application zones.

Note: This figure is adapted from [80, 89, 90]. Each block denotes a technology family
(Purple: Mechanical; Red: Chemical; Orange: Thermo-mechanical; Blue: Electrochemical;

Green: Electrical).
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2.4. Technology Capsules

The preceding sections provided a taxonomy and comparative evaluation of
major energy storage families. This section narrows the focus to three technolo-
gies of particular relevance to this thesis, i.e., lithium-ion batteries, LAES, and
CAES. These technologies represent complementary segments of the storage
spectrum, spanning short- to long-duration operation and covering both ma-
ture and emerging solutions. The following subsections outline their physical
principles, technical features, and market relevance, emphasizing parameters
that influence their dispatch modeling in later chapters.

2.4.1 Lithium-Ion Batteries

Lithium-ion batteries have become the dominant electrochemical storage tech-
nology for both stationary and mobile applications. Their rapid rise stems
from significant cost declines, high round-trip efficiency (typically 90–95%), and
superior energy and power density compared with other battery chemistries
[93]. A lithium-ion cell consists of a graphite anode, a lithium-metal-oxide cath-
ode (commonly LiCoO2, LiFePO4, or LiNiMnCoO2), and a liquid or polymer
electrolyte allowing lithium-ion transport during charge and discharge cycles.
During charging, lithium ions migrate from the cathode to the anode through
the electrolyte, while electrons flow through the external circuit; the reverse
occurs during discharge [94]. Figure 2.2 illustrates the internal configuration
and operating principle of a typical lithium-ion cell. It shows the graphite
anode, lithium-metal-oxide cathode, electrolyte, and separator, together with
the direction of lithium-ion movement during charging and discharging. The
external circuit allows electron flow opposite to the ionic motion inside the cell,
thereby completing the electrochemical cycle and enabling reversible energy
conversion.

Grid-scale lithium-ion systems are typically deployed as modular racks
integrated with power-conversion systems and battery management units that
maintain cell balancing, temperature control, and safety [94]. They are well-
suited for frequency regulation, synthetic inertia, and ramp-rate control [94].
When configured for multi-hour discharge, lithium-ion installations also par-
ticipate in energy arbitrage and renewable time-shifting [21]. Nevertheless,
degradation mechanisms such as solid-electrolyte-interface growth and lithium
plating cause gradual capacity fade, limiting economic lifetime to approximately
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5–15 years or 4,000–10,000 cycles depending on depth-of-discharge and thermal
conditions [95].

For real-time balancing, lithium-ion batteries provide very fast response and
ramping, as grid-scale systems typically interface with the grid through power-
electronic converters. As a result, the dominant operational time constant is
the converter and control response, which is in the sub-second range. Reported
frequency-regulation battery energy storage deployments indicate a nearly
vertical power response, with ramping to full output in well under 200 ms, and
the ability to respond to regulation needs within milliseconds [96]. Accordingly,
lithium-ion batteries are technically well-suited for fast balancing products,
provided that state-of-charge and thermal limits remain available for sustained
activation.

Despite these drawbacks, continuous improvements in electrode materials
and recycling processes are reducing environmental impacts and extending
lifespans [97]. Global average battery pack costs have declined from above 1000
$/kWh in 2010 to below 150 $/kWh in 2023 [98]. Consequently, lithium-ion
systems dominate new stationary storage capacity additions, particularly in
fast-responding markets such as California, the United Kingdom, and Aus-
tralia. Their role in this thesis is to represent the benchmark short-duration,
high-efficiency storage technology for market-based operation under stochastic
conditions.

2.4.2 LAES (Liquid Air Energy Storage)

LAES is a thermo-mechanical technology that stores electricity by liquefying
ambient air and recovering its stored exergy during re-gasification and expansion.
It is considered a promising long-duration storage solution due to its scalability,
siting flexibility, and compatibility with industrial waste heat or cold sources.
An LAES facility consists of three main subsystems: charging, storage, and
discharging. Figure 2.3 depicts a typical layout.

During the charging stage, grid electricity drives multi-stage compressors
that pressurize ambient air before delivering it to the liquefaction unit. The
air is cooled through a series of heat exchangers until it reaches cryogenic
temperatures of approximately −196◦C, after which it is stored in atmospheric
liquid air (cryogenic) tanks. The storage subsystem keeps the liquid air at
low pressure and near-boiling temperature, enabling multi-hour to daily-scale
energy retention.
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Figure 2.2: Schematic structure of a lithium-ion cell showing its main compo-
nents and charge-discharge process.

Note: This figure is taken from [99].

The discharge subsystem reverses the process. A cryogenic pump first
raises the pressure of the stored liquid air with minimal energy input due to
the low fluid temperature. The high-pressure liquid then passes through an
evaporator, where it absorbs heat and returns to the gaseous state. The gaseous
air subsequently expands through one or multiple turbine stages to generate
electricity. Throughout this process, the compression heat from charging and
the cold energy released during evaporation are stored in dedicated thermal
reservoirs. These thermal stores improve the round-trip efficiency by pre-
heating or pre-cooling the working fluid as needed. Even with this heat and
cold recovery, the round-trip efficiency of standalone LAES systems typically
ranges between 45% and 55%, which is lower than that of many electrochemical
systems. This has driven increasing interest in hybrid concepts that integrate
LAES with external heat or cold sources such as LNG regasification terminals,
industrial waste heat streams, or cryogenic processes [57, 52, 49], with the
LAES-LNG configuration addressed in detail in Chapter 5.

Beyond energy and efficiency characteristics, the dynamic performance
and response time of LAES are strongly influenced by the underlying thermo-
mechanical plant configuration and operating mode. Vendor-reported character-
istics indicate that, in a standard operating mode, an LAES plant can deliver
power to the grid within less than 5 minutes with an indicative ramp rate of
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Figure 2.3: Schematic layout of an LAES facility.

about 20% P nominal/min [100]. If operated in a spinning/standby configuration,
power delivery within less than 30 seconds and ramping of about 5% P nominal/s
have been reported, which can support slower real-time services when the plant
is maintained in a high-readiness state [100].

The development of LAES may be broken down into a number of turning
points along the way. The origin of storing energy via liquid air can be traced
back to 1977 [101], but it was not until years later that Mitsubishi Heavy
Industries conducted practical research into the notion [102]. With an eye to
storing electricity through liquid air, the University of Birmingham is home
to the first LAES pilot facility, developed between 2009-2012, with power and
energy storage capacities of 350 kW and 2.5 MWh, respectively. In 2018, a 5

MW/15 MWh demonstration-scale LAES facility was launched in Manchester,
leading to the first commercial 50 MW/300 MWh LAES project set for grid
connection in Northern England during 2023-2024 [50, 103]. The project is
being developed by Highview Power, a UK-based company that specializes in
cryogenic energy storage facilities [103]. Highview Power is currently at the
forefront of commercial LAES projects worldwide, leading the way in their
implementation. The company has an extensive portfolio of LAES projects
under development across the globe, including a 200 MW/2.5 GWh facility in
Yorkshire [103], UK, a 50 MW/400 MWh facility in Vermont, USA [104], seven
50 MW/300 MWh facilities in Spain [104], and a 50 MW/600 MWh facility in
Chile [105].

From the perspective of this thesis, LAES serves as a representative thermo-
mechanical long-duration storage technology that offers high energy capacity
and minimal siting restrictions. Its ability to exploit external heat or cold
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sources makes it suitable for sector-coupled configurations, including LNG
terminals and industrial clusters. This flexibility, combined with its multi-
hour discharge capability, positions LAES as a strong candidate for future
bulk storage services and motivates its detailed market-oriented modeling in
subsequent chapters.

2.4.3 CAES (Compressed Air Energy Storage)

CAES is a thermo-mechanical storage technology that converts electrical energy
into compressed air during charging and recovers it through expansion turbines
during discharge [106]. CAES systems rely on the thermodynamic advantages
of storing energy in pressurized air reservoirs and using staged compression and
expansion processes to increase the efficiency and flexibility of power system
operations. Figure 2.4 illustrates the general configuration of an above-ground
CAES facility, showing the charging and discharging subsystems together with
the compressed air storage tanks.

During the charging stage, grid electricity powers multi-stage compressors
that elevate the pressure of ambient air. The compressed air is then cooled in
intercoolers and directed into a storage reservoir. In classical CAES systems,
compression heat is rejected to the environment, although advanced concepts
store this heat for later use. The discharged energy is recovered by reversing the
process. High-pressure air exits the reservoir and passes through recuperators
and a combustor before expanding through turbine stages that drive an electrical
generator. The combustion process is used to reheat the air to prevent excessive
cooling during expansion, thereby enhancing the specific work output. The
discharging subsystem in Figure 2.4 shows these major components, including
the combustor, expansion block, and generator. Although this configuration
relies on supplementary natural gas, research continues toward adiabatic CAES
systems that capture and reuse compression heat to avoid fuel consumption [106,
107].

CAES dynamics are governed by turbo-machinery and plant-level operating
procedures. Reported operating characteristics indicate that the McIntosh
CAES plant can ramp at approximately 18 MW/min, which corresponds to
about 16% P nominal/min for a 110 MW unit [108]. Mode transitions can also
be limiting: the same reference reports that the Huntorf CAES plant requires
a minimum of about 20 minutes to switch between compression and generation
modes, during which the plant neither generates nor compresses [108]. These
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Figure 2.4: Schematic layout of an above-ground CAES facility.

time constants suggest that CAES is generally better aligned with slower reserve
products than with sub-minute regulation, unless additional design measures
are adopted.

CAES plants can be categorized into two distinct forms based on the type
of air storage:

(i) Underground cavern-based CAES: Historically, commercial CAES
has relied on large underground caverns, such as salt domes or aquifers, that
provide sufficient volume at relatively low cost. These caverns can support multi-
hour energy storage at the scale of hundreds of megawatts. The Huntorf plant
in Germany, commissioned in 1978, was the first commercial CAES facility and
remains operational with a rated capacity of 290 MW and discharge duration
of up to two hours [109, 110, 111]. The McIntosh plant in Alabama, USA,
commissioned in 1991, offers 110 MW of power and uses a diabatic configuration
with natural gas combustion [112, 113]. These plants demonstrate the long-term
technical viability and durability of cavern-based CAES systems.

(ii) Above-ground high-pressure tank CAES: More recent develop-
ments aim to eliminate geological restrictions by using engineered above-ground
pressure vessels or modular high-pressure tanks. These systems are more flexible
in siting and can be deployed in regions without suitable caverns. Although
they typically store less energy than cavern-based installations, they offer faster
deployment and potential scalability for distributed or urban applications. Fig-
ure 2.4 represents this above-ground configuration, where compressed air is
stored in engineered tanks rather than geological formations. Ongoing research
focuses on optimizing tank design, thermal management, and integration with
renewable energy sources [106, 114].

Beyond these two variants, several advanced concepts aim to improve round-
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trip efficiency by recovering compression heat. Adiabatic CAES systems store
the heat generated during compression and re-inject it before expansion, poten-
tially increasing efficiency to 70% or higher. Hybrid CAES systems incorporate
thermal storage, renewable heating sources, or waste heat from industrial
processes, expanding the range of possible applications. These advanced de-
signs remain under active research and require further demonstration before
large-scale commercial deployment.

From the perspective of this thesis, both underground and above-ground
CAES are promising long-duration storage options. Cavern-based systems
can store large amounts of energy but require suitable geological formations,
while above-ground configurations offer full siting flexibility at the cost of more
limited storage volume. This thesis focuses on the above-ground variant and
investigates how its storage limitation can be mitigated through hybridization
with liquid air tanks, which will be detailed in Chapter 6.

2.5. Energy Storage in Wholesale Electricity Markets

The large-scale deployment of energy storage in electric grids ultimately depends
on its investment appeal. Storage technologies will only be integrated at scale if
they offer sufficiently attractive and predictable revenue streams to investors. In
liberalized power systems, these revenues arise from the participation of storage
units in electricity markets, where they can trade energy and, in some cases,
system services. The remainder of this section introduces the main market layers
relevant for bulk storage participation, the logic of storage bidding behavior,
and the arbitrage focus adopted in this thesis.

2.5.1 Market Layers

Within any power system, energy storage can contribute in three general
domains [77]. First, it can deliver short-duration reserve or frequency-response
services, which enable the system operator to maintain the instantaneous balance
between production and consumption. Second, it can increase the efficiency
of existing grid assets; depending on its location, storage may substitute for
additional backup plants or defer reinforcement of network infrastructure.
Third, it can engage in energy arbitrage by charging when electricity prices
are low and discharging at higher prices. This function moderates peaks and
troughs in systems with significant renewable penetration and supports more
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Figure 2.5: Schematic representation of short-term trading floors in coupled
wholesale electricity markets: day-ahead market, auction-based intraday ses-
sions, continuous intraday market, and balancing stage.

reliable integration of variable resources. Storage assets may be connected
at different points along the power system chain, from generation buses to
transmission and distribution networks, and finally to demand locations. The
most suitable placement depends on the intended services and the prevailing
market or regulatory framework.

Since this thesis focuses on bulk storage technologies with multi-hour dis-
charge capability, the storage units considered here are assumed to connect at
the transmission level. They therefore participate in wholesale electricity mar-
kets rather than in purely distribution-level or behind-the-meter contexts. Their
main revenue streams arise from trading energy across short-term wholesale
market layers.

Figure 2.5 schematically illustrates the trading floors of the coupled short-
term electricity markets considered in this thesis. The sequence begins with the
day-ahead market and proceeds through auction-based and continuous intraday
markets, followed by real-time balancing actions. Each layer offers specific
opportunities for storage to adjust its schedule and monetize its flexibility.

The day-ahead market is the first short-term trading floor. The day-ahead
auction for most European bidding zones closes at 12:00 Central European
Time (CET) on day D− 1 [115]. Market participants submit hourly buy
and sell orders for the whole 24-hour delivery horizon of day D. After gate
closure, the nominated electricity market operator (for example, European
Power Exchange (EPEX SPOT) in Central Western Europe) aggregates the
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offers and bids, constructs the supply and demand curves, and clears the market
by computing the equilibrium prices and accepted quantities for each delivery
hour. The day-ahead results are published shortly after market closure and
provide the reference schedule and price signal for the next day.

Once day-ahead results are known, participants can refine their positions in
the intraday markets, which operate closer to real time. Intraday trading is
organized in two main forms: auction-based sessions and a continuous intraday
market.

The auction-based intraday market is currently structured into three discrete
sessions with the following characteristics:

• Session 1: Opens at 14:00 CET on day D−1 and closes at 15:00 CET on
day D−1. Results are published before 15:20 CET. The delivery horizon
covers the entire next day D.

• Session 2: Opens at 21:00 CET on day D−1 and closes at 22:00 CET
on day D−1. Results are published before 22:20 CET. The delivery
horizon again covers the entire next day D. For visual clarity, Figure 2.5
represents this second auction session as the reference intraday auction.

• Session 3: Opens at 09:00 CET on day D and closes at 10:00 CET on
day D. Results are published before 10:20 CET. The delivery horizon
spans the second half of day D, from 12:00 to 23:00.

In parallel with these auctions, a continuous intraday market provides a
more flexible adjustment platform. The continuous intraday market, often
implemented through single intraday coupling, typically opens at 14:00 CET on
day D−1 and remains open up to 0–1 hour before delivery, depending on the
region [115]. Market participants can submit or update orders in near real time,
subject to available transmission capacity between bidding zones. Compared
with the intraday auctions, the continuous market exhibits two key features:

• It grants access to both local and cross-border liquidity, as participants
may trade with counterparts in other European bidding zones when
inter-connector capacity is available.

• It allows continuous portfolio adjustments up to one hour before physical
delivery, enabling participants to manage forecast errors and operational
uncertainties more dynamically than in discrete auctions.
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The main objective of the continuous intraday market is to facilitate efficient
cross-zonal energy trading close to real time and to improve the overall efficiency
of short-term transactions across Europe.

Nominated electricity market operators operate both the day-ahead and
intraday markets. To secure the final real-time balance, the transmission
system operator runs the balancing market. In this market, the system operator
activates upward and downward reserve products to correct residual imbalances
and maintain system security [116]. Although balancing markets are essential
for system operation, their detailed design and products fall outside the scope
of this thesis. The modeling work in later chapters focuses on the interaction
of bulk storage with the day-ahead and intraday trading floors.

2.5.2 Participation Logic

The way bulk storage assets interact with wholesale markets depends not only
on the available trading floors but also on their bidding behavior. In general,
the market participation of a storage unit can be framed under two alternative
logics: price-taking and price-making [117].

In a price-taking framework, the storage operator behaves as a small market
participant without significant market power. It submits offers and bids under
the assumption that individual actions do not influence market-clearing prices.
The storage unit observes exogenous price forecasts or historical statistics and
optimizes its charging and discharging schedule accordingly. This representation
is appropriate for most current storage installations, which typically account
for a small share of total system capacity. From a market-clearing perspective,
price-taking behavior is consistent with submitting quantities at prices close to
marginal cost (or marginal willingness-to-pay), so that the bid lies below the
expected clearing price when the unit intends to be dispatched. As illustrated
in Fig. 2.6a, when a producer submits an offer at a marginal cost lower than
the market-clearing price, the offer is accepted and the cleared quantity is
remunerated at the uniform market-clearing price.

In a price-making or strategic framework, the storage operator recognizes
that its bids and offers can influence market-clearing outcomes. The participant
embeds the market-clearing mechanism in its decision problem and selects
bid quantities and prices to steer the market-clearing price to more favorable
levels. When implemented effectively, such strategic bidding can increase profits
compared with purely price-taking behavior, especially for large-scale storage
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Figure 2.6: Market-perspective illustration of price-taking and price-making
participation in a uniform-price market.

plants in concentrated markets. However, it also requires more detailed modeling
of market coupling and of the reactions of other participants. Fig. 2.6b illustrates
this logic: by submitting a quantity at a strategic price, the participant shifts the
effective supply curve and thereby displaces the market equilibrium. Depending
on whether the participant is predominantly selling or buying, this mechanism
can be used to move the clearing price upward or downward; in the illustrated
example, the equilibrium is shifted downward, which increases the participant’s
cleared share while reducing the market-clearing price.

In this thesis, both logics are considered, but in different contexts. The
bidding models developed in Chapter 4 for grid-scale lithium-ion batteries
and in Chapter 5 for bulk thermo-mechanical storage (including LAES and
LAES-LNG configurations) adopt a price-taking perspective. Storage units in
these chapters are modeled as market followers that respond optimally to given
price trajectories in day-ahead and, where relevant, intraday markets.

Chapter 6 extends the analysis to price-making strategic bidding for a
hybrid CAES-LAES facility. In this setting, the hybrid storage plant is treated
as a large actor that can influence market prices. A look-ahead market dispatch
framework is developed to capture the feedback between the plant’s bids, the
market-clearing process, and subsequent price evolution. This contrast between
price-taking and price-making formulations clarifies how the same physical
storage technologies may require different decision-making models depending
on their system impact and market share.
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2.5.3 Arbitrage Framing

Against the backdrop of the market layers and participation logic described
above, this thesis concentrates on the energy arbitrage potential of bulk storage
facilities in wholesale markets. The core focus is on how large-scale storage can
exploit temporal price differences in day-ahead and intraday markets, subject
to realistic technical and operational constraints.

For short-duration electrochemical storage, Chapter 4 develops a bidding
strategy for a grid-scale lithium-ion battery that jointly considers energy arbi-
trage in the day-ahead and intraday markets. The model captures the interac-
tion between day-ahead scheduling and subsequent intraday adjustments, while
accounting for state-of-charge dynamics and degradation-related constraints.

For emerging thermo-mechanical technologies, the dispatch formulations
are centered on day-ahead energy arbitrage. Chapter 5 formulates a day-ahead
market participation model for a standalone LAES plant and then extends it
to an advanced LAES facility coupled with an LNG regasification terminal.
In the latter case, the arbitrage problem spans both the day-ahead electricity
market and the day-ahead LNG market, reflecting the sector-coupled nature of
the hybrid configuration.

Chapter 6 finally considers a hybrid CAES-LAES facility that participates
in the day-ahead electricity market under a strategic price-making regime with
look-ahead constraints. Although additional revenue streams such as reserve
provision and balancing services are briefly discussed where relevant, they
are not explicitly modeled. Throughout the thesis, bulk storage is therefore
analyzed primarily through the lens of energy arbitrage in wholesale markets,
while other services remain outside the main scope of the quantitative models.

2.6. Chapter Conclusion

This chapter reviewed the technological foundations and operational roles of
energy storage in modern power systems. It outlined the growing need for
storage due to increased renewable penetration and described how different
technologies address challenges across multiple timescales. The taxonomy of me-
chanical, electrochemical, electrical, chemical, thermal, and thermo-mechanical
options highlighted that each technology offers distinct advantages and limita-
tions. Their suitability depends on efficiency, discharge duration, power rating,
lifetime, and siting constraints rather than on any single performance metric.
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Within this broad landscape, the chapter focused on lithium-ion batteries,
LAES, and CAES. These three technologies represent complementary segments
of the storage spectrum and are central to the modeling work that follows.
Lithium-ion batteries provide rapid-response, short-duration services and serve
as the benchmark mature technology. CAES and LAES represent, respectively,
mature and emerging thermo-mechanical alternatives that offer multi-hour
capability and, in the case of LAES, opportunities for integration with external
heat or cold sources. Their technical characteristics and siting features motivate
the hybrid configurations explored later in the thesis.

The chapter concluded by linking storage technologies to wholesale electricity
markets. It introduced the day-ahead, intraday, and balancing layers through
which bulk storage derives revenues and clarified the distinction between price-
taking and price-making participation. Energy arbitrage across day-ahead and
intraday markets was identified as the main economic focus of this thesis. The
next chapters build on this foundation to develop detailed dispatch and bidding
models for lithium-ion batteries, LAES and LAES-LNG systems, and a hybrid
CAES-LAES facility.
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CHAPTER 3
Optimization Foundations for Market-Based Storage

Models

This chapter provides a concise overview of the mathematical principles that
underlie the storage models developed in the subsequent chapters. Its purpose
is to offer a clear foundation for readers who may not be familiar with these
concepts, by introducing basic optimization formulations, their extensions under
uncertainty and strategic interaction, and the use of optimality conditions and
equilibrium representations. The chapter closes with a brief introduction to
learning-based tools that assist large-scale optimization, preparing the ground
for their use in later chapters.

3.1. Mathematical Optimization

Mathematical optimization provides the basic language used in this thesis
to represent decision-making problems in energy systems. In particular, the
short-term scheduling of energy storage in market-based energy systems can
be viewed as the systematic selection of decision variables that minimize or
maximize a numerical performance index, subject to physical, technical, and
market constraints. Standard texts such as Boyd and Vandenberghe [118]
and Bazaraa et al. [119] offer a rigorous introduction to this framework and
motivate its use in a wide range of engineering applications. This framework
can be expressed using the following generic constrained optimization problem.
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A generic constrained optimization problem can be written as:

min
x∈X

f(x)

s.t. h(x) = 0,

g(x) ≤ 0

(3.1)

where X ⊆ Rn denotes the domain of the decision vector x, f : X → R
is the objective function, h : X → Rme represents the set of equality
constraints, and g : X → Rmi represents the set of inequality constraints.
Equality constraints usually encode exact physical relationships, such
as balance equations or state transitions, while inequality constraints
capture capacity limits, operating ranges, and regulatory requirements.
The feasible region is given by all x ∈ X that satisfy h(x) = 0 and
g(x) ≤ 0 [118, 119].

In the context of this thesis, the vector x may contain, for instance, hourly
charging and discharging decisions for a storage unit, its state-of-charge tra-
jectory, and the quantities offered in day-ahead or intraday market bids. The
objective function f(x) then represents an economic performance metric such
as total profit from energy arbitrage or total operating cost of a system that
includes storage. Equality constraints typically impose power balance across
the network, intertemporal state-of-charge dynamics, or exact market-clearing
rules, while inequality constraints enforce storage power and energy limits
and maximum transmission capacity limits. Similar formulations are widely
used in short-term scheduling models for energy storage in electricity markets
[120, 121, 122].

Problem (3.1) can be classified according to the properties of f , h, and g, and
according to the domain of x. When all functions are linear and the variables
are continuous, the result is a Linear Programming (LP) problem, which can be
solved efficiently for large-scale instances [123]. If some variables are constrained
to be integer, for example, to represent the charging or discharging status of
storage units participating in energy arbitrage, the problem becomes a Mixed-
Integer Mixed-Integer Linear Programming (MILP). When at least one of the
functions is nonlinear, the model falls into the general category of Non-Linear
Programming (NLP), with convex or nonconvex structure depending on the
curvature of the functions involved [118, 119].
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The models developed in the subsequent chapters are particular instances
of (3.1) formulated as large-scale MILPs. Chapters 4-6 describe the short-term
market participation of bulk storage technologies under different informa-
tion structures and strategic settings, including risk-aware battery dispatch,
LAES-LNG co-optimization, and strategic hybrid CAES-LAES bidding with
embedded network constraints.

3.2. Stochastic Programming

The formulation in Section 3.1 describes a deterministic optimization problem in
which all parameters are assumed to be known with certainty. This assumption
is rarely satisfied in short-term power system operation [124] and is particularly
restrictive for energy storage, whose value arises from inter-temporal arbitrage
under uncertain conditions. In practice, storage operators face volatile electricity
prices, fluctuating renewable generation, and variable demand, and they must
make decisions before the actual realizations of these quantities. Ignoring these
uncertainties can lead to dispatch strategies that are systematically biased or
overly myopic [125].

Decision-making in this context has an inherent temporal structure [124].
Storage operators revise their decisions as new information becomes available
over time and as markets close sequentially. A typical example is the joint
participation of a storage asset in day-ahead and intraday electricity markets.
In the first stage, the operator submits offers and bids to the day-ahead auction
based on forecasts of day-ahead prices. After the day-ahead market closure,
the clearing prices and accepted quantities become known. Then, in the second
stage, the operator can adjust the storage schedule and submit additional bids
and offers in intraday markets, taking updated information into account. This
dynamic view of the problem naturally motivates multi-stage optimization
models in which early decisions must anticipate the impact of uncertain future
outcomes [126, 127].

Stochastic programming provides a structured way to embed uncertainty into
optimization models. The key idea is to represent uncertain parameters, such
as prices or wind generation, through a finite set of scenarios that approximate
their possible future trajectories and associated probabilities [128]. The decision
variables are divided into first-stage variables (here-and-now decisions), which
must be chosen before uncertainty is revealed, and second-stage variables
(wait-and-see decisions), which can adapt to each scenario once the uncertain
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outcomes are observed. This two-stage structure is widely adopted in short-term
scheduling problems in power systems [124], including the operation of energy
storage units, and can be extended to multi-stage formulations when required.
This structure can be expressed using the following generic two-stage stochastic
program [124, 125, 126].

Let x denote the vector of first-stage decisions and let y(ω) be the vector
of second-stage decisions corresponding to scenario ω in a finite scenario
set Ω. Each scenario ω ∈ Ω occurs with probability πω, where πω ≥ 0 and∑

ω∈Ω πω = 1. A generic two-stage stochastic program can be written as:

min
x∈X ,y(ω)∈Y(ω)

c⊤x+
∑
ω∈Ω

πω q(ω)
⊤y(ω)

s.t. Ax = b,

T (ω)x+W (ω)y(ω) = h(ω), ∀ω ∈ Ω

(3.2)

where c and q(ω) are cost (or negative revenue) vectors, A, T (ω), and
W (ω) are appropriate coefficient matrices, and b and h(ω) collect right-
hand-side parameters. The set X contains the deterministic first-stage
(here-and-now) variables, that must hold independently of the scenario.
The sets Y(ω) contain the second-stage (wait-and-see) variables, which
depend on scenario ω. Problem (3.2) optimizes x and y(ω) to minimize
the sum of the immediate first-stage cost and the expected second-stage
cost.

Within the scope of this thesis, the compact structure in (3.2) is used to
describe price-taking sequential dispatch of bulk energy storage in market-based
environments. In Chapter 4, a two-stage stochastic formulation is adopted
for the short-term scheduling of a grid-scale battery that participates as a
price-taking unit in day-ahead and intraday markets, where day-ahead offers
correspond to x and intraday adjustments correspond to y(ω) for different
realizations of market prices. In Chapter 5, a similar two-stage logic is applied
to the LAES-LNG facility. The first stage determines the facility’s position
in the LNG market, while the second stage governs its operation in the day-
ahead electricity market. These models remain aligned with the deterministic
framework introduced in Section 3.1, yet they extend it by explicitly capturing
the uncertainty that shapes the economic value of storage in modern energy
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markets.

3.3. Multi-Level Optimization

The deterministic and stochastic formulations introduced in Sections 3.1 and
3.2 describe decision problems for a single decision-maker (storage operator)
who optimizes an objective subject to physical and operational constraints,
possibly under uncertainty. In liberalized electricity markets, however, market
outcomes arise from the interaction between individual participants and a
central market operator like EPEX SPOT [115]. When a bulk storage facility
is large enough to influence prices, its actions affect the market-clearing result,
and the resulting prices feed back into its profit. This feedback loop cannot
be captured by a single-level optimization model and motivates the use of
multi-level (in particular, bi-level) optimization frameworks [129, 130]. Multi-
level optimization explicitly represents this hierarchical interaction by coupling
one upper-level problem, which models the strategic decisions of a leader,
with one or several lower-level problems that capture the market-clearing or
system-response behavior of the followers.

In the context of this thesis, the upper-level problem represents a bulk
energy storage operator that behaves as a price-making market participant.
The operator selects bidding strategies and look-ahead schedules to maximize
expected profit. The lower-level problem represents the market-clearing prob-
lem solved by a market operator. In the lower-level optimization, the market
operator determines the dispatch of all generators and storage units, as well
as the corresponding nodal prices, by solving a welfare maximization or cost
minimization problem subject to network and operational constraints. The
upper-level decisions enter the lower-level model as offer parameters and tech-
nical limits, while the lower-level solution determines accepted quantities and
prices that appear in the upper-level profit function [131, 132]. This interaction
between upper- and lower-level decisions can be expressed using the following
generic multi-level formulation.
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To formalize this structure, let xU denote the vector of upper-level
decisions (e.g., price-quantity pairs for day-ahead offers) and let xL

collect all lower-level decision variables, for example, generation dispatch,
in a market-clearing model. A generic multi-level formulation with a
single lower-level problem can be written in compact form as:

max
xU∈XU ,xL∈XL

FU
(
xU , xL

)
s.t. H

(
xU , xL

)
= 0,

G
(
xU , xL

)
≤ 0,

xL ∈ arg min
y∈XL

{
fL
(
xU , y

)
: h
(
xU , y

)
= 0 (λ),

g
(
xU , y

)
≤ 0 (µ)

}
(3.3)

where FU and fL denote the upper- and lower-level objective func-
tions, while H and G represent the upper-level equality and inequality
constraints. The notation (λ) and (µ) indicates that λ and µ are the La-
grange multipliers associated with the lower-level equality and inequality
constraints, respectively. The implicit condition xL ∈ argmin{·} ensures
that xL is an optimal solution to the lower-level problem parameterized
by xU .

The formulation in (3.3) can be extended to handle several lower-level
problems, for example, when a strategic storage operator interacts with multiple
coupled markets or with a sequence of clearing mechanisms. In that case, xL,
λ, and µ can be interpreted as stacked vectors that gather primal and dual
variables from all lower-level problems, each of which follows the same generic
form. In this thesis, the focus remains on bi-level structures where a single
upper-level storage operator interacts with one or more market-clearing models.
In particular, Chapter 6 instantiates (3.3) for a hybrid CAES-LAES facility
that acts as a price-making leader in a Stackelberg game. The hybrid plant
submits coordinated look-ahead offers to the day-ahead electricity market, while
the lower-level represents the market equilibrium that maps these offers to
dispatch schedules and prices. Subsequent sections show how the optimality
conditions of the lower-level problems, through the dual variables λ and µ,
allow this hierarchical formulation to be recast as a single-level MPEC suitable
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for numerical implementation.

3.4. Optimality Conditions

The multi-level optimization structure in Section 3.3 models the interaction
between a strategic storage operator and the market-clearing problem solved by
the market operator. In order to solve such models numerically, it is convenient
to replace the lower-level optimization problem with algebraic conditions that
characterize its optimal solutions. The Karush-Kuhn-Tucker (KKT) conditions
provide this characterization for a broad class of constrained optimization
problems and form the standard link between bi-level models and single-level
reformulations [118, 119, 131].

For a given upper-level decision vector xU , the lower-level problem in (3.3)
can be written as:

min
xL∈XL

fL
(
xU , xL

)
s.t. h

(
xU , xL

)
= 0 (λ),

g
(
xU , xL

)
≤ 0 (µ),

(3.4)

where xL collects the lower-level variables (generator and storage dispatch,
nodal injections, and flows) and fL represents the system-wide objective, such
as total production cost or negative social welfare [124, 120]. Let λ and µ

denote the Lagrange multipliers associated with h and g, respectively. The
Lagrangian of (3.4) is

LL
(
xU , xL, λ, µ

)
= fL

(
xU , xL

)
+ λ⊤h

(
xU , xL

)
+ µ⊤g

(
xU , xL

)
(3.5)

Assume that fL, h, and g are continuously differentiable and that a suitable
constraint qualification holds at an optimal solution of (3.4). Then any optimal
solution (xL, λ, µ) must satisfy the KKT conditions [118, 119]. These optimality
requirements are summarized by the KKT conditions shown below.
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For a fixed xU , the KKT conditions of (3.4) associated with (3.5) are:
Stationarity:

∇xLf
L
(
xU , xL

)
+
(
∇xLh

(
xU , xL

))
λ⊤ +

(
∇xLg

(
xU , xL

))
µ⊤ = 0, (3.6)

Primal feasibility:

h
(
xU , xL

)
= 0, g

(
xU , xL

)
≤ 0, (3.7)

Dual feasibility:
µ ≥ 0, (3.8)

Complementary slackness:

µ⊤g
(
xU , xL

)
= 0. (3.9)

Equivalently, (3.8)–(3.9), together with the inequality part of (3.7), can
be expressed component-wise as:

0 ≤ µ ⊥ g
(
xU , xL

)
≤ 0. (3.10)

In electricity market models, the multipliers in λ and µ have a direct
economic interpretation as marginal prices and scarcity values of network and
resource constraints [120, 124, 131]. In systems with bulk energy storage, they
quantify the marginal value of relaxing power and energy limits, which is
closely related to the opportunity cost of shifting energy across time. When
the lower-level problem is convex, the KKT conditions (3.6)-(3.10) are both
necessary and sufficient for optimality [118, 119]. This property allows the
replacement of the implicit optimality condition in (3.3) by the explicit KKT
conditions, leading to a single-level formulation with equilibrium constraints.
The following section uses this idea to introduce MPEC for strategic storage
participation in market-based energy systems.

3.5. Mathematical Programming with Equilibrium
Constraints (MPEC)

Section 3.4 showed how the optimality of the lower-level problem can be de-
scribed explicitly through the KKT conditions. This observation is central for
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transforming the bi-level structure in (3.3) into a single optimization model
that can be handled by standard solvers. MPEC provide this single-level repre-
sentation by embedding the equilibrium conditions of one or more optimization
problems directly as constraints [131, 133, 134]. An MPEC is an optimization
problem in which part of the constraint set consists of complementarity or KKT
conditions that characterize an equilibrium or an optimal response of another
problem. In the present context, the equilibrium corresponds to the solution
of the lower-level market-clearing model, typically formulated as a linear or
convex program that minimizes total system cost or maximizes social welfare
[120].

Starting from the bi-level formulation in (3.3), the lower-level optimality
condition

xL ∈ arg min
y∈XL

{·}

can be replaced by the KKT conditions of the lower-level problem described
in (3.6)–(3.9) [131]. This substitution yields a single-level MPEC in which the
upper-level variables, the lower-level primal variables, and the associated dual
variables appear jointly in one optimization problem [131].

With xU and xL denoting the upper- and lower-level decisions and (λ, µ) the
multipliers of the lower-level equality and inequality constraints, the resulting
single-level MPEC can be written as:

A compact MPEC representation of the structure in (3.3) is:

max
xU , xL, λ, µ

FU
(
xU , xL

)
s.t. H

(
xU , xL

)
= 0,

G
(
xU , xL

)
≤ 0,

h
(
xU , xL

)
= 0,

∇xLf
L
(
xU , xL

)
+
(
∇xLh

(
xU , xL

))
λ⊤ +

(
∇xLg

(
xU , xL

))
µ⊤ = 0,

0 ≤ µ ⊥ g
(
xU , xL

)
≤ 0

(3.11)

The first two sets of constraints in (3.11) impose the upper-level feasibility
conditions H and G, which restrict the leader’s decisions to a permissible region
defined by physical, operational, or structural requirements. The equality
constraint h

(
xU , xL

)
= 0 enforces the primal feasibility of the lower-level
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problem and ensures that any candidate (xU , xL) pair satisfies the underlying
system equations. The stationarity condition links the gradient of the lower-
level objective with the gradients of the constraints through the multipliers
(λ, µ), which is the core mechanism through which the lower-level optimality is
represented analytically [118, 135]. The primal and dual feasibility conditions,
g
(
xU , xL

)
≤ 0 and µ ≥ 0, together with the complementary slackness relation

µ⊤g
(
xU , xL

)
= 0, can be written compactly as 0 ≤ µ ⊥ g

(
xU , xL

)
≤ 0.

This formulation expresses, in a single relation, the interaction between each
inequality constraint and its associated multiplier. Together, these conditions
fully characterize the solution of the lower-level convex program and allow the
MPEC to reproduce the exact follower response within a single-level structure
[131].

From a numerical point of view, MPEC problems are challenging because
complementarity constraints create nonconvex feasible regions and can violate
standard regularity conditions [133, 134]. In practice, these relations are often
reformulated with binary variables and big-M constraints or other disjunctive
schemes, which convert (3.11) into a large-scale MILP or mixed-integer nonlinear
program suitable for input to modern solvers [131, 132]. The strategic storage
models in Chapter 6 follow this approach and implement the single-level MPEC
as a mixed-integer representation of hybrid CAES-LAES participation in day-
ahead electricity markets under price-making behavior.

3.6. Machine Learning for Optimization

The optimization frameworks introduced in Sections 3.1–3.5, whether deter-
ministic, stochastic, or multi-level with equilibrium constraints, can become
computationally demanding when applied to realistic energy market models.
In practice, large-scale formulations often combine several sources of difficulty.
Nonlinear terms, for instance, quadratic cost or alternating current network con-
straints, destroy convexity or require iterative linearization. Integer variables,
such as binary commitment, on/off charging decisions, or complementarity
representations of equilibrium, create combinatorial complexity. Stochastic pro-
gramming and bi-level MPEC structures further increase problem size through
scenario expansion and additional primal-dual variables. When these models
support short-term decision-making, such as short-term dispatch of energy
storage in market-based environments, their direct solution may be intractable
or too slow to be practical.
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Figure 3.1: Overview of machine learning schemes for optimization.

Recent work has therefore explored machine learning models as auxiliary
tools that reduce the online computational burden. The central idea is to move
most of the computational burden to an offline training phase that relies on
historical data or simulated optimal solutions, so that the online phase reduces to
a computationally light prediction task or a learned component that accelerates
the solver’s optimization process [136]. Within this general perspective, learning-
based schemes for assisting optimization can be grouped into two main families:
End-to-End (E2E) learning and Learning-to-Optimize (L2O) [136]. Figure 3.1
provides an overview of these families and their main subclasses, while Table 3.1
summarizes their main characteristics, advantages, and limitations in a generic
optimization setting.

3.6.1 End-to-End (E2E) Learning Schemes

E2E learning schemes aim to bypass explicit optimization at run time by learning
a direct mapping from problem inputs, such as demand profiles, forecasts, or
market conditions, to optimal or near-optimal decisions, such as dispatch
schedules or bidding strategies. A generic workflow first generates a large
dataset of input–solution pairs, typically by solving the original optimization
model offline for many realizations of the uncertain parameters or operating
conditions, although this step can be significantly reduced or bypassed when a
sufficiently large historical record of past operating decisions and associated
system conditions is available. A supervised [137], unsupervised [138], or
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reinforcement learning [139] model then approximates the relationship between
inputs and decisions. Once trained, the model provides decisions with very
low computational cost, which is attractive for applications that require fast
responses or repeated solutions of similar problem instances.

Within this family, one can distinguish three primary learning mechanisms.
The first class, supervised mapping, uses labeled data and treats the optimization
solver as an oracle that provides target decisions during training. The second
class, unsupervised mapping, often relies on generative models [140] that learn
the distribution of decisions or trajectories and can then sample new candidate
decisions that are consistent with historical patterns. The third primary class,
reinforcement learning, frames the decision problem as a sequential interaction
between an agent and a simulated environment, where the agent learns a
policy that maximizes an accumulated reward. Orthogonal to these three
primary classes, the literature introduces several subcategories that describe
how constraints and structure are handled [136]. Unconstrained models focus on
predictive accuracy without enforcing technical constraints, which may require
post-processing. Constrained models embed physical or operational constraints
into the training loss or architecture, which improves the feasibility of the
predicted solutions [141]. Graph-based models exploit the underlying network
structure, for example in transmission networks or gas grids, by representing
the system as a graph and learning on that representation [142]. The E2E
schemes in Figure 3.1 and Table 3.1 capture these primary classes and their
subcategories in a compact way.

3.6.2 Learning-to-Optimize (L2O) Schemes

L2O schemes follow a different philosophy. Rather than replacing the optimiza-
tion model, they learn auxiliary information or strategies that support and
accelerate traditional solvers. The explicit mathematical formulation remains
central, while the learning component augments it with data-driven predictions
that reduce problem size, improve initialization, or tune algorithmic parame-
ters. This family is often referred to as hybrid learning and optimization, or
learning-assisted optimization, and can be broadly grouped into three categories:
learning active sets of constraints, warm-start approaches, and learning-assisted
distributed or simplified optimization schemes [136].

The first category, learning active sets of constraints, focuses on identifying
inequality constraints that are binding at the optimum [143]. In many large-
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Table 3.1: Representative machine learning schemes for optimization.
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scale models, only a small subset of inequality constraints is active, while
the remaining ones are slack and do not influence the solution, yet they still
introduce extra variables and dual conditions that increase computational
effort. Active-set L2O schemes train a classifier to predict which constraints
are likely to be active for a given problem instance, based on features such
as electricity prices, renewable energy outputs, or past solutions. The solver
then processes a reduced optimization problem that includes only the predicted
active constraints. This reduction can significantly decrease solution times,
while the explicit optimization model still enforces exact feasibility on the
reduced set.

The second category, warm-start approaches, centers on learning high-quality
initial points for the underlying solver [73, 144]. A learning model produces
an initial solution or a set of candidate solutions that lie close to the optimum
of the full optimization problem. Standard solvers, such as mixed-integer or
nonlinear programming solvers like Gurobi, then use these predictions as starting
points. Warm-start information can include primal variables, dual variables,
or both. In sequential decision settings, for example, rolling-horizon dispatch
or repeated market-clearing, training data can be collected from historical
or simulated solutions that correspond to similar operating conditions. By
providing initial points that are already near-optimal, the solver requires fewer
iterations and explores a smaller portion of the search space, thereby reducing
online computational cost without altering the mathematical formulation.

The third category comprises learning-assisted distributed or simplified
optimization schemes [145, 146]. Large energy systems are often decomposed
into subsystems or approximated by relaxed models to achieve scalability.
Typical examples include decomposition methods based on alternating direction
techniques or Lagrangian relaxation, and surrogate models that approximate
complex physics. Learning models can assist these algorithms in several ways.
They can tune penalty parameters or step sizes to improve convergence, predict
suitable decompositions or aggregation structures, or correct systematic biases
introduced by simplified models. In all these cases, the data-driven component
operates alongside a model-based algorithm that preserves the physical and
economic structure of the optimization problem.

Within the scope of this thesis, the L2O perspective is particularly relevant
for the computational treatment of the MPEC formulations introduced in
Section 3.5. The strategic dispatch of the hybrid CAES-LAES facility in
Chapter 6 leads to large mixed-integer MPEC instances that must be solved
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repeatedly for different market scenarios and parameter sets. In that context,
this thesis adopts warm-start techniques as the main L2O tool. Machine learning
models are used to provide high-quality initial points for the single-level MPEC
solver, thereby reducing the number of iterations and overall solution time
while preserving the exact mixed-integer representation of strategic storage
participation in electricity markets.

3.7. Chapter Conclusion

The objective of this chapter has been to assemble the optimization tools
required for the storage models developed in the remainder of the thesis. Starting
from a generic constrained optimization problem, the chapter has clarified how
objectives, equality constraints, and inequality constraints provide a common
language to describe storage scheduling in market-based energy systems, with a
focus on large-scale linear and mixed-integer formulations. It has then extended
this deterministic viewpoint to two-stage stochastic programming to account for
uncertainty in sequential markets. Building on this foundation, the chapter has
introduced multi-level optimization, which can be used to represent strategic
storage participation in liberalized electricity markets. The derivation of the
KKT optimality conditions and their use in MPEC formulations have completed
the transition from implicit bi-level structures to explicit single-level models
with equilibrium constraints that remain suitable for numerical implementation.

The final part of the chapter has addressed the computational implications
of previously introduced formulations and has motivated the use of machine
learning as a complementary tool. E2E learning schemes and L2O approaches
have been positioned as two broad families that either approximate the decision
mapping directly or assist in solving explicit optimization models by predicting
active sets, generating warm-start solutions, or supporting distributed and
simplified optimization schemes. In this way, the chapter has framed machine
learning not as a replacement for mathematical programming, but as a means
to preserve the structure and interpretability of model-based formulations while
reducing their online computational burden.

Within the thesis, the above concepts support the specific applications
developed in Chapters 4–6. Chapter 4 and Chapter 5 instantiate the stochastic
framework for price-taking battery and LAES-LNG operation in sequential
energy markets. Chapter 6 relies on the multi-level and MPEC machinery,
together with warm-start L2O schemes, to model the strategic participation of
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a hybrid CAES-LAES facility as a price-making market player. In this way, the
chapter provides a consistent methodological basis that will be used throughout
the subsequent chapters.

Chapter Publication

• H. Khaloie, M. Dolányi, J.-F. Toubeau, and F. Vallée, “Review of
Machine Learning Techniques for Optimal Power Flow,” Applied Energy,
vol. 388, p. 125637, 2025.
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CHAPTER 4
Risk-Aware Market Dispatch of Grid-Scale Batteries

Chapters 2 and 3 have provided the technical and methodological background
for the storage models developed in this thesis. Building on this foundation,
the present chapter makes the first methodological contribution by studying
how a grid-scale battery storage system should bid in coupled day-ahead and
intraday electricity markets when price uncertainty and risk preferences are
explicitly accounted for.

Increasing shares of variable renewable generation have raised short-term
price volatility, which amplifies arbitrage opportunities and financial risk for
battery storage owners. Aggressive cycling can increase expected profit but may
lead to undesirable low-profit outcomes and faster degradation, so a purely risk-
neutral model is not suitable for a risk-averse operator. This chapter addresses
Research Question 1 from Chapter 1 by formulating a two-stage stochastic
battery bidding framework based on SSD, equipped with a novel benchmark
selection method that combines SSD with regret-based considerations. The
resulting model delivers bidding strategies that balance expected revenue and
downside protection in a way that reflects the preferences of the battery operator.

The remainder of the chapter is organized as follows. Section 4.1 reviews
the literature on battery bidding models in short-term electricity markets,
with a focus on both risk-neutral and risk-aware formulations. In Section 4.2,
a stochastic risk-neutral battery bidding model is formulated to co-optimize
day-ahead and intraday decisions. Section 4.3 then extends this setup to
a risk-aware framework by imposing SSD-based constraints. The proposed
benchmark selection method and its integration into the SSD-constrained
model are detailed in Section 4.4. Section 4.5 turns to the case study and the
corresponding numerical results. Finally, Section 4.6 concludes the chapter and
outlines the implications for the remainder of the thesis.
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4.1. Literature Review on Battery Bidding Models

A substantial body of work has examined how battery storage systems should
bid into short-term electricity markets. Most studies adopt a price-taking
perspective and formulate the bidding problem as a deterministic or stochastic
optimization model that co-optimizes charging and discharging schedules subject
to inter-temporal energy constraints. Early contributions focus on day-ahead
energy arbitrage and incorporate degradation-aware formulations based on cycle
aging or cost functions embedded in the operational model [147, 148]. Multi-
scenario stochastic formulations have also been explored to capture uncertainty
in day-ahead and ancillary service prices [149].

Bi-level structures have also been proposed to couple the battery profit-
maximization problem with the market-clearing mechanism, in which the
upper-level problem optimizes arbitrage profit, while the lower-level problem
represents market operations. These models often include degradation terms to
improve revenue evaluation [69]. Several studies extend the bidding problem to
multiple trading floors, such as combining day-ahead arbitrage with balancing
services or fast frequency response [150]. Learning-based approaches have
also been investigated, including reinforcement learning methods designed to
map price observations into operational decisions while accounting for losses
and battery lifetime [151]. Other contributions consider distribution-level and
transmission-level bidding through bi-level or decomposition-based structures to
improve computational efficiency [152, 153]. Deterministic co-optimized sizing
and bidding models have been developed for energy and frequency regulation
markets [154], and joint bidding and clearing models have been proposed to
manage cycling mileage [155]. These studies collectively establish the main
modeling practices for battery bidding in wholesale markets.

A second group of studies incorporates risk preferences into market par-
ticipation strategies. CVaR has been the most widely adopted approach for
managing downside risk in storage and hybrid wind-storage bidding models
[156, 157]. CVaR has also been integrated into robust and hybrid stochastic-
robust formulations [158, 159], while distributionally robust bidding has been
proposed for wind-storage aggregators participating in day-ahead markets [160].
Beyond CVaR, SSD has been introduced as a coherent risk metric in mar-
ket bidding for renewable generators [45], although its application to battery
bidding remains limited. Information gap decision theory has been applied
to manage risk-averse and risk-seeking strategies in day-ahead markets [161].
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Together, these works demonstrate the relevance of risk-aware modeling for
bidding problems under uncertainty.

Despite these contributions, two issues remain relevant for the present
chapter. First, existing SSD-based formulations provide limited guidance on
how to derive the feasible region of admissible benchmarks, although benchmark
selection directly affects the performance and tractability of SSD-constrained
models. Second, there is no systematic method for selecting a final benchmark
that reflects the decision-maker’s preferences while preserving consistency with
the SSD framework.

In response, this chapter develops an SSD-constrained battery bidding model
for day-ahead and intraday markets and introduces a practical benchmark
selection procedure based on regret analysis and out-of-sample evaluation. This
approach enables the operator to balance expected revenue with downside
protection while ensuring that the chosen benchmark is both feasible and
aligned with the decision-maker’s risk preferences for a risk-averse battery
operator.

4.2. Risk-Neutral Battery Bidding Model

4.2.1 Market Model

This section considers a lithium-ion battery that participates as a price-taker
in the wholesale electricity market. The analysis focuses on two trading venues
that are representative of the European market design: the day-ahead market
and an auction-based intraday market. Both markets clear energy for the same
delivery horizon, indexed here as day D with an hourly resolution.

In line with current European practice, the day-ahead market for day D
closes at 12:00 CET on day D−1 [115]. At this time, the battery operator
submits its energy offer schedule for each hour of the next day. After market
closure, the day-ahead auction is cleared and the resulting prices and accepted
quantities are published. The intraday market then provides an additional
trading opportunity to adjust positions before physical delivery. Among the
several auction sessions implemented in practice, this chapter models the second
intraday auction. This session closes later on day D−1 while still covering
the full delivery horizon of day D, which makes it particularly relevant for
refining the battery schedule on the basis of updated information. The first
intraday auction is closer in time to the day-ahead auction and would provide
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Figure 4.1: Time line of the two-stage battery bidding problem in coupled
day-ahead and intraday markets.

less additional information, whereas the third auction does not cover the entire
next day and is therefore not considered here for the sake of consistency.

Figure 4.1 summarizes the timeline of these trading activities. The first
stage of the decision process corresponds to the submission of day-ahead bids
at 12:00 CET of day D−1. The second stage corresponds to the participation
in the intraday auction, which closes at 22:00 CET of day D−1. In both stages,
the decisions concern the hourly charging and discharging schedules of the
battery over the delivery horizon of day D, subject to its technical limits and
state-of-charge dynamics. The resulting two-stage structure is the basis for the
stochastic programming model presented in Section 4.2.2 and later extended to
a risk-aware formulation in Section 4.3.

4.2.2 Mathematical Formulation

In line with the scope of this chapter, this section formulates a risk-neutral,
price-taking bidding model for a lithium-ion battery participating in coupled
day-ahead and intraday electricity markets. The battery is exposed to exogenous
market prices that are represented through a finite set of scenarios. Lithium-ion
battery storage systems are widely deployed, from residential to grid-scale,
because of their favorable technical characteristics, such as low self-discharge
and high energy density. At the same time, aging effects remain a key limitation.
As discussed in Chapter 2, a large body of research has focused on modeling
degradation and embedding it into operational strategies. Among the different
approaches proposed in the literature, this chapter adopts the cycle-aging cost
model of [147], in which degradation cost is represented as a piecewise linear
function of the depth-of-discharge.

On this basis, the energy arbitrage problem is formulated as a two-stage
stochastic program. The stochastic parameters are the day-ahead and intraday
electricity prices, which are modeled through a set of scenarios ω ∈ {1, . . . ,Ω}
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with associated probabilities πω. Several scenario generation techniques are
available in the literature [162]. Here, the method proposed in [163] is employed
to construct a discrete set of price trajectories that jointly describe day-ahead
and intraday prices over the delivery horizon.

The objective function of the resulting optimization problem is given in
(4.1):

max
Ξ1st ,Ξ2nd

Ω∑
ω=1

πω

 T∑
t=1

λDA
t,ω

(
PDA,dis
t − PDA,ch

t

)
︸ ︷︷ ︸

O1

+λIDt,ω

(
P ID,dis
t,ω − P ID,ch

t,ω

)
︸ ︷︷ ︸

O2

−
S∑
s=1

Φs

(
ξDA,dis
s,t + ξID,diss,t,ω

)
︸ ︷︷ ︸

O3


 (4.1)

where πω is the probability of scenario ω, PDA,ch
t and PDA,dis

t represent the
battery charge and discharge bids in the day-ahead market, and P ID,ch

t,ω and
P ID,dis
t,ω denote the corresponding bids in the intraday market. The parameters
λDA
t,ω and λIDt,ω are the day-ahead and intraday prices, and Φs is the slope of

block s in the piecewise linear function that represents the battery aging cost
[147].

With the above definitions, the objective function in (4.1) consists of three
terms. Terms O1 and O2 capture the profits from energy arbitrage in the day-
ahead and intraday markets, respectively. Term O3 represents the degradation
cost of the lithium-ion battery as a function of the discharged energy in each
depth-of-discharge segment, covering both day-ahead and intraday actions.

The two-stage stochastic structure reflects the sequence of decisions illus-
trated in Fig. 4.1. The decision stages are organized as follows:

1. First-stage (here-and-now) decisions: Before the realization of the
day-ahead and intraday prices, and before the day-ahead market closure
at 12:00 CET of day D−1, the battery operator decides on its energy offer
and bid schedule in the day-ahead market, together with the commitment
status of the storage unit. The set of first-stage decision variables is:

Ξ1st
=
{
PDA,dis
t , PDA,ch

t , βt, ξ
DA,dis
s,t , ξDA,ch

s,t

}
.
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2. Second-stage (wait-and-see ) decisions: After the day-ahead market
has been cleared and before the intraday market closure at 22:00 CET
of day D−1, the battery operator determines its participation in the
intraday market for each price scenario. At this stage, the intraday
prices for the considered session are still uncertain, and the decisions
are scenario dependent and conditional on the first-stage schedule. For
each scenario ω, the operator chooses intraday charging and discharging
powers, segment-wise quantities, and the resulting state-of-charge. The
corresponding set of second-stage decision variables is:

Ξ2nd
=
{
P ID,dis
t,ω , P ID,ch

t,ω , ξID,diss,t,ω , ξID,chs,t,ω , δ
SoC
s,t,ω, ∆

SoC
t,ω

}
.

The relationships between aggregated charge and discharge bids and segment-
wise power variables are enforced by (4.2)–(4.5). These constraints define the
charge and discharge powers in the day-ahead and intraday markets as the
sum of the corresponding powers over all segments s ∈ {1, . . . ,S} of depth of
discharge:

PDA,dis
t =

S∑
s=1

ξDA,dis
s,t ∀t, (4.2)

PDA,ch
t =

S∑
s=1

ξDA,ch
s,t ∀t, (4.3)

P ID,dis
t,ω =

S∑
s=1

ξID,diss,t,ω ∀t, ∀ω, (4.4)

P ID,ch
t,ω =

S∑
s=1

ξID,chs,t,ω ∀t, ∀ω. (4.5)

The charging and discharging powers of the lithium-ion battery are con-
strained by the converter ratings in both markets, as specified in (4.6)–(4.9):

0 ≤ PDA,dis
t ≤ P disβt ∀t, (4.6)

0 ≤ PDA,dis
t + P ID,dis

t,ω ≤ P disβt ∀t, ∀ω, (4.7)

0 ≤ PDA,ch
t ≤ P ch (1− βt) ∀t, (4.8)

0 ≤ PDA,ch
t + P ID,ch

t,ω ≤ P ch (1− βt) ∀t,∀ω. (4.9)
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Here, P ch and P dis denote the maximum charging and discharging powers of
the battery, and βt is a binary decision variable indicating the discharging mode.
Constraints (4.6)–(4.9) ensure that the storage system does not charge and
discharge simultaneously and that its power schedules remain within technical
limits.

In addition, it is important to limit the intraday charging and discharging
powers relative to the day-ahead schedule [163]. This is enforced by (4.10) and
(4.11):

0 ≤ P ID,dis
t,ω ≤ θ PDA,dis

t ∀t, ∀ω, (4.10)

0 ≤ P ID,ch
t,ω ≤ θ PDA,ch

t ∀t, ∀ω, (4.11)

where θ is a coefficient that limits the magnitude of intraday adjustments
relative to the day-ahead positions. Segment-wise charging and discharging
powers in both markets must be non-negative, as stated in (4.12):

ξDA,dis
s,t , ξDA,ch

s,t , ξID,diss,t,ω , ξID,chs,t,ω ≥ 0 ∀s, ∀t,∀ω. (4.12)

The state-of-charge dynamics are modeled at the level of each segment s
and aggregated to yield the total state-of-charge. Equations (4.13) and (4.14)
describe the hourly state-of-charge in block s and the total hourly state of
charge of the battery, respectively:

δSoCs,t,ω = δSoCs,t−1,ω −
ξDA,dis
s,t + ξID,diss,t,ω

ηdis
+ ηch

(
ξDA,ch
s,t + ξID,chs,t,ω

)
∀s, ∀t,∀ω,

(4.13)

∆SoC
t,ω =

S∑
s=1

δSoCs,t,ω ∀t, ∀ω. (4.14)

In (4.13), δSoCs,t,ω denotes the state of charge in block s of depth of discharge
for scenario ω at time t, while ηch and ηdis are the charging and discharging
efficiencies of the battery storage system. In (4.14), ∆SoC

t,ω represents the total
state of charge at time t in scenario ω.

The state-of-charge must remain within acceptable bounds [164], which are
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expressed in (4.15) and (4.16):

0 ≤ δSoCs,t,ω ≤ κSoC
s ∀s, ∀t,∀ω, (4.15)

0 ≤ ∆SoC
t,ω ≤ ESoC ∀t, ∀ω. (4.16)

Here, κSoC
s is the maximum allowable state-of-charge in block s of depth of

discharge, and ESoC is the maximum energy capacity of the battery storage
system.

Taken together, (4.1)–(4.16) define the risk-neutral two-stage stochastic
battery bidding model that serves as the reference for the risk-aware SSD-based
formulation presented in the following Section.

4.3. SSD-Constrained Battery Bidding Model

The risk-neutral model in (4.1)–(4.16) maximizes the expected profit of the
battery across all price scenarios in the two-stage stochastic setting. This
formulation captures the physical and market constraints in detail, but it does
not control how profits are distributed across scenarios. In particular, it may
produce solutions with high expected revenue but a non-negligible probability
of very low profits. A risk-averse storage operator may prefer to sacrifice part of
the expected profit in exchange for improved protection against such undesirable
outcomes.

This section extends the risk-neutral model by incorporating a risk criterion
based on SSD. The objective remains the maximization of expected profit, while
SSD-type constraints restrict the set of admissible profit distributions to those
that stochastically dominate a preset benchmark. The resulting formulation
provides a systematic way to trade expected revenue against downside protection
in a way that remains consistent with the axioms of coherent risk measures.

4.3.1 Mathematical Formulation

In the two-stage stochastic program of Section 4.2, price uncertainty is repre-
sented by a finite set of scenarios for day-ahead and intraday electricity markets.
This representation naturally emphasizes the need for risk management. A
standard approach is to introduce a risk measure in addition to the expectation
operator and to optimize a risk-adjusted objective or impose risk constraints.
Widely used risk criteria include variance, probability of shortfall, expected
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shortage, value-at-risk, and CVaR [45]. Among these, CVaR is the only mea-
sure that is coherent in the sense of [124], which explains its widespread use in
power-system and energy-market applications.

The SSD criterion provides an alternative way to represent risk preferences.
While CVaR focuses on the lower tail of the profit distribution, SSD compares
entire distributions against a benchmark. In intuitive terms, SSD ensures that,
for any profit threshold, the probability of obtaining a profit below this threshold
is no larger than under the benchmark. A decision-maker who prefers more
profit to less and exhibits risk aversion should always prefer a distribution that
SSD-dominates another [124]. In the present context, this property allows the
battery operator to specify a reference profit distribution and restrict attention
to bidding strategies whose profits stochastically dominate this benchmark.

To formalize this idea, it is convenient to introduce an explicit variable for
the scenario-wise profit. Let

Rω =

T∑
t=1

[
λDA
t,ω

(
PDA,dis
t − PDA,ch

t

)
+ λIDt,ω

(
P ID,dis
t,ω − P ID,ch

t,ω

)
−

S∑
s=1

Φs

(
ξDA,dis
s,t + ξID,dis

s,t,ω

)]
∀ω.

(4.17)
By construction, the risk-neutral objective in (4.1) can be written as the

maximization of the expected profit,

max
Ξ1st ,Ξ2nd

Ω∑
ω=1

πωRω, (4.18)

subject to the operational constraints (4.2)–(4.16) and the definition of Rω in
(4.17).

The SSD-constrained version of this model is obtained by adding dominance
constraints that relate the profit distribution {Rω, πω} to a benchmark distri-
bution {kb, ηb}. Here, kb denotes the profit level in benchmark scenario b, and
ηb is the associated probability. Let ζω,b be a non-negative auxiliary variable
that measures the shortfall of scenario ω relative to benchmark level kb. A
linear characterization of SSD between the model outcome and the benchmark
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can then be written as [45]

Rω ≥ kb − ζω,b ∀ω, ∀b, (4.19a)
Ω∑
ω=1

πωζω,b ≤
B∑
b′=1

ηb′ max(kb − kb′ , 0) ∀b, (4.19b)

ζω,b ≥ 0 ∀ω, ∀b. (4.19c)

Constraint (4.19a) defines the shortfall variables as the amount by which
scenario profit Rω falls below each benchmark level kb. Constraint (4.19b)
restricts the expected shortfall of the model relative to each benchmark point
kb so that the resulting profit distribution SSD-dominates the benchmark
distribution {kb, ηb}Bb=1. Non-negativity of the shortfall variables is enforced by
(4.19c).

Combining (4.17), (4.18), and (4.19) with the operational constraints leads
to the full SSD-constrained battery bidding model:

max
Ξ1st ,Ξ2nd

Ω∑
ω=1

πωRω, (4.20a)

s.t. Definition of scenario profits Rω in (4.17), (4.20b)

SSD constraints (4.19a) − (4.19c), (4.20c)

Operational constraints (4.2) − (4.16). (4.20d)

The objective function in (4.20a) remains identical to that of the risk-neutral
model. The additional constraints in (4.20b)–(4.20c) implement the SSD cri-
terion with respect to the chosen benchmark, while preserving the linear or
mixed-integer structure of the problem.

In principle, the decision-maker can specify any number of benchmark sce-
narios B with associated probabilities ηb. Figure 4.2 illustrates three examples
of benchmark distributions, with one, two, and three scenarios, respectively.1

As the number of benchmark scenarios increases, the benchmark distribution
can approximate a smooth cumulative distribution function. This provides
a fine-grained way to shape the range and curvature of the admissible profit
distributions. Conversely, a benchmark with a small number of scenarios leads
to a simpler representation that still controls the range of profits but allows

1The benchmark distributions in Fig. 4.2 are represented through their cumulative proba-
bilities, and the corresponding lower and upper bounds are discussed in Section 4.3.2.
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Figure 4.2: Examples of benchmark distributions with different numbers of
scenarios in an SSD-constrained problem.

more flexibility in the shape of the resulting distribution.
In the remainder of this chapter, a single-scenario benchmark is adopted.

This choice corresponds to B = 1 and η1 = 1 and keeps the economic inter-
pretation of the SSD constraint transparent. The benchmark then reduces
to a single profit level that the entire profit distribution of the model must
SSD-dominate, while the benchmark selection procedure described next ensures
that this level remains both feasible and meaningful.

4.3.2 Deriving the Benchmark Feasible Region under the SSD
Criterion

The performance of the SSD-constrained model in (4.20) depends critically
on the choice of benchmark. If the benchmark is too conservative or too
ambitious, the optimization problem may become trivial or infeasible. It is
therefore essential to characterize the range of benchmark values that lead to a
well-posed problem. This subsection describes a generic procedure to derive a
feasible interval for a single-scenario benchmark, which will later be combined
with regret-based arguments in Section 4.4.

The feasible region can be visualized on the Cumulative Distribution Func-
tion (CDF) of the profit variable. Figure 4.3 shows an illustrative example,
where the CDF of the risk-neutral solution and that of an SSD-constrained
solution are plotted together with the benchmark and its feasible region. The
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Figure 4.3: Illustrative example of CDFs and benchmark feasible region in an
SSD-constrained problem.

admissible interval for the benchmark is the rectangular region between a lower
and an upper bound on the profit axis. Any benchmark outside this interval
either has no impact on the solution or cannot be dominated by any feasible
bidding strategy.

The lower bound of the benchmark interval is obtained from the risk-neutral
solution. Let RRN

ω denote the scenario-wise profits produced by the risk-neutral
model (4.1)–(4.16). The benchmark lower bound is defined as the smallest of
these profits:

kL = min
ω
RRN
ω . (4.21)

Any benchmark k1 smaller than kL is automatically dominated by the risk-
neutral solution itself. In that case, the SSD-constrained model in (4.20) reduces
to the risk-neutral formulation, because the added constraints are non-binding.

The upper bound is derived from an auxiliary optimization problem in
which the operator maximizes a CVaR-type criterion at a confidence level β
close to one. Let ξ denote the value-at-risk at level β and let φω be non-negative
variables representing the shortfall of scenario profits below ξ. A standard
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CVaR maximization model can be written as

max
Ξ1st ,Ξ2nd

ξ − 1

1− β

Ω∑
ω=1

πωφω, (4.22a)

s.t. Rω ≥ ξ − φω ∀ω, (4.22b)

φω ≥ 0 ∀ω, (4.22c)

Operational constraints (4.2) − (4.16). (4.22d)

Here, β is chosen close to one (for instance β = 0.99), so that the model focuses
on the extreme low-profit realizations [165]. The resulting solution can be
interpreted as the most conservative bidding strategy that a highly risk-averse
decision-maker would adopt within the given operational constraints.

Let RCVaR
ω denote the scenario-wise profits obtained from (4.22). The

benchmark upper bound is then defined as

kU = min
ω
RCVaR
ω . (4.23)

Any benchmark k1 larger than kU cannot be SSD-dominated by any feasible
strategy, because even the most conservative CVaR-maximizing solution fails
to reach that level in all scenarios. In this case, the SSD-constrained model has
no feasible solution.

Combining (4.21) and (4.23) yields a practical benchmark feasible region,

kL ≤ k1 ≤ kU, (4.24)

within which the single-scenario benchmark k1 can be selected. The lower bound
kL corresponds to the worst-case profit of the risk-neutral strategy, while the
upper bound kU corresponds to the worst-case profit of an extremely risk-averse
CVaR-maximizing strategy. This interval is highlighted as the shaded region
in Fig. 4.3. In Section 4.4, this feasible region is combined with regret-based
metrics and out-of-sample evaluation to select benchmarks that are not only
feasible but also aligned with the preferences of the battery operator.
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4.4. Proposed Benchmark Selection Method for SSD-
Constrained Problems

Sections 4.3.1 and 4.3.2 have shown how to embed the SSD criterion into
the battery bidding model and how to construct a feasible interval for the
single-scenario benchmark k1, namely [kL, kU]. Within this interval, any value
of k1 yields a well-posed SSD-constrained problem. However, the choice of a
specific benchmark remains non-trivial, because different values of k1 lead to
different trade-offs between expected profit and downside protection.

The literature on SSD-based models has mostly focused on the properties
of the dominance criterion itself, while benchmark selection has often relied on
ad hoc or purely empirical choices. In this thesis, a more systematic procedure
is proposed. The method combines two complementary performance metrics:

• an ex-ante evaluation based on the notion of regret, which measures how
far the strategy induced by a given benchmark is from an ideal solution
with perfect information, and

• an ex-post out-of-sample evaluation, which tests how the same strategy
performs under an external set of price scenarios that is not used in the
original optimization.

Both metrics are evaluated for a finite set of candidate benchmarks within
[kL, kU]. The resulting two-criterion decision problem is then assessed by the
VIKOR method, a multi-criteria ranking technique that identifies a compromise
solution that is closest to the ideal performance along both dimensions.

4.4.1 Regret-Based Ex-Ante Evaluation

For a given benchmark k1 in the feasible interval [kL, kU], the SSD-constrained
model (4.20) produces a set of scenario-wise profits Rω(k1) and their expectation∑

ω πωRω(k1). To assess how robust this solution is to price uncertainty, it is
useful to compare it to an ideal strategy that would be available if the operator
had perfect foresight of future prices.

Let F ideal
ω denote the maximum profit that can be obtained in scenario ω

when all decisions are allowed to depend on the realization of prices. This
quantity is computed by solving a single-stage, perfect-information version of
the battery bidding problem, in which all decision variables are indexed by
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ω and the two-stage structure is relaxed. The corresponding formulation is
reported in Appendix A.1. For each benchmark k1, the scenario-wise regret is
then defined as

Gω(k1) = F ideal
ω −Rω(k1) ∀ω. (4.25)

Regret quantifies the profit loss incurred when the SSD-constrained two-stage
strategy replaces an ideal benchmark that would make decisions with perfect
price foresight. This benchmark is unattainable in practice, as future prices
and their uncertainties can never be known with complete accuracy.

The average regret associated with benchmark k1 is obtained by taking the
expectation of (4.25):

Ḡ(k1) =
Ω∑
ω=1

πωGω(k1). (4.26)

Decision-makers naturally prefer benchmarks that lead to smaller values of
Ḡ(k1), because they correspond to strategies that remain closer to the ideal,
perfect-foresight outcome. The average regret in (4.26) can also be interpreted
as the objective value of an auxiliary optimization problem in which the operator
minimizes expected regret subject to the same SSD and operational constraints
as in (4.20). In this chapter, (4.26) is used as an ex-ante performance metric
for each candidate benchmark.

4.4.2 Out-of-Sample Evaluation

Expected profit and average regret are computed with respect to the scenario
set that defines the original stochastic program. To assess the robustness
of the resulting strategies, it is important to evaluate them under alternative
realizations of prices that do not appear in the training set. This step is standard
in stochastic programming and in data-driven decision problems [124, 166].

Consider an external scenario set indexed by ω̃ ∈ {1, . . . , Ω̃}, with associated
probabilities π̃ω̃. This set may contain a larger number of scenarios, historical
samples, or simulated trajectories generated by a different model. For each
candidate benchmark k1, the SSD-constrained model (4.20) is first solved
once, using the original scenario set. The resulting first-stage decisions and
decision rules are then simulated under the external scenarios to compute an
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out-of-sample expected profit,

R̄OOS(k1) =

Ω̃∑
ω̃=1

π̃ω̃R̃ω̃(k1), (4.27)

where R̃ω̃(k1) denotes the profit realized when the strategy associated with
benchmark k1 is exposed to scenario ω̃ in the external set.

A higher out-of-sample expected profit R̄OOS(k1) indicates that the bench-
mark leads to decisions that generalize better beyond the training scenarios.
In the benchmark selection problem, R̄OOS(k1) therefore acts as an ex-post
performance metric that complements the ex-ante regret measure Ḡ(k1).

4.4.3 Multi-Criteria Benchmark Ranking with the VIKOR
Method

The two metrics introduced above often point in different directions. A bench-
mark that yields very low average regret may also be very conservative and
produce modest out-of-sample profits. Conversely, a benchmark that gives high
out-of-sample profits may do so at the cost of a larger distance from the ideal
solution. Selecting a single benchmark thus requires a compromise between
these criteria.

To construct this compromise, the feasible interval [kL, kU] is discretized
into n candidate benchmarks {k(j)1 }nj=1, spaced uniformly or according to a

desired resolution. For each candidate k(j)1 :

1. the SSD-constrained model (4.20) is solved once to obtain scenario-wise
profits and the corresponding expected profit,

2. the average regret Ḡ
(
k
(j)
1

)
is computed using (4.25)–(4.26), and

3. the out-of-sample expected profit R̄OOS(k(j)1

)
is evaluated using (4.27).

This procedure yields, for each candidate benchmark j, a pair of performance
indicators

f1,j = −Ḡ
(
k
(j)
1

)
, f2,j = R̄OOS(k(j)1

)
,

where the minus sign in f1,j ensures that larger values are preferred for both
criteria. The benchmark selection problem can then be viewed as a two-criterion
ranking problem over the n candidates. To solve this problem, the VIKOR
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method is adopted [167, 168]. VIKOR has been widely used in multi-criteria
decision-making and is well suited to the present setting, since it explicitly
constructs a compromise solution that is closest to the ideal performance vector.

Let fi,j denote the value of criterion i (here i = 1 for transformed regret
and i = 2 for out-of-sample profit) for benchmark j ∈ {1, . . . , n}. The first step
in VIKOR is to identify the best and worst values for each criterion:

f∗i = max
j
fi,j , (4.28a)

f−i = min
j
fi,j , (4.28b)

with the usual adaptation for cost-type criteria if needed. Each criterion can be
assigned a non-negative weight wi such that

∑
iwi = 1. In this chapter, equal

weights are used for simplicity.
For each benchmark j, the VIKOR method then computes a group utility

measure Sj and an individual regret measure Rj as:

Sj =
∑
i

wi
f∗i − fi,j

f∗i − f−i
, (4.29a)

Rj = max
i

wi
f∗i − fi,j

f∗i − f−i
. (4.29b)

Here, Sj measures the overall distance of benchmark j from the ideal point
across all criteria, while Rj captures the worst normalized deviation on any
single criterion. Small values of Sj and Rj correspond to more attractive
benchmarks.

Let

S∗ = min
j
Sj , S− = max

j
Sj , R∗ = min

j
Rj , R− = max

j
Rj . (4.30)

The VIKOR index Qj for each benchmark j is then defined as

Qj = v
Sj − S∗

S− − S∗ + (1− v)
Rj −R∗

R− −R∗ , (4.31)

where v ∈ [0, 1] is a parameter that reflects the relative importance of the group
utility measure versus the individual regret measure. Following [168], a typical
choice is v = 0.5, which gives equal weight to both.

The benchmarks are then sorted in ascending order of Qj . The candidate
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Algorithm 1 VIKOR method for benchmark ranking

1: Input: candidate benchmarks k(j)1 , j = 1, . . . , n, with associated criteria
values f1,j = −Ḡ

(
k
(j)
1

)
and f2,j = R̄OOS(k(j)1

)
, and criterion weights w1, w2.

2: For each criterion i, compute the best and worst values using (4.28a)–
(4.28b).

3: For each benchmark j, compute the group utility measure Sj and the
individual regret measure Rj using (4.29a)–(4.29b).

4: Compute S∗, S−, R∗, and R− according to (4.30).
5: For each benchmark j, compute the VIKOR index Qj using (4.31) with a

chosen value of v (here v = 0.5).
6: Rank all benchmarks in ascending order of Qj .
7: Output: ranking of candidate benchmarks and the compromise benchmark

corresponding to the smallest Qj .

with the smallest value of Qj is identified as the most desirable compromise
solution. In the context of this chapter, this benchmark provides a balanced
trade-off between low average regret and high out-of-sample expected profit,
and it is therefore selected as the reference benchmark for the SSD-constrained
battery bidding model.

For completeness, Algorithm 1 summarizes the implementation of the
VIKOR procedure used to rank candidate benchmarks.

4.5. Case Study and Numerical Results

This section evaluates the proposed risk-averse SSD-constrained bidding frame-
work on a representative grid-scale battery storage system. The case study
illustrates how the benchmark feasible region is constructed, how the benchmark
selection method of Section 4.4 operates in practice, and how the resulting
bidding strategies compare with conventional deterministic, stochastic, and
robust formulations.

4.5.1 Case Study Setup

The numerical experiments consider a lithium-ion battery storage with a rated
power of 35 MW and an energy capacity of five hours, corresponding to a
maximum stored energy of 175 MWh. Charging and discharging efficiencies
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are set to ηch = ηdis = 0.95 [169]. The cycle-aging cost function is taken from
[147] and represented in the optimization model through a piecewise-linear
approximation with S = 20 depth-of-discharge segments.

Day-ahead and intraday electricity prices correspond to the Spanish whole-
sale market on 16 May 2022 [170]. For the ex-ante analysis, 1000 day-ahead
and 1000 intraday price trajectories are generated following the general scenario
generation and reduction framework of [163, 171]. Specifically, we model hourly
price uncertainty using Gaussian distributions fitted to historical observations
from May 2022. This procedure yields 24 hour-specific distributions for the
day-ahead market and 24 for the intraday market, parameterized by the empir-
ical mean and standard deviation estimated for each delivery hour. We then
generate synthetic price trajectories by independently sampling each hourly
price from its corresponding distribution and assembling the 24 sampled values
into a daily trajectory. Day-ahead and intraday trajectories are generated in the
same manner, without imposing an explicit dependence structure between the
two markets. This approach captures hour-by-hour marginal uncertainty but
does not explicitly enforce temporal dependence across hours. The resulting sets
are reduced to 20 representative scenarios for each market using the reduction
method in [163, 171]. The reduced scenario sets are illustrated in Fig. 4.4,
which shows the reduced hourly prices in the day-ahead and intraday markets
for the delivery day. For the ex-post out-of-sample analysis, an additional set
of 1000 scenarios is generated using the same approach, without reduction.
Figure 4.5 displays these out-of-sample price trajectories.

The coefficient that limits intraday adjustments relative to the day-ahead
positions, denoted by θ in constraints (4.10)–(4.11), is set to θ = 0.3 [168]. This
choice restricts the intraday charging and discharging powers to at most 30%
of the corresponding day-ahead bids, which reflects the design of the intraday
auction under study. All optimization models in this chapter are formulated as
MILP and implemented in GAMS [172]. All simulations are conducted on a
laptop equipped with an 11th-generation Intel Core i7 processor (2.50 GHz)
and 16 GB of memory. They are solved with the CPLEX solver using default
settings.

83



Risk-Aware Market Dispatch of Grid-Scale Batteries

0

0

100

24

200

5

Day-ahead Market

300

18

Scenario ( )

10

Time (h)

12
15 6

20 0

0

0

100

24

200

5

Intraday Market

300

18

Scenario ( )

10

Time (h)

12
15 6

20 0

Figure 4.4: Reduced day-ahead and intraday price scenarios for the ex-ante
analysis.
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Figure 4.5: One thousand day-ahead and intraday price scenarios for the ex-post
out-of-sample analysis.

4.5.2 Step-by-Step Implementation of the Benchmark Selection
Method

The first step in applying the SSD-constrained model is to compute the feasible
interval for the single-scenario benchmark k1, as described in Section 4.3.2. This
interval is defined by a lower bound kL derived from the risk-neutral strategy
and an upper bound kU derived from a highly risk-averse CVaR-maximizing
strategy.

Benchmark lower bound. The benchmark lower bound kL is obtained from
the risk-neutral model (4.1)–(4.16). Solving this model for the case study yields
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Figure 4.6: Benchmark feasible region in the SSD-constrained bidding problem.

a set of scenario-wise profits, whose minimum value is:

kL = € 10,480.

Figure 4.6 shows the CDF of the risk-neutral profit together with this lower
bound. Any benchmark k1 < kL would be trivially dominated by the risk-
neutral strategy, so the SSD constraints would be non-binding and the SSD-
constrained model would reduce to the risk-neutral formulation.

Benchmark upper bound. The upper bound kU is obtained from the
CVaR-maximization model in (4.22), with a confidence level β close to one
(here β = 0.99). This auxiliary problem yields an extremely conservative
strategy that emphasizes the worst profit realizations. The minimum scenario-
wise profit under this strategy is:

kU = € 11,301.

The associated CDF is also plotted in Fig. 4.6 and labelled as “Risk-averse”.
Any benchmark k1 > kU would be impossible to dominate in the SSD sense, so
the SSD-constrained model would become infeasible.

The resulting benchmark feasible region is therefore the interval
€[10480, 11301]. Following the procedure described in Section 4.4.3, this
interval is discretized into n = 11 candidate benchmarks. The spacing between
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Table 4.1: Performance of the SSD-constrained model for eleven different
benchmarks.

Average Average Maximum Average out-of-sample
k1 (€)

profit (€) regret (€) regret (€) profit (€)

10,480 15,594.69 2,401.64 5,365.82 15,463.46

10,562.1 15,591.96 2,404.37 5,453.79 15,524.28

10,644.2 15,588.53 2,407.79 5,457.35 15,537.21

10,726.3 15,585.01 2,411.31 5,460.94 15,500.14

10,808.4 15,580.14 2,416.18 5,458.81 15,547.38

10,890.5 15,560.87 2,435.45 5,588.63 15,502.29

10,972.6 15,533.90 2,462.42 5,805.69 15,465.32

11,054.7 15,499.56 2,496.76 6,101.99 15,486.25

11,136.8 15,450.54 2,545.78 6,296.46 15,429.22

11,218.9 15,220.55 2,775.77 6,472.73 15,177.73

11,301 14,901.59 3,094.74 6,695.22 14,699.97

consecutive benchmarks is:

∆k =
11,301− 10,480

10
= 82.1,

so that the candidate benchmarks are

k
(j)
1 = 10,480 + (j − 1)∆k, j = 1, . . . , 11.

These values appear in the first column of Table 4.1.
For each candidate benchmark k(j)1 , the SSD-constrained model (4.20) is

solved once using the reduced scenario set of Fig. 4.4. The resulting strategy is
then evaluated in terms of:

• the average profit over the training scenarios,
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• the average and maximum regrets defined in (4.25)–(4.26), using the ideal
profits F ideal

ω from Appendix A.1, and

• the out-of-sample expected profit obtained under the external scenario
set of Fig. 4.5, as defined in (4.27).

The numerical values of these metrics for all benchmarks are reported in
Table 4.1. Several qualitative observations can be drawn:

1. Average profit decreases as the benchmark increases. This effect becomes
more pronounced when benchmarks approach the upper bound kU, since
the model must sacrifice more expected profit in order to dominate a very
ambitious benchmark.

2. Both average and maximum regrets tend to increase with the benchmark.
When the benchmark moves closer to kU, the model pushes the strategy
toward more conservative profit distributions, which remain further from
the ideal perfect-foresight solution.

3. The impact of the benchmark on the out-of-sample expected profit does
not follow a monotone pattern. For moderate benchmark values, the
out-of-sample profit remains relatively stable, but it declines sharply when
the benchmark approaches kU, reflecting the cost of extreme risk aversion.

These trends highlight the need for a structured multi-criteria approach to
benchmark selection, since no single benchmark is uniformly best across all
metrics.

To select a single benchmark, the VIKOR method of Algorithm 1 is applied
to the set of candidates, using two alternative decision-making strategies with
equal weighting parameter v = 0.5:

1. Strategy 1: criteria are [average regret] and [average out-of-sample
profit].

2. Strategy 2: criteria are [maximum regret] and [average out-of-sample
profit].

For each strategy, the VIKOR index Qj in (4.31) is computed for all bench-
marks and used to rank them in ascending order. The results are summarized
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Table 4.2: Ranking of input benchmarks under two decision-making strategies
with v = 0.5.

k1 (€)

Strategy 1 Strategy 2

[Average regret + [Maximum regret +

out-of-sample profit] out-of-sample profit]

Qj Ranking Qj Ranking

10,480 0.063785491 6 0.025124936 5

10,562.1 0.010322632 3 0.006080420 3

10,644.2 0 1 0.004257288 2

10,726.3 0.034473287 4 0.017734863 4

10,808.4 0.004578009 2 0.002023471 1

10,890.5 0.041348686 5 0.093387681 6

10,972.6 0.084279533 7 0.234411984 7

11,054.7 0.111004155 8 0.405093215 8

11,136.8 0.181665151 9 0.538744749 9

11,218.9 0.508405027 10 0.720974034 10

11,301 1 11 1 11

in Table 4.2. Under Strategy 1, the compromise solution corresponds to bench-
mark k1 = €10,644.2, whereas under Strategy 2 it corresponds to benchmark
k1 = €10,808.4. These compromise benchmarks and their associated Qj values
are highlighted in Table 4.2.

Table 4.3 compares the two compromise benchmarks in terms of average
profit, average and maximum regret, and out-of-sample expected profit. Strategy
1 yields slightly higher average profit and lower regret values, while Strategy
2 achieves a marginally higher out-of-sample profit. Figure 4.7 shows the
corresponding profit CDFs. The benchmark selected under Strategy 1 leads to
a somewhat broader profit range and higher expected profit, whereas Strategy
2 delivers a more conservative distribution. Consistently with the benchmark
values, Strategy 2 is therefore more risk-averse than Strategy 1.
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Table 4.3: Comparison between compromise benchmarks under decision-making
Strategies 1 and 2.

Strategy
Average Average Maximum Average out-of-sample

profit (€) regret (€) regret (€) profit (€)

Strategy 1 15,588.53 2,407.79 5,457.35 15,537.21

Strategy 2 15,580.14 2,416.18 5,458.81 15,547.38

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
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Figure 4.7: CDF of battery storage profit for the compromise benchmarks
obtained under Strategies 1 and 2.

4.5.3 Performance Analysis: Comparative Study

The final step is to compare the proposed SSD-constrained model with alterna-
tive bidding approaches. Four formulations are considered:

• A deterministic model, in which the scenario set is replaced by the single
time series of realized prices on 16 May 2022;

• A pure stochastic programming model, corresponding to the regret-based
formulation without SSD constraints;

• A robust programming model, in which uncertainties are represented by
uncertainty sets and a robustness parameter; and
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Table 4.4: Comparative analysis of different bidding approaches.

Average Maximum Average out-of-sample
Approach

regret (€) regret (€) profit (€)

Deterministic 2,664.66 6,881.12 15,457.66

Stochastic Programming 2,401.64 5,365.82 15,458.49

Robust programming 3,525.39 7,741.84 15,449.27

Proposed model
2,407.79 5,457.35 15,537.21

(Strategy 1)

Proposed model
2,416.18 5,458.81 15,547.38

(Strategy 2)

• The proposed SSD-constrained model with the compromise benchmarks
selected under Strategies 1 and 2.

The robust formulation and the associated robustness parameters are de-
tailed in Appendix A.2, where the VIKOR method is also used to identify
a compromise robustness level. For each approach, average and maximum
regrets are computed with respect to the ideal profits F ideal

ω , and out-of-sample
expected profit is evaluated using the 1000 external scenarios of Fig. 4.5. The
results are summarized in Table 4.4. From a computational perspective, all for-
mulations reported in this section require limited CPU time, since the resulting
MILP instances remain small. Based on the CPU time reported by GAMS, the
deterministic and robust formulations solve in sub-second time (approximately
0.21 s). The stochastic programming and the SSD-constrained formulations in-
crease the number of continuous variables due to scenario replication. However,
the binary decisions remain scenario-independent (24 hourly binary variables).
As a result, each MILP instance at a given benchmark level solves within a few
seconds, with an average CPU time of about 2.86 s.

Several conclusions emerge from Table 4.4. First, the robust programming
model performs poorly in terms of both regret and out-of-sample profit. Since
robust optimization focuses on the worst-case realization within the uncertainty
set, it tends to produce very conservative strategies that are rarely optimal in
typical scenarios, which inflates regret and reduces profitability. When regret
is part of the evaluation, such extreme conservatism is difficult to justify.
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Second, the deterministic model, which relies on a single point forecast of
prices, performs better than the robust model but still exhibits higher regrets
than the stochastic approaches. This result reflects the limitations of relying
on a single forecast in the presence of significant price uncertainty.

Third, the pure stochastic programming model attains the lowest regret
values, since its formulation explicitly minimizes expected regret without addi-
tional SSD constraints. However, its out-of-sample profit is lower than that of
the proposed model. The introduction of an SSD benchmark therefore slightly
deteriorates the regret metrics but improves the robustness of profits when
evaluated on external scenarios.

Finally, the proposed SSD-constrained model under both Strategies 1 and 2
delivers the highest out-of-sample expected profits while keeping regret at levels
that are close to those of pure stochastic programming. This outcome confirms
that the combination of SSD constraints with the benchmark selection method
of Section 4.4 provides a favourable balance between downside protection and
profitability for the battery storage operator.

4.6. Chapter Conclusion

This chapter has provided the first methodological contribution of the thesis
by addressing how a grid-scale battery should bid in day-ahead and intraday
markets when price uncertainty and risk aversion are explicitly taken into
account. Building on the optimization concepts of Chapter 3 and the storage
background of Chapter 2, the chapter has first formulated a two-stage, risk-
neutral bidding model for a lithium-ion battery that co-optimizes day-ahead
and intraday decisions under inter-temporal energy constraints and degradation
costs. It has then extended this formulation to a risk-aware framework based on
SSD, in which the profit distribution of the battery is constrained to dominate
a benchmark distribution specified by the operator.

A central contribution of the chapter has been to clarify how benchmarks
should be handled in SSD-constrained models. On the modelling side, the
chapter has shown how to embed SSD constraints in a linear way, how to define
a single-scenario benchmark that remains tractable, and how to construct a
feasible interval for this benchmark by combining the worst-case outcomes of a
risk-neutral and a CVaR-maximizing strategy. On the decision-support side, it
has proposed a benchmark selection method that relies on two complementary
metrics: an ex-ante regret index that measures the distance to a perfect-foresight
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ideal solution, and an ex-post out-of-sample profit that measures generalization
to external price scenarios. The VIKOR method has been used to combine these
metrics and identify compromise benchmarks that balance downside protection
and revenue maximization.

The case study on the Spanish wholesale market has illustrated how these
elements fit together in practice. The numerical results have shown that
defining a benchmark feasible region helps avoid infeasible or uninformative SSD-
constrained problems and guides the search toward economically meaningful
benchmarks. They have also confirmed that higher benchmarks tighten the
dominance constraints, which reduces average profit and increases both average
and maximum regret, especially close to the upper bound of the feasible interval.
At the same time, the proposed SSD-constrained model, equipped with the
benchmark selection procedure, has delivered higher out-of-sample profits than
deterministic, pure stochastic, and robust formulations, while keeping regret
at levels that remain close to those of pure stochastic programming. The
comparison has further indicated that robust formulations are difficult to justify
when regret is part of the evaluation, because worst-case optimization tends to
generate strategies that perform poorly in typical conditions.

Overall, this chapter has demonstrated that SSD-based constraints, com-
bined with a structured benchmark selection method, provide a practical way
to tailor battery bidding strategies to the preferences of a risk-averse operator.
The framework remains compatible with standard MILP tools and can be
adapted to alternative market designs or storage technologies. The next chapter
builds on these foundations and extends the analysis from lithium-ion batteries
to advanced, next-generation storage technologies, where optimization across
multi-energy markets becomes central.

Chapter Publication

• H. Khaloie, J. Faraji, F. Vallée, C. S. Lai, J.-F. Toubeau, and L. L. Lai,
“Risk-Aware Battery Bidding With a Novel Benchmark Selection Under
Second-Order Stochastic Dominance,” IEEE Transactions on Industry
Applications, vol. 59, no. 3, pp. 3009–3018, May–June 2023.
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CHAPTER 5
Integrated Dispatch of LAES-LNG in Power and LNG

Markets

The previous chapter developed a stochastic, risk-aware bidding framework
for a grid-scale lithium-ion battery participating in day-ahead and intraday
electricity markets. While such batteries provide fast response and short
discharge duration, they are not sufficient on their own to cover the multi-hour
and multi-day flexibility needs of highly decarbonized energy systems. In
addition, their operation can be represented with relatively simple efficiency
models, which facilitates market-based dispatch but does not capture the broader
class of emerging long-duration storage technologies. By contrast, advanced
storage concepts such as LAES thermally coupled with LNG regasification
exhibit strong thermo-mechanical interactions, part-load efficiency variations,
and multi-energy inputs and outputs that depend on both electricity and
LNG flows. These features create new modeling challenges for the dispatch
problem, since the plant must be scheduled consistently across coupled markets,
under uncertainty in both price processes, and with realistic representations
of design performance. Addressing these challenges is important to obtain
reliable estimates of project profitability, to reveal the actual system value
of LAES-LNG integration, and to provide credible decision-making tools for
investors, terminal operators, and policymakers who consider long-duration,
sector-coupled storage as part of future net-zero energy systems.

The remainder of this chapter is structured as follows. Section 5.1 reviews
the literature on LAES dispatch models and on efficiency improvement strate-
gies for LAES plants, with emphasis on sector-coupled configurations and LNG
regasification. Section 5.2 presents the advanced LAES-LNG system description,
the market setup, and the main modeling assumptions. Section 5.3 formulates
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the two-stage stochastic day-ahead dispatch model for the LAES-LNG facility.
Section 5.4 introduces the economic feasibility framework based on a probabilis-
tic payback period under price uncertainty. Section 5.5 describes the case study
and reports numerical results. Section 5.6 concludes the chapter and outlines
implications for the integration of LAES-LNG systems into future multi-energy
markets.

5.1. Literature Review on LAES Dispatch and Effi-
ciency Enhancement

Building on the general overview of LAES technologies provided in Chapter 2,
this section focuses on studies that address the dispatch of LAES plants and
the improvement of their thermodynamic efficiency. The existing literature can
be grouped into works that consider standalone LAES facilities and works that
integrate LAES with other processes or energy carriers.

Early contributions on LAES operation investigate standalone plants that
participate only in electricity markets and are modeled as bulk storage units
with relatively simple efficiency representations [173, 174, 175, 176, 177]. These
studies typically optimize the charging and discharging schedules of the plant
for arbitrage and, in some cases, for ancillary services, under deterministic or
scenario-based electricity prices. They confirm that LAES can provide system
value through arbitrage and flexibility, but they also show that investment prof-
itability is difficult to achieve when the plant is operated as a standalone facility
with current technology costs and constant round-trip efficiency assumptions.
In some cases, the estimated payback period exceeds the technical lifetime of
the plant, which highlights the need for efficiency gains or additional revenue
streams [173, 174, 175, 176, 177].

A second group of works couples LAES with other processes in order to
increase asset utilization and improve overall energy efficiency. Examples include
LAES plants integrated with photovoltaic systems or air separation units, where
the storage facility absorbs surplus electricity or shares equipment and thermal
resources with the co-located process [178, 179, 180]. These configurations can
increase the effective round-trip efficiency of LAES by exploiting synergies in
compression, liquefaction, and cold recovery. However, most of these studies
focus on steady-state operation or simplified scheduling problems and often
treat the external process as a fixed boundary condition. Explicit interactions
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with multiple energy markets are usually not modeled, and the analysis of
long-term project profitability remains limited.

In parallel, several thermodynamic studies examine advanced LAES cycles
and component-level performance. These works propose design improvements
such as multi-stage compression and expansion, enhanced regeneration, and
advanced heat and cold recovery schemes, and assess their impact on cycle
efficiency [52, 53, 54, 55, 56]. Other contributions develop detailed models for
the steady-state and off-design behavior of LAES components and complete
plants, and use these models to analyze part-load operation, start-up and
shut-down behavior, or the provision of ancillary services [58, 59, 60, 61]. These
studies provide important insight into the technical potential of LAES, but
they usually remain disconnected from explicit market design models and do
not address the optimal dispatch of LAES under uncertain prices.

LAES has also been proposed as a suitable candidate for sector coupling, in
particular through integration with LNG regasification. In such configurations,
the large cold exergy released during LNG regasification can be used to assist
the liquefaction or power generation processes of the LAES cycle, which may
lead to significant efficiency gains [57, 52, 49]. The majority of these works
concentrate on thermodynamic performance indicators and on the design of
the integrated LAES-LNG facility, often under design or near-design operating
conditions. The dispatch of the combined system in coupled electricity and
LNG markets, and its profitability under price uncertainty, have received much
less attention.

Several authors have pointed out that the performance of LAES is sensitive
to the operating point and that off-design operation may significantly reduce
effective round-trip efficiency [179, 178, 180, 51]. When dispatch models ignore
this behavior and rely on constant efficiency parameters, they may overestimate
the energy output and the revenue of LAES projects [179, 173, 174, 175, 176,
177, 178, 180]. Recent reviews on long-duration storage and sector-coupled
energy systems recognize LAES as a promising candidate for multi-hour to
multi-day flexibility and for the integration of electricity and gas infrastructures
[34, 50]. At the same time, they underline the need for market-based models
that combine realistic efficiency representations with explicit participation in
multiple markets.

Despite this growing body of work, important gaps remain in the dispatch
and economic assessment of LAES facilities thermally integrated with LNG
regasification. Existing dispatch studies either focus on standalone LAES plants
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or consider simplified couplings with other processes, and thermodynamic
analyses of LAES-LNG integration rarely include a consistent market-based
operation model. Economic assessments often rely on deterministic payback
or net present value calculations and do not account for the joint uncertainty
of electricity and LNG prices. In this chapter, these gaps are addressed by
developing a two-stage stochastic day-ahead dispatch model for an LAES-LNG
facility that participates simultaneously in electricity and LNG markets and
evaluates investment attractiveness using a probabilistic payback period under
price uncertainty.

5.2. Advanced LAES-LNG System, Market Environ-
ment, and Modeling Assumptions

The literature reviewed in Section 5.1 highlights that the technical performance
and economic prospects of LAES strongly depend on plant configuration and
the way the facility interacts with energy markets. These aspects become even
more critical when LAES is thermally coupled with LNG regasification, since
the combined system relies on multiple energy carriers and exhibits tightly
coupled thermo-mechanical processes. To support the dispatch model developed
in Section 5.3 and the subsequent economic feasibility analysis, this section
describes the configuration of the proposed LAES-LNG facility, introduces the
day-ahead electricity and LNG market environment in which it operates, and
states the main modeling assumptions adopted in this chapter.

5.2.1 System Description

Figure 5.1 shows the layout of the proposed LAES-LNG facility. In addition
to the three subsystems already discussed in Chapter 2 for standalone LAES,
namely charging, storage, and discharging, the integrated facility includes three
additional components: LNG storage, a regasification unit, and a combus-
tor. These components are responsible for the physical coupling between the
electricity and LNG chains within the plant.

Similar to a standalone LAES installation, the charging subsystem draws
electricity from the grid to drive air compressors. The compressed ambient air
then enters the liquefaction unit, where it is cooled and converted into liquid
air, which is stored in a cryogenic liquid air tank. The cold energy required by
the liquefaction unit is supplied from two sources: (i) the cold released during
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liquid air evaporation and (ii) the cold exergy available from LNG regasification.
The second source is specific to the LAES-LNG configuration and creates a
first point of interaction between the electricity-based charging process and the
LNG system.

In parallel, an authorized terminal supplies LNG to the on-site LNG storage.
When the plant operator schedules electricity generation, the liquefied air stored
in the liquid air tank is pressurized and sent to the combustor. At the same
time, LNG is routed through the regasification unit, where it is converted
into natural gas, and then conveyed to the combustor. Inside the combustor,
the high-pressure air and natural gas are mixed and co-fired. The resulting
high-temperature working fluid expands in a gas turbine that drives an electrical
generator. In this way, the discharge process of the LAES subsystem is directly
linked to the LNG stream, and the energy flows between the LNG system
and the LAES discharging subsystem become strongly interconnected. A high-
level estimate of the direct combustion-related CO2 emissions indicates that,
under the adopted heat rate assumption, the LAES-LNG discharge block emits
approximately 63% less CO2 per MWh than a reference simple-cycle gas turbine;
Appendix A.3 provides the detailed calculation.

Compared with a standalone LAES plant, the proposed LAES-LNG configu-
ration exploits the large cold exergy of LNG regasification to assist liquefaction
and to improve the overall thermodynamic efficiency of the cycle. At the same
time, the combined use of electricity and LNG as inputs, and electricity and
regasified gas as outputs, requires a dispatch model that captures the joint
scheduling of these flows in a consistent way. The schematic layout in Fig. 5.1
provides the physical basis for the mathematical formulation developed in
Section 5.3.

5.2.2 Market Setup

The day-ahead dispatch of the LAES-LNG facility requires a consistent repre-
sentation of its interaction with the markets of the involved energy carriers,
namely electricity and LNG. In deregulated environments, both electricity
and gas derivatives, including LNG, can be traded in organized markets to
meet the needs of suppliers and consumers. This chapter adopts the Spanish
market framework as a representative example, given the country’s liquid LNG
market enabled by multiple operational regasification terminals, while keeping
the modeling approach adaptable to other market designs.
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Figure 5.1: Schematic layout of the proposed LAES-LNG facility.

In the Spanish context, electricity is traded in the Iberian electricity market
operated by OMIE,1 whereas LNG is traded in the Iberian gas derivatives
market operated by MIBGAS.2 Both commodities can be traded one day in
advance, and additional products are available for longer and shorter time
frames. A distinctive feature of the Iberian LNG market is the presence of the
virtual balancing tank (TVB3), which allows any market participant to trade
LNG without being tied to a specific physical terminal.

Before the introduction of the TVB, LNG transactions were fragmented and
linked to individual LNG terminals or regasification plants. The TVB, which
has been in operation since April 1, 2020, aggregates the storage capacities
of all Spanish regasification plants into a single virtual tank. In practice, this
integration creates a unified LNG hub where market participants can buy and
sell LNG independently of the physical location where the LNG is stored. The
consolidation of storage capacity and the removal of terminal-specific constraints
increase the number of potential counterparties and enhance market liquidity
and efficiency.

Figure 5.2 illustrates the day-ahead market setup for electricity and LNG.
The day-ahead LNG market is cleared at 11:00 a.m., while the day-ahead
electricity market is cleared one hour later, at noon. As a result, the LAES-LNG
facility must submit its LNG bids for the next day before 11:00 a.m. The results
of the LNG market are published shortly after closure, which provides the facility

1OMIE (Operador del Mercado Ibérico de Energía): https://www.omie.es/.
2MIBGAS (Mercado Ibérico de Gas): https://www.mibgas.es/.
3Tanque Virtual de Balance.
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Figure 5.2: Market setup for day-ahead electricity and LNG trading.

with perfect information on next-day LNG prices when submitting its day-
ahead electricity bids and offers4 before noon. Immediately after the electricity
market is cleared, the operator receives the accepted quantities and prices,
and fixes the next-day schedule of the LAES-LNG facility. This sequential
structure underpins the two-stage stochastic dispatch formulation described in
Section 5.3.

5.2.3 Model Assumptions

The day-ahead dispatch model for the LAES-LNG facility relies on the following
assumptions:

• The LAES-LNG facility is modeled as a perfectly competitive market
participant in both electricity and LNG markets. It takes market prices as
given, has no market power, and operates under steady-state conditions
at the time scale of the day-ahead schedule.

• A two-stage stochastic program is used to represent sequential decision-
making in the presence of uncertain day-ahead electricity and LNG prices,
consistent with the market sequence in Fig. 5.2. The uncertainties are
represented by discrete scenarios generated from Gaussian distributions
[181, 182, 183]. For a daily dispatch horizon, a set of 24 individual
Gaussian distributions is employed to generate electricity price scenarios,
with each distribution corresponding to a specific hour of the next day.
Since the LNG price is assumed to remain constant throughout the day,
a single Gaussian distribution is used to generate LNG price scenarios.

• The economic feasibility study, and in particular the payback period
analysis, accounts for uncertainty in both investment cost and annual

4Throughout this chapter, bids and offers refer to buying and selling quantities, respectively.
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profit. These quantities are modeled as Gaussian random variables. Using
probability distributions for investment cost and annual profit allows
decision-makers to characterize the range of plausible outcomes and their
associated probabilities, rather than relying on single-point estimates.
This is particularly relevant for LAES-LNG projects, where annual profit
depends on volatile electricity and LNG prices, and where cost estimation
is subject to significant uncertainty due to the scale and complexity of the
required infrastructure. The choice of Gaussian distributions is supported
by three arguments: (i) the central limit theorem, which states that the
sum of many independent and identically distributed random variables
tends to a normal distribution [184]; (ii) extensive empirical evidence
indicating that many economic variables, including investment costs and
profits, can be approximated reasonably well by Gaussian distributions
[185, 186]; and (iii) the widespread use of Gaussian models in engineering
practice, which benefits from their convenient analytical properties.

These assumptions provide a tractable yet informative representation of the
LAES-LNG facility and its market environment. They form the basis for the
stochastic dispatch formulation presented in Section 5.3 and for the probabilistic
payback period analysis developed in Section 5.4.

5.3. Two-Stage Stochastic Day-Ahead Dispatch Model
for LAES-LNG Coupled Operation

Building on the physical configuration and market environment described in Sec-
tion 5.2, this section develops the day-ahead dispatch model for the LAES-LNG
facility. The formulation follows the two-stage stochastic programming frame-
work introduced in Chapter 3, with first-stage decisions that must be taken
before the LNG market is cleared and second-stage decisions that are adjusted
once LNG prices are revealed and before the day-ahead electricity market clo-
sure. For completeness, Appendix A.4 summarizes the corresponding dispatch
model for a standalone LAES facility, adapted from [173], which provides a
useful reference for assessing the added value of the LAES-LNG integration.

The market setup described in Fig. 5.2 requires a sequential interaction
with LNG and electricity markets. To capture this sequence, the day-ahead
dispatch problem is formulated as a two-stage stochastic program with the
following decision structure.
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1. Here-and-now (H&N ) decisions: Before 11:00 a.m. of the current day,
the facility must submit its LNG bids for the next day. The corresponding
H&N decisions include the quantities of LNG to be purchased in the
day-ahead LNG market, denoted by ht, and the associated charging status
of the LNG storage. LNG can only be transferred from the TVB to the
on-site LNG storage if the storage is in charging mode, so the binary
variable βcht is modeled as a first-stage decision that is linked to the values
of ht. These decisions are taken before the realization of LNG prices and
before the first market closure at 11:00 a.m. The set of here-and-now
decision variables ΞH&N is:

ΞH&N =
{
ht, H

tot, βcht

}
.

2. Wait-and-see (W&S) decisions: Shortly after 11:00 a.m., the results
of the day-ahead LNG market are revealed. Between this time and the
electricity market closure at noon, the facility must decide on its day-ahead
electricity bids and offers for the next day. The W&S decisions include
the quantities offered and bid in the day-ahead electricity market and the
operational schedule of the LAES-LNG facility, such as the discharging
status of the LNG storage, the charging and discharging of the LAES
plant, and the evolution of both storage inventories. These decisions are
adapted to the realization of LNG and electricity price scenarios and
are therefore modeled as second-stage variables. The set of wait-and-see
decision variables ΞW&S5 includes:

ΞW&S =
{
P dis
l,d,t, P

ch
l,d,t, q

LNG
l,d,t , q

LAES
l,d,t , αdis

l,t , α
ch
l,t, β

dis
l,t

}
.

The day-ahead dispatch model maximizes the expected profit of the
LAES-LNG facility over a 24-hour horizon (T = 24 time periods of length
kt = 1 hour) under the two-stage stochastic setup described above:

5All wait-and-see decision variables are introduced and defined at their first appearance
in the mathematical formulation that follows.
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max
ΞH&N ,ΞW&S

EF(y, θl, θd) =

∑
t∈T

[
EH&N

[
−htktλLNG

l︸ ︷︷ ︸
O1

+EW&S|H&N
[
P dis
l,d,tktλ

Elec
d,t︸ ︷︷ ︸

O2

−P ch
l,d,tktλ

Elec
d,t︸ ︷︷ ︸

O3

−P dis
l,d,tktϑ

dis︸ ︷︷ ︸
O4

−P ch
l,d,tktϑ

ch︸ ︷︷ ︸
O5

]]]
(5.1)

where F(y, θl, θd) denotes the profit function of the facility, y is the vector of
decision variables, and θl and θd collect the parameters associated with LNG
and electricity price scenarios, respectively. The outer expectation EH&N [·]
is taken with respect to LNG price scenarios, while EW&S|H&N [·] represents
the conditional expectation with respect to electricity price scenarios given a
particular LNG price realization.

For each time period t, term O1 represents the expected cost of purchasing
LNG in the day-ahead LNG market to load the on-site LNG storage. Since ht
does not depend on any scenario realization, O1 corresponds to the first-stage
component of the objective function in the terminology of two-stage stochastic
programming. Term O2 is the expected revenue from selling electricity generated
by the gas turbine to the day-ahead electricity market. Term O3 corresponds
to the cost of buying electricity from the grid to liquefy air and store it in
the liquid air tank. Finally, O4 and O5 represent the variable operating costs
in discharging and charging modes, respectively. Together, O2 to O5 define
the recourse function, that is, the second-stage profit associated with a given
realization of LNG prices.

The objective function in (5.1) is subject to technical and market constraints
that describe the operation of the LNG storage, the LAES plant, and the
participation of the facility in the day-ahead electricity market.

LNG market and storage constraints. Equation (5.2) specifies the total
quantity of LNG transferred from the TVB to the on-site LNG storage over
the dispatch horizon. The parameter Htot denotes the total daily LNG volume
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purchased by the facility: ∑
t∈T

htkt = Htot, ht ≥ 0. (5.2)

According to the rules of the Iberian LNG derivatives market, the daily volume
of LNG purchased by a participant must lie within a prescribed range. This
requirement is captured by

ΨLNG ≤ Htot ≤ ΨLNG (5.3)

where ΨLNG and ΨLNG denote the minimum and maximum allowed total
purchases, respectively.

The liquid level of the on-site LNG storage at each period depends on four
factors: (i) the previous liquid level, (ii) the boil-off rate of the storage tank,
(iii) the quantity of LNG injected from the TVB, and (iv) the quantity of LNG
withdrawn and sent to the regasification unit. The boil-off rate represents the
fraction of LNG that evaporates naturally and is lost as gas. The inventory
dynamics for the first period and the remaining periods are as follows:

qLNG
l,d,t = qLNG

0

(
1− RLNG

24

)
+
htkt × 3600

LHV ×ϖ
−

P dis
l,d,tkt ×HR× 3600

η × LHV ×ϖ
∀t = 1,∀l,∀d (5.4)

qLNG
l,d,t = qLNG

l,d,t−1

(
1− RLNG

24

)
+
htkt × 3600

LHV ×ϖ
−

−
P dis
l,d,tkt ×HR× 3600

η × LHV ×ϖ
∀t ≥ 2,∀l,∀d (5.5)

where the factor 3600 converts MWh to MJ, LHV is the lower heating value of
LNG, ϖ is the density, RLNG is the hourly boil-off rate, HR is the heat rate of
the gas turbine, and η is its efficiency.

The storage level must be cyclic and respect operational bounds:

qLNG
l,d,t = qLNG

0 ∀t = 24,∀l,∀d (5.6)
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QLNG ≤ qLNG
l,d,t ≤ QLNG ∀t, ∀l, ∀d (5.7)

where QLNG and QLNG represent the minimum and maximum admissible LNG
inventory.

The instantaneous LNG transfer from the TVB to the LNG storage cannot
exceed the loading capacity of the storage:

0 ≤ htkt × 3600

LHV ×ϖ
≤ ξℓβcht ∀t,

{
βcht

}
∈ {0, 1} (5.8)

where ξℓ denotes the maximum loading rate. Conversely, the LNG sent from
the storage to the regasification unit must not exceed the unloading capacity:

P dis
l,d,tkt ×HR× 3600

η × LHV ×ϖ
≤ ξ℘βdisl,t ∀t, ∀l,

{
βdisl,t

}
∈ {0, 1} (5.9)

where ξ℘ is the maximum unloading rate. The following constraint prevents
simultaneous charging and discharging of the LNG storage:

βdisl,t + βcht ≤ 1 ∀t, ∀l,
{
βdisl,t , β

ch
t

}
∈ {0, 1} (5.10)

As discussed above, the charging status βcht is a H&N decision linked
to the LNG bids ht, whereas the discharging status βdisl,t is a W&S decision
that depends on the realization of LNG prices and on the electricity dispatch
schedule.

LAES power limits and inventory dynamics. Constraints (5.11) and
(5.12) impose lower and upper bounds on the power sold and bought by the
LAES plant in the day-ahead electricity market, through offers and bids:

Pdisαdis
l,t ≤ P dis

l,d,t ≤ Pdisαdis
l,t ∀t, ∀l, ∀d (5.11)

Pchαch
l,t ≤ P ch

l,d,t ≤ Pchαch
l,t ∀t, ∀l, ∀d (5.12)

where Pdis and Pdis are the minimum and maximum discharge powers, and
Pch and Pch are the corresponding charging limits. The binary variables αdis

l,t

and αch
l,t indicate whether the plant is in discharging or charging mode in period

t for LNG scenario l.
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Simultaneous charging and discharging of the LAES plant is prevented by

αdis
l,t + αch

l,t ≤ 1 ∀t, ∀l,
{
αdis
l,t , α

ch
l,t

}
∈ {0, 1} (5.13)

The liquid energy level in the liquid air tank evolves according to the
previous inventory, the boil-off losses, the energy associated with liquefying air
during charging, and the energy withdrawn during discharging. For the first
and subsequent periods, the dynamics are

qLAES
l,d,t = qLAES

0

(
1− RLAES

24

)
+ P ch

l,d,tkt − P dis
l,d,tktER

∀t = 1, ∀l,∀d (5.14)

qLAES
l,d,t = qLAES

l,d,t−1

(
1− RLAES

24

)
+ P ch

l,d,tkt − P dis
l,d,tktER

∀t ≥ 2, ∀l,∀d (5.15)

where RLAES denotes the boil-off rate of the liquid air tank and ER is the
energy ratio, defined as the ratio between the energy produced during expansion
and the electrical energy consumed in liquefaction. The energy ratio captures
the effective round-trip efficiency of the LAES subsystem under the selected
operating point.

As for the LNG storage, the liquid air inventory is required to be cyclic and
to remain within design limits:

qLAES
l,d,t = qLAES

0 ∀t = 24, ∀l,∀d (5.16)

QLAES ≤ qLAES
l,d,t ≤ QLAES ∀t, ∀l, ∀d (5.17)

Non-anticipativity and structure of offering and bidding curves. Be-
cause the LAES-LNG facility participates in day-ahead markets, it must submit
offering and bidding curves rather than single dispatch quantities. The vari-
ables P ch

l,d,t and P dis
l,d,t therefore carry the index of electricity price scenarios d

even though they are second-stage decisions. This representation allows the
optimization model to determine the energy-price pairs that form the bidding
and offering curves, while respecting non-anticipativity.
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Non-anticipativity requires that decisions cannot discriminate between
scenarios that are indistinguishable at the time the decision is made. For LNG
price scenarios l and l′ that lead to identical price realizations, the offered and
bid power levels must be equal:

P dis
l,d,t = P dis

l′,d,t if λLNG
l = λLNG

l′ ∀t, ∀l, ∀l′, d (5.18)

P ch
l,d,t = P ch

l′,d,t if λLNG
l = λLNG

l′ ∀t, ∀l, ∀l′, d (5.19)

Similarly, when two electricity price scenarios d and d′ yield the same price at a
given period, the facility must submit identical offering and bidding quantities:

P dis
l,d,t = P dis

l,d′,t if λElecd,t = λElecd′,t ∀t, ∀l, ∀d, d′ (5.20)

P ch
l,d,t = P ch

l,d′,t if λElecd,t = λElecd′,t ∀t, ∀l, ∀d, d′ (5.21)

The day-ahead electricity market operator also specifies that offering and
bidding curves must satisfy monotonicity properties to ensure well-behaved
aggregate supply and demand and to facilitate price discovery. The following
constraints enforce an increasing structure for offers and a decreasing structure
for bids:

P dis
l,d,t ≥ P dis

l,d′,t if λElecd,t ≥ λElecd′,t ∀t, ∀l, ∀d, d′ (5.22)

P ch
l,d,t ≤ P ch

l,d′,t if λElecd,t ≥ λElecd′,t ∀t, ∀l, ∀d, d′ (5.23)

In the literature, decision variables such as P ch
l,d,t and P dis

l,d,t, which appear in
the second stage but depend on price scenarios through offering and bidding
curves, are sometimes referred to as “special” W&S variables [166]. They are
still classified as second-stage variables, but they play a dual role by both
responding to realized prices and defining the schedule-dependent structure of
the submitted curves.

Summarizing, variables ht and βcht are H&N decisions, while variables βdisl,t ,
αch
l,t, α

dis
l,t , P

ch
l,d,t, P

dis
l,d,t, q

LNG
l,d,t , and qLAES

l,d,t are W&S decisions in the proposed
two-stage day-ahead dispatch model.

Figure 5.3 provides a high-level view of the dispatch process. Input param-
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Max [Expected Profit]   (5.1)
Subject to:

1-  LNG market constraints (5.2)-(5.3)

2-  LNG storage constraints (5.4)-(5.10)

3-  LAES facility constraints (5.11)-(5.17)

4-  Electricity market constraints (5.18)-(5.23)

1- LNG market price scenarios, indexed by l

2- Electricity market price scenarios, 

indexed by d

3- Technical parameters of the facility

4- Technical Parameters of involved 

markets

Input parameters

24:0011:00 .  .  .12:00

Submit LNG bids 

before 11:00

Stage 1

Submit electricity bids/offers 

before 12:00

Stage 2

1:00

Optimization Module

Electricity market 

prices are 

revealed

.  .  .

LNG market price 

is revealed

Day b

Figure 5.3: High-level diagram of the day-ahead LAES-LNG dispatch process.

eters such as LNG and electricity price scenarios, technical parameters of the
LAES-LNG facility, and market specifications are fed into the optimization
module that implements the objective function (5.1) subject to constraints
(5.2)-(5.23). The module produces optimal LNG purchase quantities ht and
electricity offering and bidding curves P dis

l,d,t and P ch
l,d,t. In practice, the facility

first submits its LNG bids before 11:00 a.m. based on the optimal ht. Once
the LNG market results are published, it submits its electricity offers and bids
before noon based on the optimized curves. The resulting schedule is then used
in the subsequent economic feasibility analysis of Section 5.4.

5.4. Economic Feasibility Assessment via Probabilistic
Payback Period

The day-ahead dispatch model developed in Section 5.3 provides the short-
term operating strategy and the associated annual profit of the LAES-LNG
facility under price uncertainty. For substantive deployment, however, investors,
system operators, or public agencies also need to assess whether such a project is
economically attractive over its lifetime. An economic feasibility study evaluates
the viability of undertaking the project by comparing its investment cost with
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f(g) =

√
1− ρ2

πσzσxa2(g)
exp

(
−m

2 (1− ρ2)

)
+

b(g)n(g)

2
√
2πσxσza3(g)

×[
Θ

(
b(g)

a(g)
√
2 (1− ρ2)

)
−Θ

(
−b(g)

a(g)
√
2 (1− ρ2)

)]
(5.24a)

where

a(g) =

√
g2

σ2x
− 2ρg

σxσz
+

1

σ2z
, b(g) =

µxg

σ2x
− ρ (µx + µzg)

σxσz
+
µz
σ2z
,

m =
µ2x
σ2x

− 2ρµxµz
σxσz

+
µ2z
σ2z
, n(g) = exp

(
b2(g)−ma2(g)

2 (1− ρ2) a2(g)

)
,

Θ(ψ) =
2√
π

∫ ψ

0
exp

(
−u2

)
du (5.24b)

the expected stream of benefits. A primary metric in this context is the payback
period, which measures the time required for an investment to recover its initial
cost through accumulated profits.

Let X denote the total investment cost in euro [€] and Z the annual profit
in euro per year [€/year]. The payback period G in years is defined as:

G =
X

Z

In a deterministic assessment, X and Z would be treated as fixed values
and G would be a single number. In practice, both quantities are subject to
uncertainty. Investment cost depends on equipment prices, engineering and
construction costs, and financing conditions, while annual profit depends on
volatile electricity and LNG prices and on the operational flexibility of the
facility. As discussed in Section 5.2, these uncertainties are modeled as Gaussian
random variables for investment cost and annual profit. In this setting, it is
more informative to characterize the full probability distribution of the payback
period G rather than a single point estimate.

The probability density function of G can be obtained in several ways,
including analytical, simulation-based, or purely statistical approaches. In
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this work, a statistical method is adopted in which both the investment cost
and the annual profit are modeled as correlated Gaussian random variables,
X ∼ N (µx, σx) and Z ∼ N (µz, σz) [187]. The method, known as the Hinkley
approach [187], provides a closed-form expression for the probability density
function of the ratio of two Gaussian variables. It offers a sound and computa-
tionally efficient way to estimate the distribution of G and can handle censored
and uncensored data [188]. The correlation coefficient between X and Z is
denoted by ρ6. Although the method is applied here to the payback period of
the LAES-LNG facility, it is general and can be used for any quantity defined as
the ratio of two Gaussian random variables. According to the Hinkley approach,
the resulting probability density function of the payback period G is given in
Formula (5.24), where the expression for f(g) is presented.

Once (5.24) is evaluated, the resulting density f(g) provides a complete
probabilistic description of the payback period. From this density, standard
summary statistics such as the mean payback period µg [year(s)] and its
standard deviation σg [year(s)] can be computed as

µg =

∫ +∞

−∞
gf(g) dg (5.25)

σg =

√∫ +∞

−∞
(g − µg)

2 f(g) dg (5.26)

In addition, the cumulative distribution associated with f(g) can be used to
answer practical questions such as the probability that the payback period is
below a given threshold, for example 15 years, or to quantify the risk that the
project fails to recover its investment within a target horizon.

Other financial indicators are also widely used in economic feasibility studies,
such as net present value and internal rate of return [163]. These indicators
provide complementary information on the long-term profitability of investment
projects. A detailed analysis based on these metrics is beyond the scope of this
chapter, which focuses on the probabilistic payback period as a transparent and
intuitive measure to summarize the economic attractiveness of the LAES-LNG
facility under uncertainty. The resulting distribution of G will be used in
Section 5.5 to interpret the numerical results of the case study and to discuss
the conditions under which LAES-LNG projects can become financially viable.

6This coefficient takes values −1 ≤ ρ ≤ +1.
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5.5. Case Study Setup and Numerical Results

The stochastic dispatch model and the probabilistic payback framework devel-
oped in Sections 5.3 and 5.4 provide the methodological basis for assessing the
economic performance of the proposed LAES-LNG facility. This section applies
these tools to a representative case study in the Spanish electricity and LNG
markets and quantifies both short-term profitability and long-term economic
feasibility.

The analysis proceeds in two steps. First, a detailed day-ahead dispatch
study evaluates the expected profit of the LAES-LNG facility under a rep-
resentative price profile and compares its performance with two benchmark
standalone LAES plants. The comparison isolates the impact of thermal inte-
gration with LNG regasification on market revenues and operating patterns.
Second, an economic feasibility study combines the dispatch model with ob-
served electricity and LNG prices in 2021 and 2022 to estimate the probability
distribution of the payback period based on the Hinkley approach introduced
in Section 5.4. This step connects the short-term arbitrage opportunities of the
integrated facility with long-term investment risk.

Technical configuration and model implementation

Table 5.1 summarizes the technical characteristics of the LAES-LNG facility
considered in the case study [57]. The plant consists of an LNG storage tank, a
liquid air tank, an LNG regasification unit, and a LAES system whose charging
and discharging processes follow the configuration described in Section 5.2. The
average USD-EUR exchange rate in 2021, equal to 0.8458, is used to convert
all cost-related parameters to euro [189].

The LAES-LNG facility includes an LNG storage tank of 217 m3, a liquid
air tank with an energy capacity of 480 MWh, an LNG regasification unit with
97% efficiency [190], and a LAES system with discharge and charge rates of
122.2 MW and 60 MW, respectively. The lower bounds on the liquid levels in
both the liquid air tank and the LNG storage are set to 10% of their respective
upper bounds [173], and the initial levels are chosen slightly above these lower
limits. Following [173], the minimum charging and discharging powers are
defined as 80% and 3% of their corresponding upper bounds. The LNG storage
has a loading capacity of 16.19 m3/h and an initial LNG level of 21.683 m3,
which corresponds to a filling time of about 12 hours.
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Table 5.1: Characteristics of the LAES-LNG facility.

Parameter Value Unit Parameter Value Unit

Pdis 122.2 MW qLAES
0 50 MWh

Pdis 3.66 MW QLNG 217 m3

Pch 60 MW QLNG 21.7 m3

Pch 48 MW qLNG
0 21.863 m3

ϑdis 3.72 €/MWh ξ℘, ξℓ 16.19 m3/h

ϑch 3.72 €/MWh η 0.97 -

RLAES 0.05 day−1 ΨLNG 10 MWh

RLNG 0.05 day−1 ΨLNG 20,000 MWh

QLAES 480 MWh HR 1.066 MWhthermal
MWhout

QLAES 48 MWh ER 0.491 MWhin
MWhout

LHV 48.6 MJ/kg ϖ 457.4 kg/m3

The LNG lower heating value LHV and density ϖ are taken from [191] and
[192], respectively. In the day-ahead LNG derivatives market, the facility is
allowed to submit daily LNG bids between 10 and 20,000 MWh, in line with
Iberian market rules. The dispatch formulation (5.1)-(5.23) has a mixed-integer
linear structure and is implemented in a commercial optimization environment.
All numerical results reported in this section are obtained by solving the
corresponding MILP with the CPLEX solver. All simulations are conducted on
a laptop equipped with an 11th-generation Intel Core i7 processor (2.50 GHz)
and 16 GB of memory.

The numerical investigation focuses on two main questions:

1. How does the integrated LAES-LNG facility perform in the day-ahead
electricity and LNG markets compared with realistic and ideal standalone
LAES plants?

2. Given observed price conditions in 2021 and 2022, what is the probabilistic
payback period of the LAES-LNG facility, and how sensitive is it to key
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design choices such as LNG loading and unloading capacities?

These questions are addressed in the next two subsections.

5.5.1 Day-Ahead Dispatch Study

This subsection evaluates the cost-effectiveness of the LAES-LNG facility over
a representative day and compares it against benchmark standalone LAES
configurations.

Scenario generation and reduction. One thousand initial scenarios are
generated for day-ahead electricity and LNG prices using Gaussian distributions.
For each hour of the day, the electricity price is modeled as a Gaussian random
variable with mean equal to the observed price on 21 January 2021 and standard
deviation equal to the empirical standard deviation of hourly prices recorded
during January 2021. The LNG price is modeled as a daily Gaussian variable
with mean and standard deviation derived from the same period.

The scenario tree is then reduced with the SCENRED2 tool [171]. The
reduction yields L = 10 representative scenarios for LNG prices and D = 25 rep-
resentative scenarios for electricity prices. The choice of 25 electricity scenarios
is consistent with the requirement of the Iberian day-ahead electricity market
to submit offering and bidding curves with 25 blocks per hour. The reduced
scenarios serve as inputs to the two-stage stochastic dispatch formulation of
Section 5.3.

Case definitions. To interpret the value of LAES-LNG integration, three
case studies are defined:

• Case 1: the proposed LAES-LNG facility with technical characteristics
given in Table 5.1 [57]. This case represents the integrated configuration
analyzed in this chapter.

• Case 2: a realistic standalone LAES facility that is economically equiva-
lent to Case 1 [57]. The standalone and integrated facilities are compared
under identical market conditions to ensure a fair assessment of their eco-
nomic feasibility. The technical specifications of this realistic benchmark
are listed in Table A.1 in Appendix A.5. Case 2 reflects a plant with
55% round-trip efficiency, reduced operating expenditures, and a lower
discharge rate.
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• Case 3: an ideal standalone LAES facility with 70% round-trip efficiency
and low operating costs, as proposed in [173]. Its technical parameters,
reported in Table A.2 in Appendix A.5, are derived from [173] and
represent an optimistic benchmark for future technology.

Both Case 2 and Case 3 follow the mixed-integer formulation (A.9)-(A.20)
outlined in Appendix A.4 for the day-ahead dispatch of a standalone LAES
plant. From a computational standpoint, all three case studies rely on MILP
formulations and remain computationally tractable. Based on the CPU time
reported by CPLEX, solving Case 1 requires 57.92 s. In contrast, the reduced
problem size in Case 2 and Case 3 leads to sub-second solution times, with an
average CPU time of about 0.64 s.

Expected profit and interaction with markets. Tables 5.2 and 5.3 report,
for the three cases, the expected daily profit, the total daily LNG bids, the total
expected electricity charging and discharging quantities, and all components
of the objective functions (5.1) and (A.9). The comparison reveals that the
proposed LAES-LNG facility (Case 1) achieves the highest expected profit.

Despite an expenditure of €15,164.1 for LNG purchases in the day-ahead
LNG market, Case 1 attains a revenue of €39,378.6 from electricity sales, which
translates into a daily expected profit of €15,797.0. In contrast, the standalone
LAES facilities reach maximum electricity market revenues of €10,797.8 (Case 2)
and €14,357.7 (Case 3). The financial gain of the LAES-LNG facility relative to
its economically equivalent standalone counterpart (Case 2) is approximately 3.1

times higher, which makes the integrated configuration a much more competitive
option for grid deployment. Even when compared with the optimistic benchmark
of Case 3, which assumes 70% round-trip efficiency and low variable costs, Case 1
yields a 91.4% increase in daily expected profit.

Figure 5.4 details the hourly electricity bids and offers in the three cases. All
facilities follow a broadly similar temporal pattern, with charging concentrated
in low-price hours and discharging in higher-price hours. The main difference
lies in the magnitude of the interactions. The LAES-LNG facility in Case 1
exhibits much more active participation in the electricity market, which reflects
the additional flexibility provided by the LNG integration.

Interestingly, although the total expected daily charging of Case 1 exceeds
that of the ideal standalone system in Case 3, the cost of purchased electricity
is higher in Case 3. This outcome is linked to the limited charging capacity of
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Table 5.2: Expected profit and components of the objective functions in Case
1–3.

Case Study
Profit

∑
t

E[O1]
∑
t

E[O2]
∑
t

E[O3]
∑
t

E[O4]
∑
t

E[O5]

[€] [€] [€] [€] [€] [€]

Case 1 15,797.0 −15,164.1 39,378.6 −5,035.5 −2,265.8 −1,116.0

Case 2 4,976.8 − 10,797.8 −4,681.9 −403.29 −735.76

Case 3 8,252.5 − 14,357.7 −6,012.1 −27.0 −66.0

Table 5.3: Daily electricity bids and offers and total LNG procurement in Case
1–3.

Case Study

∑
t

P dis
∑
t

P ch Htot

[MWh] [MWh] [MWh]

Case 1 609.10 300.00 671.26

Case 2 158.77 289.66 −

Case 3 204.62 292.57 −

Case 3, which forces the plant to replenish its storage at hour t = 14, when the
day-ahead electricity price is relatively high. The integrated facility can shift
more charging to cheaper hours and rely on the LNG stream to sustain higher
discharging levels.

Figure 5.5 shows offering and bidding curves for two representative hours
(t = 5 and t = 9). The offering curves increase in both energy and price,
which reflects the standard supply behavior of the plant as prices rise. The
bidding curves display the opposite trend. For instance, at an electricity price
of €70/MWh, the offered power in Case 1 is roughly three times larger than
in the benchmark standalone configurations, which illustrates the enhanced
ability of the LAES-LNG facility to monetize high-price periods.

Finally, Figure 5.6 reports the liquid level of the liquid air tank. All three
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Figure 5.4: Hourly electricity bids and offers in Case 1–3.
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Figure 5.5: Day-ahead offer and bid curves in Case 1–3 for two selected periods.

plants fill the storage during the first hours and gradually discharge it towards
the end of the day, when electricity prices are higher. The integrated facility,
however, operates at higher inventory levels and can support more extensive
discharging in peak-price periods, which contributes to its superior profitability.

Sensitivity to LNG loading and unloading capacities. Motivated by
the strong economic performance of Case 1, two additional cases investigate
the impact of LNG loading and unloading capacities on the bottom line of the
LAES-LNG facility. The focus is on the parameters ξ℘ and ξℓ that define the
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Figure 5.6: Liquid level of the liquid air tank in Case 1–3.

maximum LNG transfer rates between the TVB and the on-site storage, and
between the storage and the regasification unit.

• Case 4: a LAES-LNG facility with ξ℘ = ξℓ = 12.95 m3/h.

• Case 5: a LAES-LNG facility with ξ℘ = ξℓ = 19.43 m3/h.

Cases 4 and 5 therefore represent a decrease and an increase of 3.24 m3/h in
the loading and unloading capacities with respect to Case 1, where ξ℘ = ξℓ =

16.19 m3/h. Note that a change of 3.24 m3/h in LNG transfer approximately
corresponds to a variation of 20 MW in input or output energy.7

Table 5.4 summarizes the expected profit, the total daily electricity bids
and offers, and the total daily LNG purchases for Case 1, Case 4, and Case 5.
The results highlight the strong influence of loading and unloading capacities
on the facility’s profit. Higher transfer rates allow the plant to concentrate
LNG withdrawals and electricity generation in the most favorable hours, which
enhances arbitrage opportunities.

A comparison between Case 1 and Case 4 is particularly instructive. Al-
though their total interactions with the electricity and LNG markets are very
similar in aggregate terms, the higher loading and unloading capacities in Case 1
yield an additional profit of €2,306.13. Figure 5.7 explains this effect by plotting

73.24 =

{
16.19− 12.95

19.43− 16.19
m3/h.
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Table 5.4: Expected profit, daily bought LNG, and daily electricity bids and
offers in Case 1, 4, and 5.

Profit
∑

t P
dis

∑
t P

ch Htot

Case Study
[€] [MWh] [MWh] [MWh]

Case 1 15,797.00 609.10 300.00 671.26

Case 4 13,490.87 608.99 300.00 671.07

Case 5 17,415.23 729.66 359.19 803.96
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Figure 5.7: Liquid level of LNG storage (lines) and LNG bids (bars) in Case 1,
Case 4, and Case 5.
Note: The left and right y-axes correspond to the storage level and the hourly bids, respectively.

the liquid level of the LNG storage and the hourly LNG bids for the three cases.
The reduced capacities in Case 4 force the facility to acquire its target LNG
volume over a larger number of periods. In particular, the facility in Case 4
needs to purchase LNG during periods 6 and 15 to compensate for the lack
of flexibility, whereas Case 1 can concentrate LNG purchases in periods with
more favorable LNG prices. Case 5, with higher capacities, interacts even more
actively with the LNG market and maintains a higher average LNG inventory,
which supports higher electricity generation and profit.

Overall, the day-ahead dispatch study shows that integrating LAES with
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LNG regasification provides a substantial profit increase relative to standalone
LAES plants, and that the design of loading and unloading capacities plays a
critical role in capturing this value.

5.5.2 Economic Feasibility Study

The promising daily profit results motivate a deeper assessment of the long-term
economic feasibility of the LAES-LNG facility, with a particular focus on the
probabilistic payback period introduced in Section 5.4. This subsection quanti-
fies the distribution of the payback period under realistic market conditions and
examines how it depends on the facility design and on the correlation between
investment cost and annual profit.

It is important to note that the standalone LAES facilities in Case 2 and
Case 3 do not recover their initial investment within a 30-year horizon when
evaluated under the same price assumptions. They are therefore excluded
from the probabilistic payback analysis. Case 4 is also omitted. The economic
feasibility study centers on Case 1 and Case 5, which combine high daily
profitability with realistic technology assumptions. In addition, the lower
bounds Pch and Pdis are set to zero in this section, since these minimum power
levels are design parameters that can be adjusted in a demonstration plant.

Input parameters for the Hinkley approach. As described in Section 5.4,
the Hinkley approach requires four key parameters: the mean and standard
deviation of the total investment cost, µx and σx, and the mean and standard
deviation of the annual profit, µz and σz. In this case study, the investment
cost of the LAES-LNG facility is set to €120.61e6 [57]. The standard deviation
of the investment cost is assumed equal to 8% of the mean, following [193].

To estimate µz and σz, the analysis relies on observed electricity and LNG
prices in 2021 and 2022. These two years cover the period before and during
the recent energy crisis, which was characterized by sustained growth in global
energy demand after the COVID-19 outbreak and by geopolitical tensions,
including Russia’s invasion of Ukraine. Figure 5.8 shows the daily average
electricity and LNG prices in the Iberian markets for 2021 and 2022. Both
price series increase markedly over 2021. In 2022, electricity prices continue
to rise during the first quarter and then decrease, while LNG prices remain
relatively stable during the first half of the year, surge in the third quarter, and
decline towards the end of the year.
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Figure 5.8: Daily average electricity and LNG prices in 2021 and 2022.

As electricity prices increase, the spread between peak and off-peak prices
widens, which creates more attractive opportunities for storage-based arbitrage.
To quantify the annual profit under these conditions, the procedure proposed
in [194] is adapted as follows. First, the historical price data for each year are
divided into 12 monthly data sets. Each monthly set is then decomposed into
24 subsets for hourly electricity prices and one subset for the daily LNG price.
Each subset is fitted with a Gaussian distribution, which yields 24 hourly fits
for electricity prices and one daily fit for the LNG price for each month.

To represent price uncertainty, the same scenario generation and reduction
methods described in Section 5.5.1 are applied to these monthly distributions.
The resulting representative scenarios are then fed into the dispatch model of
Section 5.3 to compute, for each month, the expected profit of the LAES-LNG
facility. Summing monthly profits yields the annual profit, from which µz and
σz are obtained.

Tables 5.5 and 5.6 report the monthly and annual mean and standard
deviation of the profit for Case 1 and Case 5, respectively, for 2021 and 2022.

The results show that the fourth quarter of 2021 is the most profitable
period for the LAES-LNG facility, driven by high electricity prices. December
2021 stands out as the month with the highest profit. In 2022, the picture
changes: the first half of the year, with high electricity prices and relatively
moderate LNG prices, contributes most to the annual profit. In contrast, the
facility incurs losses in July and August 2022, when LNG prices spike and
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Table 5.5: Mean and standard deviation of the facility’s profit over 2021 and
2022 under Case 1.

2021 2022
Profit

µz [€] σz [€] µz [€] σz[€]

January 6.10e5 2.80e5 1.30e6 2.91e5

February 2.74e5 5.88e4 1.29e6 3.85e5

March 4.07e5 9.23e4 2.40e6 8.35e5

April 5.41e5 1.05e5 1.52e6 5.04e5

May 5.66e5 1.15e5 1.23e6 2.08e5

June 4.61e5 1.11e5 5.02e5 3.62e5

July 3.66e5 8.73e4 −8.99e3 4.49e3

August 4.10e5 1.15e5 −1.40e4 1.21e4

September 6.49e5 3.48e5 2.76e5 2.80e5

October 1.30e6 4.12e5 1.17e6 6.77e5

November 1.07e6 3.36e5 7.15e5 4.96e5

December 2.20e6 5.98e5 3.93e5 3.49e5

Annual 8.86e6 9.54e5 1.08e7 1.50e6

electricity prices fall, which makes energy arbitrage unattractive under the
given operating costs and constraints. Case 5 systematically attains higher
monthly and annual profits than Case 1, which confirms the importance of
sizing loading and unloading capacities carefully during the design phase.

Probabilistic payback period. Given µx, σx, µz, and σz, the Hinkley
approach can be applied to obtain the probability density function f(g) of the
payback period G, where G = X/Z with X and Z denoting investment cost and
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Table 5.6: Mean and standard deviation of the facility’s profit over 2021 and
2022 under Case 5.

2021 2022
Profit

µz [€] σz [€] µz [€] σz [€]

January 6.92e5 3.30e5 1.47e6 3.17e5

February 3.13e5 7.22e4 1.47e6 4.28e5

March 4.60e5 1.04e5 2.72e6 1.03e5

April 6.11e5 1.22e5 1.72e6 5.86e5

May 6.35e5 1.24e5 1.43e6 2.48e5

June 5.17e5 1.21e5 5.75e5 4.34e5

July 4.09e5 1.07e5 −8.99e3 4.49e3

August 4.65e5 1.19e5 −1.40e4 1.21e4

September 7.35e5 3.77e5 3.21e5 3.35e5

October 1.47e6 4.49e5 1.35e6 2.61e4

November 1.20e6 2.46e5 8.22e5 5.92e5

December 2.46e6 6.45e5 4.44e5 4.21e5

Annual 9.97e6 1.05e6 1.23e7 1.80e6

annual profit, respectively. Figures 5.9 and 5.10 display the resulting probability
density functions for 2021 and 2022 price conditions, for two representative
correlation coefficients ρ = 0.3 and ρ = 0.7 between investment cost and annual
profit.

Tables 5.7 and 5.8 summarize key probabilistic metrics of the payback
period, namely the mean µg, the standard deviation σg, and the probability
that the investment is recovered within 15 years, which is half of the assumed
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Figure 5.9: Probability density function of the payback period derived from
2021 market observations.

Table 5.7: Probabilistic metrics of the payback period based on 2021 market
observations.

Case 1 Case 5
Descriptive Statistics

ρ = 0.3 ρ = 0.7 ρ = 0.3 ρ = 0.7

µg [years] 13.5564 13.5803 12.0422 12.0628

σg [years] 1.5275 1.0414 1.3349 0.9052

P(g ≤ 15)* 0.8277 0.9136 0.9866 0.9994

*P(g ≤ 15) =
∫ 15
0 f(g) dg.

technical lifetime of the facility. This probability is given by

P(g ≤ 15) =

∫ 15

0
f(g) dg.

Two main insights emerge from these results. First, the mean payback
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Figure 5.10: Probability density function of the payback period derived from
2022 market observations.

Table 5.8: Probabilistic metrics of the payback period based on 2022 market
observations.

Case 1 Case 5
Descriptive Statistics

ρ = 0.3 ρ = 0.7 ρ = 0.3 ρ = 0.7

µg [years] 11.0983 11.1237 9.7185 9.7418

σg [years] 1.5167 1.1094 1.3788 1.0222

P(g ≤ 15)* 0.9950 0.9998 0.9994 1.0000

*P(g ≤ 15) =
∫ 15
0 f(g) dg.

period based on 2022 price observations is at least two years shorter than the
corresponding value for 2021 for both Case 1 and Case 5. This reflects the
stronger arbitrage opportunities created by the high price levels and spreads in
2022, despite the challenging episodes in mid-2022. Second, a larger correlation
coefficient ρ between investment cost and annual profit reduces the standard
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deviation of the payback period, which leads to a narrower probability density
function. This reduction in dispersion can be interpreted as higher predictability
and lower uncertainty for investors when cost and profit move more coherently.

From a practical standpoint, the probability of achieving a payback period
shorter than 15 years is above 80% for Case 1 and above 98% for Case 5
under 2021 price conditions, and it exceeds 99% for both cases under 2022
conditions. These results indicate that, under the considered assumptions, an
LAES-LNG facility has a high likelihood of becoming profitable within half of
its technical lifetime. Such conclusions cannot be drawn from deterministic
payback calculations that ignore price uncertainty and its impact on annual
profits. The probabilistic payback analysis therefore provides a more informative
and transparent basis for evaluating LAES-LNG investments in future multi-
energy markets.

5.6. Chapter Conclusion

This chapter has developed a day-ahead dispatch framework for an integrated
LAES-LNG facility that couples an LNG regasification unit with an LAES
and allows joint participation in the Iberian LNG and electricity markets.
The dispatch problem has been formulated as a two-stage stochastic MILP
that respects the sequential clearing of the two day-ahead markets and uses a
reduced set of price scenarios for both commodities. By explicitly modeling the
interaction between the LAES unit, the LNG storage, and the regasification
process, the framework co-optimizes electricity arbitrage, LNG procurement,
and the use of cold exergy within a single decision model.

The numerical case studies have shown that this integrated LAES-LNG
configuration clearly outperforms two standalone LAES benchmarks. For the
representative working day, the proposed facility achieves the highest expected
profit, even after accounting for the cost of LNG purchases. The economically
equivalent standalone LAES plant earns roughly one third of the profit of the
LAES-LNG facility, while the highly efficient standalone LAES remains less
profitable despite its favorable round-trip efficiency. The comparison of bidding
and offering curves, as well as charging and discharging patterns, indicates that
all facilities follow similar arbitrage logic, but the LAES-LNG plant can trade
larger volumes at more favorable hours thanks to the additional thermal input
from LNG. The sensitivity analysis of LNG loading and unloading capacities
further highlights these parameters as critical design levers: higher rates increase
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market interaction and improve profits, whereas lower rates constrain flexibility
and reduce the facility’s bottom line even when the overall traded volumes are
comparable.

Beyond short-term operation, the chapter has assessed the investment
attractiveness of the LAES-LNG facility through a probabilistic payback period
analysis based on Hinkley’s approach and real 2021–2022 Iberian price data.
By combining statistical information on capital cost with the distributions of
annual profits, the analysis derives probability density functions of the payback
period for different correlation assumptions between cost and profit. The
results show that the LAES-LNG facility can recover its investment within
the assumed lifetime, whereas the standalone LAES plants do not under the
same assumptions. The mean payback period obtained from 2022 market
conditions is at least two years shorter than the one based on 2021 data, and
the probability of recovering the investment within 15 years exceeds 80% for
2021 and is essentially equal to one for 2022. A higher correlation coefficient
narrows the payback distribution, which reflects greater predictability and
confidence in the investment outcome. These probabilistic indicators provide a
richer and more informative picture than deterministic payback calculations
used in earlier LAES studies.

Taken together, these findings suggest that coupling LAES with LNG
regasification can transform LAES from a marginal storage option into a
competitive candidate for large-scale deployment in multi-energy markets,
provided that LNG handling capacities and market participation strategies are
properly designed.

Chapter Publication

• H. Khaloie and F. Vallée, “Day-Ahead Dispatch of Liquid Air Energy
Storage Coupled With LNG Regasification in Electricity and LNG Mar-
kets,” IEEE Transactions on Power Systems, vol. 39, no. 3, pp. 5177–5190,
May 2024.
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CHAPTER 6
Strategic Look-Ahead Dispatch of Hybrid

CAES-LAES

Chapters 4 and 5 have focused on market-based dispatch models for bulk
storage that behave as price-taking (non-strategic) units in existing market
structures. Chapter 4 develops a risk-aware, price-taking bidding framework
for grid-scale lithium-ion batteries in day-ahead and intraday markets, and
Chapter 5 introduces an integrated dispatch model for an LAES-LNG facility
that coordinates electricity and LNG trading under uncertainty. This chapter
advances the analysis to strategic, price-making behavior and studies a hybrid
thermo-mechanical storage concept that combines CAES with LAES. This
step closes the methodological loop of the thesis by linking coordinated techno-
economic operation, strategic bidding in liberalized markets, and learning-
assisted optimization within a single modeling framework.

The main contribution of this chapter is a bi-level, look-ahead strategic dis-
patch model for a hybrid CAES-LAES plant that participates as a price-making
unit in the day-ahead electricity market. The upper-level problem represents
the coordinated offer and internal scheduling decisions of the hybrid plant,
while the lower-level problem captures market-clearing and price formation.
The resulting bi-level problem is reformulated as a mixed-integer single-level
model with equilibrium constraints and is equipped with a learning-assisted
warm-start scheme that predicts high-quality initial values for binary variables.

The remainder of the chapter is organized as follows. Section 6.1 reviews
the literature on CAES and LAES dispatch and bidding models. In Section 6.2,
the hybrid CAES-LAES system architecture and modeling assumptions are
presented, and the interaction between the CAES and LAES subsystems is
clarified. Section 6.3 then develops the bi-level Stackelberg formulation of the
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strategic look-ahead dispatch model together with its single-level reformulation.
The learning-assisted optimization approach is detailed in Section 6.4. Sec-
tion 6.5 reports the case study setup and numerical results. Finally, Section 6.6
concludes the chapter and provides practical recommendations for the design
and operation of hybrid CAES-LAES facilities in future market environments.

6.1. Literature Review on CAES and LAES Dispatch
Models

Advances in the domains of CAES and LAES have attracted increasing atten-
tion from both academia and industry, with a strong focus on techno-economic
operation and market integration. A broad range of studies has examined their
economic potential, considering both independent operation and coordinated
use with other system components, in particular variable renewable generation.
Within this context, several contributions have proposed bidding and schedul-
ing models for CAES units in electricity markets. For instance, risk-aware
participation strategies in the day-ahead market have been formulated based on
information gap decision theory to handle price uncertainty, complemented by
robust optimization and affine arithmetic techniques to represent non-standard
CAES thermodynamic characteristics [195, 196, 197]. Building on these formu-
lations, subsequent studies have integrated CAES with wind and photovoltaic
resources and have employed adaptive and distributionally robust optimization
to reduce conservatism and improve decision-making under multiple sources of
uncertainty [198, 199].

Beyond CAES, numerous works have investigated LAES facilities from a
market perspective. Early contributions have assessed the economic potential
of LAES plants operating in arbitrage mode, and have shown that appropriate
support schemes can justify the deployment of such emerging technologies
[173]. Further analyses have examined the participation of LAES in real-time
electricity markets, identifying operational strategies that exploit price volatility
and system flexibility needs. The market dispatch of a typical LAES plant has
also been studied using MILP models that explicitly capture thermodynamic
constraints and operational limits [175, 176]. In a similar vein, the integration
of a wind farm with a LAES facility has been analyzed in a Spanish case
study, where an algorithmic dispatch scheme coordinates wind generation and
cryogenic storage [178]. A detailed review of LAES technologies and LAES-LNG
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integration, including the role of cryogenic tanks, cold and heat recovery, and
coordinated participation in electricity and LNG markets, is already provided
in Chapter 5; only the most relevant market-oriented aspects are recalled here
to avoid repetition.

The limitations of standalone geologically unconstrained storage facilities,
such as above-ground CAES and LAES, have motivated the design of hybrid
CAES-LAES plants. Above-ground CAES offers relatively high round-trip
efficiency but low energy density and higher storage costs, whereas LAES
provides high-density storage in cryogenic tanks at the expense of lower efficiency.
Hybrid concepts combine these technologies in a configuration that typically
includes a high-capacity cryogenic tank for liquid air, an above-ground CAES
unit with dedicated compression and expansion stages, and machinery that
enables bi-directional conversion between liquid and compressed air. The
objective is to obtain a scalable solution that merges the cost-effectiveness
of LAES with the efficiency of above-ground CAES. Previous studies have
examined such hybrid designs through parametric techno-economic analyses
[35, 64, 65], but they rely on algorithmic or heuristic dispatch rules rather than
fully formulated optimization models.

The existing literature reveals three gaps that motivate the present study.
First, no optimization-based dispatch model explicitly coordinates internal
energy transfers between the CAES and LAES subsystems while capturing
their distinct operational states. Second, strategic storage formulations have not
yet considered a hybrid CAES-LAES plant acting as a price-making agent with
look-ahead offers in day-ahead electricity markets [67, 68, 69], which calls for a
Stackelberg representation of the interaction with the market-clearing process.
Third, bi-level models of strategic storage participation involve many integer
variables in both bidding and market-clearing decisions, creating substantial
computational burden; although warm-starting techniques for mixed-integer
problems have been successfully applied in other power system contexts [72,
73, 74], they have not been used to initialize groups of binaries in a bi-level
optimization. To address these gaps, this chapter develops a strategic look-
ahead dispatch framework in which the hybrid CAES-LAES plant is modeled
as a single price-making entity in a bi-level Stackelberg game, reformulated as a
mixed-integer MPEC and solved with the aid of a learning-assisted warm-start
approach for binary variables.
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6.2. Hybrid CAES-LAES System Overview and Mod-
eling Assumptions

Building on the research gaps identified in Section 6.1, this section introduces
the hybrid CAES-LAES plant considered in this chapter and clarifies the main
modeling assumptions that underpin its strategic look-ahead dispatch. The
focus is on commercially mature thermo-mechanical storage configurations
that are representative of existing and near-term deployments, while remaining
compatible with the bi-level market framework developed in Section 6.3.

6.2.1 Hybrid CAES-LAES System Architecture

Figure 6.1 presents the schematic of the hybrid energy storage facility analyzed
in this chapter, hereafter referred to as the hybrid CAES-LAES plant. The
hybrid system comprises three primary components: a LAES unit, a CAES
unit, and a dedicated set of machines that convert air between compressed
and liquid states. It is worth mentioning that the cryogenic subsystem (LAES)
operates based on liquid air technology without the incorporation of additional
external heat sources [173].

In Figure 6.1, the top row represents the LAES unit and the bottom row
represents the CAES unit. The two subsystems are coupled by intermediary
machinery that enables bi-directional energy transfer between the cryogenic
tank and the compressed air vessel. In the charging subsystems of both storage
units, off-peak electricity from the grid drives the conversion of ambient air
into either liquid air, stored in a cryogenic tank, or high-pressure air, stored
in an above-ground pressure vessel. During discharge, the LAES unit pumps,
evaporates, and expands the stored liquid air through several expansion stages
to drive a turbine and supply electricity back to the grid. In parallel, the CAES
subsystem co-fires the stored high-pressure air with natural gas fuel to generate
high-rate electricity.

A key distinction between the CAES unit and a traditional gas turbine is
that the CAES unit relies on pre-compressed air stored using off-peak electricity.
In contrast, conventional gas turbines consume a substantial share of their fuel
input, approximately two-thirds according to standard estimates, to compress
ambient air during power generation. Although more advanced storage con-
figurations could be considered, this chapter focuses on widely discussed and
commercialized CAES and cryogenic plants [63, 200]. The primary objective
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Figure 6.1: Schematic of the hybrid CAES-LAES plant.

is to evaluate the profitability of hybridizing these facilities and to identify a
tractable yet representative operational formulation for their coupling. These
plants are typically designed to provide daily-to-weekly storage services and to
take advantage of short-term fluctuations in electricity prices.

6.2.2 Operational Modes and Internal Energy Transfer

The hybrid configuration relies on intermediate machinery positioned between
the two storage tanks to enable bi-directional transfer and conversion between
liquid air and compressed air. This additional degree of freedom allows the
hybrid plant to overcome the limited volume of above-ground compressed air
vessels and to better exploit periods of low electricity prices.

When the compressed air vessel approaches its maximum capacity during
a low-price period, excess electricity can still be absorbed by converting com-
pressed air into liquid air and storing it in the cryogenic tank. Conversely, the
cryogenic tank can act as an extended storage reservoir for the CAES subsystem.
Liquid air can be converted back into compressed air when required, which
increases the effective energy capacity of the CAES subsystem and improves
the ability of the hybrid plant to arbitrage across multiple days. In addition,
the LAES unit retains the ability to operate independently. When liquid air
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is available and market conditions are favorable, the cryogenic subsystem can
generate electricity by evaporating and expanding the liquid air, even if the
CAES subsystem does not charge.

This flexibility increases the value of the hybrid plant but also introduces
operational complexity. Coordinated operation requires a careful alignment of
the energy flows through the coupling machinery and the internal operating
states of the two storage facilities. Each subsystem features distinct charging
and discharging branches, and at a given time either the charging or the
discharging branch can be active, not both. Simultaneous storage and release
of energy within the same facility are therefore infeasible. Moreover, energy
transfers between the tanks must respect the operating states of both origin
and destination facilities. For example, transferring energy from the cryogenic
tank to the compressed air vessel is allowed only if: (i) the cryogenic facility is
not charging and can therefore release energy, and (ii) the CAES subsystem is
in a charging state and able to receive additional compressed air. Analogous
conditions apply to transfers from compressed air to liquid air.

These restrictions stem from shared infrastructure and technological limits
in compressors, expanders, and pumps, and they have direct implications on
feasible dispatch patterns [201]. The mathematical formulation in Section 6.3
incorporates these operational rules explicitly through binary variables and
coupling constraints that govern the charging, discharging, and conversion
modes of the hybrid CAES-LAES plant.

6.2.3 Look-Ahead Dispatch Perspective and Modeling Assump-
tions

From a market perspective, the hybrid CAES-LAES plant participates in the
day-ahead electricity market as a strategic unit. The interaction between the
plant and the market operator is cast as a Stackelberg game, where the storage
operator acts as the leader and the day-ahead market operator is modeled as
the follower [68]. The leader anticipates how its offering and bidding decisions
will influence market-clearing outcomes and nodal prices, and selects an optimal
schedule that maximizes profit over a look-ahead horizon. This representation
contrasts with the single-level, price-taking models of Chapters 4 and 5, where
storage follows exogenous prices, and it is consistent with the multi-level
optimization framework introduced in Chapter 3.

Figure 6.2 summarizes this interaction. The upper-level problem represents
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Upper-level problem
Hybrid CAES-LAES profit maximization

Lower-level problems
Day-ahead market operator cost minimization

Storage bids/offers Market-clearing prices/quantities

Figure 6.2: Bi-level Stackelberg representation of the hybrid CAES-LAES plant
(leader) and the day-ahead market operator (follower).

the profit maximization of the hybrid CAES-LAES plant over a multi-day
horizon. Its decisions include the energy quantities and prices that define the
storage bids and offers submitted to the day-ahead market. For any given
set of offers, the lower-level problem solves the day-ahead market clearing
as a cost-minimization problem and returns the market-clearing prices and
quantities at each node. Because the upper-level objective depends on these
market outcomes, the resulting formulation is a mixed-integer MPEC. The
detailed algebraic formulation of this bi-level model is provided in Section 6.3.

A critical modeling ingredient is the treatment of the state-of-charge at
the boundaries of the dispatch window. In standard day-ahead formulations,
storage facilities typically optimize their operation over a single trading day.
When submitting offers/bids into a day-ahead auction, the operator focuses
on arbitrage opportunities across the 24 hours of the upcoming day. Under
this perspective, the facility usually faces a cyclicity constraint that requires
the state-of-charge at the end of the dispatch window to match a given target,
often identical to the initial level. This condition prevents systematic depletion
or overfilling of the storage asset when the model is applied repeatedly on a
day-by-day basis.

In contrast, a look-ahead formulation optimizes storage decisions over several
consecutive days. The hybrid CAES-LAES plant then chooses its operation
for the next day while internalizing the value of energy that can be shifted
further into the future. In this setting, it is sufficient to restore the initial
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Figure 6.3: Day-ahead and look-ahead perspectives for energy storage dispatch.

state-of-charge at the end of the multi-day look-ahead window rather than at
the end of each individual day. This relaxation allows the operator to exploit
multi-day price patterns and the complementary roles of the compressed air
and cryogenic tanks. Figure 6.3 illustrates the difference between the day-ahead
and look-ahead perspectives from the viewpoint of storage operator.

The look-ahead window length is a modelling choice rather than a fixed
market requirement. In practice, the storage operator selects this horizon by
trading off (i) the ability to exploit multi-day price patterns and to coordinate
the hybrid energy inventories, (ii) the loss of forecast accuracy as the lead time
increases, and (iii) the resulting computational burden. To make this choice
explicit, this chapter evaluates three representative look-ahead window lengths,
ranging from the standard day-ahead horizon to a maximum horizon of six days,
and quantifies how this selection affects dispatch decisions and market outcomes.
In the numerical study of this chapter, the following modeling assumptions
define the physical and market environment in which the hybrid CAES-LAES
plant operates:

• The analysis accounts for three main sources of uncertainty, namely wind
power variability, load fluctuations, and variations in generator offer prices.
To represent these uncertainties in storage decisions, a scenario-based
approach similar to [202] is employed. A deterministic model is solved
across multiple realizations of the uncertain parameters, which yields
solutions that are comparable to those obtained from static stochastic
programming [203]. The scenarios are generated by independently sam-
pling from a uniform symmetric deviation band centered around the point
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forecasts associated with each lead day.1

• A maximum look-ahead horizon of six days is considered, and three
representative window lengths within this range are evaluated. This
choice enables a sensitivity analysis on the impact of horizon selection
while keeping the resulting mixed-integer bi-level problem computationally
tractable and limiting exposure to long-lead forecast uncertainty.

• A direct-current approximation is used to represent the transmission net-
work, which enables a nodal pricing mechanism for all market participants
[68, 69]. Market clearing is modeled as an economic dispatch problem
rather than a full unit-commitment formulation [68, 69].

• The energy storage system develops its strategic behavior by anticipating
the decisions of other market actors. Strategic pricing decisions of con-
ventional generators and large consumers are not modeled explicitly and
are considered beyond the scope of this thesis [68, 69].

These assumptions provide a consistent link between the hybrid
CAES-LAES architecture of Section 6.2 and the strategic market envi-
ronment considered in this chapter. On this basis, Section 6.3 develops the
detailed bi-level formulation of the strategic look-ahead dispatch model, and
Section 6.4 introduces the learning-assisted solution approach for the resulting
mixed-integer MPEC.

6.3. Bi-Level Formulation of the Strategic Look-Ahead
CAES-LAES Dispatch Model

This section presents the bi-level Stackelberg formulation that captures the
strategic participation of the hybrid CAES-LAES plant in the day-ahead electric-
ity market. In this leader-follower structure, the hybrid plant acts as the leader,
while the day-ahead market operator is the follower, as discussed conceptually
in Section 6.2.3. The upper-level problem represents the profit-maximizing look-
ahead dispatch and market participation decisions of the hybrid plant, while the
lower-level problem models the day-ahead market-clearing mechanism based on
nodal pricing. The combination of the two levels yields a bi-level optimization

1The implications of replacing this fixed band with a lead-dependent, widening band are
investigated in Appendix A.8.
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problem, which is subsequently reformulated as a single-level mixed-integer
MPEC. Throughout the formulation, the superscript α denotes the CAES
subsystem and the superscript β denotes the cryogenic LAES subsystem. In
the remainder of this section, Section 6.3.1 presents the upper-level optimiza-
tion model, Section 6.3.2 details the lower-level market-clearing problem, and
Section 6.3.3 derives the resulting single-level MPEC formulation.

6.3.1 Upper-Level Problem: Look-Ahead Storage Dispatch

The upper-level problem aims to maximize the profit of the hybrid CAES-LAES
plant over the look-ahead window. The decision vector ΞUL includes the plant’s
offering and bidding decisions, the internal dispatch of the CAES and LAES
subsystems, and the variables that describe the state-of-charge and coupling
machinery. Formally, the set of upper-level decision variables ΞUL2, which are
valid for each storage facility f at time t on day j, is:

ΞUL =
{
pα,xj,f,t, p

α,y
j,f,t, p

β,x
j,f,t, p

β,y
j,f,t, ϕ

γ,x
j,f,t, ϕ

γ,y
j,f,t, ρ

γ,x
j,f,t, ρ

γ,y
j,f,t,

qα→β
j,f,t , q

β→α
j,f,t , s

α
j,f,t, s

β
j,f,t, z

α
j,f,t, z

β
j,f,t

}
.

For clarity, the formulation is organized into five groups: the objective function,
market participation constraints, coupling machinery constraints, and the
state-of-charge constraints of the CAES and LAES subsystems.

6.3.1.1 Objective Function

The objective function (6.1a) maximizes the profit of the hybrid CAES-LAES
plant by aggregating the profits generated by each storage facility over the
look-ahead window. The first terms in eqs. (6.1b) and (6.1c) represent the
revenue of the CAES and LAES facilities from market arbitrage at bus b under
a nodal pricing mechanism. The remaining negative terms in eqs. (6.1b) and
(6.1c) account for the operational costs of these facilities during charging and
discharging states, respectively. Since natural gas is used exclusively in the
CAES system for co-firing high-pressure air, its fuel cost is reflected solely in

2All upper-level decision variables are introduced and defined at their first appearance in
the mathematical formulation that follows.
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the objective function of the CAES, eq. (6.1b).

max
ΞUL

F1︸︷︷︸
Profit

= R1︸︷︷︸
CAES

+ R2︸︷︷︸
LAES

(6.1a)

R1 =
∑
j∈J

∑
f∈F

∑
t∈T

[(
pα,yj,f,t − pα,xj,f,t

)
λElec
j,b∈ΦF

b ,t

− pα,yj,f,t

(
Γαfλ

gas + Cα,yf

)
− pα,xj,f,tC

α,x
f

]
(6.1b)

R2 =
∑
j∈J

∑
f∈F

∑
t∈T

[(
pβ,yj,f,t − pβ,xj,f,t

)
λElec
j,b∈ΦF

b ,t

− pβ,yj,f,tC
β,y
f − pβ,xj,f,tC

β,x
f

]
(6.1c)

where F1 represents the total profit of the hybrid plant over the look-ahead
horizon, and R1 and R2 denote the profit contributions of the CAES and
LAES subsystems, respectively. The summations in (6.1b) and (6.1c) run
over all days j ∈ J, hybrid facilities f ∈ F, and time intervals t ∈ T. The
decision variables pα,xj,f,t and pα,yj,f,t denote the charging and discharging power of
the CAES unit, while pβ,xj,f,t and pβ,yj,f,t denote the corresponding charging and
discharging power of the LAES unit. The parameter λElec

j,b∈ΦF
b ,t

represents the
nodal electricity price at the bus b where the hybrid facility f is connected, with
b ∈ ΦF

b . The parameter Γαf denotes the CAES heat rate, and λgas is the natural
gas price. The coefficients Cα,xf and Cα,yf represent the variable operating
costs of the CAES subsystem in charging and discharging states, respectively,
while Cβ,xf and Cβ,yf represent the corresponding variable operating costs of the
LAES subsystem. In the following, we introduce the operational and technical
constraints associated with this upper-level optimization problem.

6.3.1.2 Market Participation Constraints

The hybrid plant participates in the day-ahead electricity market as a unified
entity by submitting aggregated energy offers and bids3 that combine both
storage units. The market participation constraints in (6.1d)–(6.1l) link these
unified offers and bids to the underlying CAES and LAES units while enforcing

3Offer and bid refer to selling and buying quantities, respectively [68, 69].
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plant-level power rating and operating mode limits.

0 ≤ ϕγ,xj,f,t ≤ P
α,x
f zαj,f,t + P

β,x
f zβj,f,t ∀{j, f, t} (6.1d)

0 ≤ ϕγ,yj,f,t ≤ P
α,y

(1− zαj,f,t) + P
β,y
f (1− zβj,f,t) ∀{j, f, t} (6.1e)

pγ,xj,f,t = pα,xj,f,t + pβ,xj,f,t ∀{j, f, t} (6.1f)

pγ,yj,f,t = pα,yj,f,t + pβ,yj,f,t ∀{j, f, t} (6.1g)

pα,xj,f,t ≤ P
α,x
f zαj,f,t ∀{j, f, t} (6.1h)

pβ,xj,f,t ≤ P
β,x
f zβj,f,t ∀{j, f, t} (6.1i)

pα,yj,f,t ≤ P
α,y
f

(
1− zαj,f,t

)
∀{j, f, t} (6.1j)

pβ,yj,f,t ≤ P
β,y
f

(
1− zβj,f,t

)
∀{j, f, t} (6.1k)

ργ,xj,f,t, ρ
γ,y
j,f,t ≥ 0 ∀{j, f, t} (6.1l)

where the superscript γ denotes the aggregated hybrid plant participating in the
market. The variables ϕγ,xj,f,t and ϕγ,yj,f,t represent the unified bid (charging) and
offer (discharging) quantities submitted by the hybrid plant, and ργ,xj,f,t and ργ,yj,f,t
denote the corresponding bid and offer prices. The variables pγ,xj,f,t and pγ,yj,f,t
denote the market-cleared charging and discharging power of the hybrid plant,
which are linked to the underlying subsystem powers pα,xj,f,t, p

α,y
j,f,t, p

β,x
j,f,t, and pβ,yj,f,t

through (6.1f)–(6.1g). The binary variables zαj,f,t and zβj,f,t indicate the charging
mode of the CAES and LAES units (charging if z = 1) [204]. Constraints
(6.1d) and (6.1e) impose plant-level power rating limits on the submitted bids
and offers based on the subsystem ratings introduced in the objective function.
Constraints (6.1h)–(6.1k) enforce the maximum power ratings at the subsystem
level and prevent simultaneous charging and discharging [183]. Finally, (6.1l)
ensures that the submitted offer and bid prices are non-negative [68].

6.3.1.3 Coupling Machinery Constraints

The coupling between the CAES and LAES subsystems is governed by a dedi-
cated set of intermediary machines that perform bi-directional energy conversion
between the compressed air vessel and the cryogenic tank. Constraints (6.1m)
and (6.1n) define the maximum energy that can be transferred from the com-
pressed air tank to the cryogenic tank, based on the machinery capacity Qα→β

f .
To ensure feasible operation, (6.1m) imposes that the CAES facility is not
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charging when it sends energy, while (6.1n) requires that the LAES facility
is charging when it receives energy. Constraints (6.1o) and (6.1p) define the
reverse transfer from the cryogenic tank to the compressed air tank and en-
force the corresponding machinery capacity Qβ→α

f together with the required
operating states of the two subsystems.

0 ≤ qα→β
j,f,t ≤ Q

α→β
f

(
1− zαj,f,t

)
∀{j, f, t} (6.1m)

0 ≤ qα→β
j,f,t ≤ Q

α→β
f zβj,f,t ∀{j, f, t} (6.1n)

0 ≤ qβ→α
j,f,t ≤ Q

β→α
f

(
1− zβj,f,t

)
∀{j, f, t} (6.1o)

0 ≤ qβ→α
j,f,t ≤ Q

β→α
f zαj,f,t ∀{j, f, t} (6.1p)

where qα→β
j,f,t and qβ→α

j,f,t represent the energy transferred between the subsystems
at day j, facility f , and time interval t, from compressed air to liquid air and
from liquid air back to compressed air, respectively (in MWh). The parameters
Q
α→β
f and Q

β→α
f denote the maximum transfer capacities of the coupling

machinery in each direction for facility f , and they bound the admissible energy
exchange in (6.1m)–(6.1p) given the operating modes already encoded in the
binary variables zαj,f,t and zβj,f,t.

6.3.1.4 CAES State-of-Charge Constraints

The state-of-charge of the compressed air tank is expressed by (6.1q)–(6.1s),
which implement the look-ahead framework and account for bi-directional
energy transfer with the cryogenic tank. Constraint (6.1q) applies to the first
period of the first day (j = 1, t = 1), (6.1r) applies to the first period of all
subsequent days (j > 1, t = 1), and (6.1s) applies to all other periods (t > 1).
Constraint (6.1t) enforces that the compressed air tank returns to its initial
energy level at the end of the look-ahead window, and (6.1u) bounds the
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state-of-charge within admissible limits.

sαj,f,t = Sαf,0 + pα,xj,f,t + qβ→α
j,f,t η

β→α
f − pα,yj,f,tΥ

α
f − qα→β

j,f,t ∀{f}, j = 1, t = 1

(6.1q)

sαj,f,t = sαj−1,f,t=T + pα,xj,f,t + qβ→α
j,f,t η

β→α
f − pα,yj,f,tΥ

α
f − qα→β

j,f,t ∀{f}, j > 1, t = 1

(6.1r)

sαj,f,t = sαj,f,t−1 + pα,xj,f,t + qβ→α
j,f,t η

β→α
f − pα,yj,f,tΥ

α
f − qα→β

j,f,t ∀{j, f}, ∀t > 1 (6.1s)

sαj,f,t = Sαf,0 ∀{f}, j = |J|, t = |T| (6.1t)

Sαf ≤ sαj,f,t ≤ S
α
f ∀{j, f, t} (6.1u)

where sαj,f,t denotes the state-of-charge of the compressed air tank at day j,
facility f , and time interval t. The parameter Sαf,0 represents the initial state-
of-charge of that tank, while Sαf and S

α
f denote its minimum and maximum

admissible energy levels, respectively. The parameter Υα
f is the CAES energy

ratio [MWhin/MWhout], which links the discharged power to the corresponding
energy withdrawal from the tank. Together, constraints (6.1q)–(6.1s) track the
inter-temporal evolution of sαj,f,t over the look-ahead horizon, (6.1t) enforces a
cyclic condition by requiring the final state-of-charge to match Sαf,0, and (6.1u)
keeps the state-of-charge within the admissible operating band for all days and
time intervals.

6.3.1.5 LAES State-of-Charge Constraints

The state-of-charge of the cryogenic tank is modeled by (6.1v)–(6.1x). Fol-
lowing [173], the round-trip efficiency of the LAES unit is distributed sym-
metrically between charging and discharging in the state-of-charge equations.
Constraint (6.1y) requires the cryogenic tank to return to its initial level at the
end of the look-ahead window, and (6.1z) enforces lower and upper bounds on
the cryogenic state-of-charge.
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sβj,f,t = Sβf,0 + pβ,xj,f,t(η
β,RTE
f )

1
2 + qα→β

j,f,t η
α→β
f − pβ,yj,f,t/(η

β,RTE
f )

1
2 − qβ→α

j,f,t

∀{f}, j = 1, t = 1 (6.1v)

sβj,f,t = sβj−1,f,t=|T| + pβ,xj,f,t(η
β,RTE
f )

1
2 + qα→β

j,f,t η
α→β
f − pβ,yj,f,t/(η

β,RTE
f )

1
2

− qβ→α
j,f,t ∀{f}, j > 1, t = 1 (6.1w)

sβj,f,t = sβj,f,t−1 + pβ,xj,f,t(η
β,RTE
f )

1
2 + qα→β

j,f,t η
α→β
f − pβ,yj,f,t/(η

β,RTE
f )

1
2

− qβ→α
j,f,t ∀{f, j}, ∀t > 1 (6.1x)

sβj,f,t = Sβf,0 ∀{f},∀j = |J|, t = |T| (6.1y)

Sβf ≤ sβj,f,t ≤ S
β
f ∀{j, f, t} (6.1z)

where sβj,f,t denotes the state-of-charge of the cryogenic tank at day j, facility
f , and time interval t. The parameter Sβf,0 represents the initial cryogenic

state-of-charge, while Sβf and Sβf are the minimum and maximum admissible
energy levels of the tank. The parameter ηβ,RTE

f is the round-trip efficiency of
the LAES unit, which is applied symmetrically in (6.1v)–(6.1x) through the
factor (ηβ,RTE

f )1/2 in charging and its reciprocal in discharging. The parameter
ηα→β
f denotes the efficiency of energy conversion from compressed air to liquid

air in the coupling machinery. Together, (6.1v)–(6.1x) track the inter-temporal
evolution of sβj,f,t over the look-ahead horizon, (6.1y) imposes a cyclic end-of-
horizon condition by matching the final and initial levels, and (6.1z) keeps the
cryogenic state-of-charge within its admissible operating band. Taken together,
(6.1a)–(6.1z) define the upper-level profit-maximization problem of the hybrid
CAES-LAES plant over the multi-day look-ahead horizon.

6.3.2 Lower-Level Problem: Market-Clearing Mechanism

The lower-level problem models the day-ahead market-clearing process using a
nodal pricing framework consistent with [68, 69]. It determines the dispatch
of generators, wind plants, demands, and the hybrid CAES-LAES plant, as
well as nodal prices and power flows, in response to all submitted offers and
bids. The dual variables associated with equality and inequality constraints
are indicated after a colon. The lower-level decision vector is denoted by ΞLL
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4, which collects all primal and dual variables of the market-clearing problem,
valid for each time interval t ∈ T on each day j ∈ J:

ΞLL =
{
pGj,g,t, p

W
j,w,t, p

D
j,d,t, p

γ,x
j,f,t, p

γ,y
j,f,t, θj,b,t, λ

Elec
j,b,t , µ, ξ, δ

}
.

6.3.2.1 Objective Function

The objective function (6.2a) minimizes the total system cost and therefore
maximizes social welfare. The first and second terms represent the offering
and bidding costs of conventional generators and demands. The third term
accounts for the costs associated with strategic storage offers and bids. Wind
producers are assumed to have zero marginal cost and submit corresponding
offers [68, 69].

min
ΞLL

∑
j∈J

∑
g∈G

∑
t∈T

V G
j,g,tp

G
j,g,t −

∑
j∈J

∑
d∈D

∑
t∈T

V D
j,dp

D
j,d,t

+
∑
j∈J

∑
f∈F

∑
t∈T

[
ργ,yj,f,tp

γ,y
j,f,t − ργ,xj,f,tp

γ,x
j,f,t

]
(6.2a)

where pGj,g,t denotes the cleared output of conventional generator g at day j and
time interval t, and V G

j,g,t is the corresponding offer price. The variable pDj,d,t
denotes the cleared demand of consumer d, associated with the bid price V D

j,d.
The last summation in (6.2a) aggregates the contribution of strategic storage
offers and bids through the market-interface prices and cleared quantities ργ,xj,f,t,
ργ,yj,f,t, p

γ,x
j,f,t, and pγ,yj,f,t, as defined in the market participation constraints of the

upper-level problem. The minimization is carried out over the set of lower-
level decision variables ΞLL, which includes the cleared generation, demand,
and storage quantities, while the corresponding lower-level constraints are
introduced in the following sections.

6.3.2.2 Nodal Power Balance Constraint

Constraint (6.2b) enforces power balance at each node of the network under
the direct-current approximation [68, 69]. The associated dual variables λElec

j,b,t

4All lower-level decision variables are introduced and defined at their first appearance in
the mathematical formulation that follows.

142



Strategic Look-Ahead Dispatch of Hybrid CAES-LAES

correspond to the nodal electricity prices.∑
d∈ΦD

b

pDj,d,t +
∑

b′∈Φb,b′

Susb,b′
[
θj,b,t − θj,b′,t

]
=
∑
g∈ΦG

b

pGj,g,t+

∑
w∈ΦW

b

pWj,w,t +
∑
f∈ΦF

b

pγ,yj,f,t − pγ,xj,f,t : (λ
Elec
j,b,t ) ∀{j, b, t} (6.2b)

where ΦD
b , ΦG

b , ΦW
b , and ΦF

b denote the sets of demands, conventional generators,
wind units, and hybrid storage facilities connected at bus b, respectively. The set
Φb,b′ contains the buses b′ that are directly connected to bus b by a transmission
line. The parameter Susb,b′ represents the series susceptance of line (b, b′),
and θj,b,t is the voltage angle at bus b (in radians). The dual variable λElec

j,b,t is
associated with the nodal power balance at bus b and time interval t.

6.3.2.3 Resource Dispatch Constraints

Constraints (6.2c) and (6.2d) limit the cleared offers from conventional gen-
erators and wind plants to their respective capacity and forecast levels. Con-
straint (6.2e) ensures that cleared demand bids do not exceed each consumer’s
peak-load forecast. Constraints (6.2f) and (6.2g) ensure that the cleared storage
bids and offers remain within the values submitted by the hybrid CAES-LAES
plant.

0 ≤ pGj,g,t ≤ P
G
g : (µG

j,g,t
, µGj,g,t) ∀{j, g, t} (6.2c)

0 ≤ pWj,w,t ≤ EWj,w,t : (µW
j,w,t

, µWj,w,t) ∀{j, w, t} (6.2d)

0 ≤ pDj,d,t ≤ E
D
j,d,t : (µD

j,d,t
, µDj,d,t) ∀{j, d, t} (6.2e)

0 ≤ pγ,xj,f,t ≤ ϕγ,xj,f,t : (µγ,x
j,f,t

, µγ,xj,f,t) ∀{j, f, t} (6.2f)

0 ≤ pγ,yj,f,t ≤ ϕγ,yj,f,t : (µγ,y
j,f,t

, µγ,yj,f,t) ∀{j, f, t} (6.2g)

where PGg denotes the installed capacity of conventional generator g (in MW),
EWj,w,t is the wind power forecast for plant w at day j and time interval t, and

E
D
j,d,t is the peak-load forecast for demand d. The dual variables (µ

(·)
j,·,t, µ

(·)
j,·,t)

are associated with the lower and upper bounds of the corresponding constraints
and are later used in the derivation of the KKT conditions.
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6.3.2.4 Power Flow Constraints

Constraint (6.2h) limits line flows to their thermal capacity, while (6.2i) selects
the reference bus and (6.2j) bounds the phase-angle variables at all other buses.

− PLb,b′ ≤ Susb,b′
[
θj,b,t − θj,b′,t

]
≤ PLb,b′ : (ξj,b,b′,t, ξj,b,b′,t)

∀(b, b′) ∈ Φb,b′ , ∀{j, t} (6.2h)

θj,b,t = 0 : (δrefj,t ), b = {ref}, ∀{j, t} (6.2i)

− π ≤ θj,b,t ≤ π : (δj,b,t, δj,b,t) ∀b\{ref}, ∀{j, t} (6.2j)

where PLb,b′ denotes the thermal capacity of line (b, b′). The dual variables
ξ
j,b,b′,t

and ξj,b,b′,t are associated with the lower and upper line-flow limits in
(6.2h). The constraint in (6.2i) fixes the voltage angle at the reference bus to
zero, with δrefj,t as its dual variable, while (6.2j) bounds the voltage angles at all
non-reference buses within [−π, π], with δj,b,t and δj,b,t as the corresponding
dual variables. Collectively, (6.2a)–(6.2j) define the lower-level market-clearing
optimization problem.

6.3.3 Single-Level Reformulation and Computational Complex-
ity

Section 6.3.1 and the lower-level market-clearing problem in Section 6.3.2 can
be reformulated as a single-level MPEC by embedding the KKT conditions
of the lower-level problem into the upper-level model. Since the lower-level
problem is a linear and convex optimization problem, these KKT conditions are
necessary and sufficient for optimality and provide an exact characterization
of the market-clearing solution. The resulting single-level formulation couples
the strategic decisions of the hybrid CAES-LAES plant with the equilibrium
conditions of the day-ahead market.

The KKT system consists of stationarity constraints, which correspond to
the first-order optimality conditions, and complementary slackness constraints,
which link the primal and dual variables associated with the inequality con-
straints of the lower-level problem. In what follows, the stationarity conditions
(6.3a)–(6.3g) and the complementary slackness conditions (6.3h)–(6.3u) are
summarized. A step-by-step derivation of these expressions closely follows [205]
and the structure of the lower-level problem (6.2).
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6.3.3.1 Stationarity Constraints

The stationarity constraints (6.3a)–(6.3g) are obtained by differentiating the
Lagrangian of the lower-level problem (6.2) with respect to its primal variables
and setting the derivatives equal to zero. They express the marginal conditions
that characterize optimal market-clearing decisions for generators, demands,
wind units, storage, and network variables.

V G
j,g,t − λElec

j,b∈ΦG
g ,t

+ µGj,g,t − µG
j,g,t

= 0 ∀{j, g, t} (6.3a)

− λElec
j,b∈ΦW

w ,t + µWj,w,t − µW
j,w,t

= 0 ∀{j, w, t} (6.3b)

− V D
j,d + λElec

j,b∈ΦD
d ,t

+ µDj,d,t − µD
j,d,t

= 0 ∀{j, d, t} (6.3c)

ργ,yj,f,t − λElec
j,b∈ΦF

b ,t
+ µγ,yj,f,t − µγ,y

j,f,t
= 0 ∀{j, f, t} (6.3d)

λElec
j,b∈ΦF

b ,t
− ργ,xj,f,t + µγ,xj,f,t − µγ,x

j,f,t
= 0 ∀{j, f, t} (6.3e)∑

b′∈Φb,b′

Susb,b′
[
λElec
j,b,t − λElec

j,b′,t + ξj,b,b′,t − ξj,b′,b,t − ξ
j,b,b′,t

+ ξ
j,b′,b,t

]
+ δj,b,t − δj,b,t = 0 ∀(b, b′)\{ref}, ∀{j, t} (6.3f)∑

b′∈Φb,b′

Susb,b′
[
λElec
j,b,t − λElec

j,b′,t + ξj,b,b′,t − ξj,b′,b,t − ξ
j,b,b′,t

+ ξ
j,b′,b,t

]
+ δrefj,t = 0 ∀(b, b′) = {ref}, ∀{j, t} (6.3g)

Constraints (6.3a)–(6.3e) state that, at optimum, the marginal offer or bid
price of each generator, wind unit, demand, and storage decision is balanced by
the corresponding nodal electricity price and the shadow prices of the capacity
and bid limits. Constraints (6.3f) and (6.3g) correspond to stationarity with
respect to the bus voltage angles. They link nodal prices, line shadow prices, and
angle bounds through the susceptance matrix and the dual variables associated
with power flow limits and angle constraints.

6.3.3.2 Complementary Slackness Constraints

The complementary slackness constraints (6.3h)–(6.3u) couple each lower-level
inequality constraint with its associated dual variable. The notation a ⊥ b

indicates that a ≥ 0, b ≥ 0, and a ·b = 0, so that either the constraint is binding
and the dual variable is positive, or the constraint is non-binding and the dual
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variable is zero. This structure enforces the equilibrium relationship between
primal feasibility and dual optimality in the market-clearing model.

0 ≤ µG
j,g,t

⊥ pGj,g,t ≥ 0 ∀{j, g, t} (6.3h)

0 ≤ µGj,g,t ⊥
(
P
G
g − pGj,g,t

)
≥ 0 ∀{j, g, t} (6.3i)

0 ≤ µW
j,w,t

⊥ pWj,w,t ≥ 0 ∀{j, w, t} (6.3j)

0 ≤ µWj,w,t ⊥
(
EWj,w,t − pWj,w,t

)
≥ 0 ∀{j, w, t} (6.3k)

0 ≤ µD
j,d,t

⊥ pDj,d,t ≥ 0 ∀{j, d, t} (6.3l)

0 ≤ µDj,d,t ⊥
(
E
D
j,d,t − pDj,d,t

)
≥ 0 ∀{j, d, t} (6.3m)

0 ≤ µγ,y
j,f,t

⊥ pγ,yj,f,t ≥ 0 ∀{j, f, t} (6.3n)

0 ≤ µγ,yj,f,t ⊥
(
ϕγ,yj,f,t − pγ,yj,f,t

)
≥ 0 ∀{j, f, t} (6.3o)

0 ≤ µγ,x
j,f,t

⊥ pγ,xj,f,t ≥ 0 ∀{j, f, t} (6.3p)

0 ≤ µγ,xj,f,t ⊥
(
ϕγ,xj,f,t − pγ,xj,f,t

)
≥ 0 ∀{j, f, t} (6.3q)

0 ≤ ξ
j,b,b′,t

⊥
(
Susb,b′

[
θj,b,t − θj,b′,t

]
+ PLb,b′

)
≥ 0 ∀(b, b′) ∈ Φb,b′ , ∀{j, t}

(6.3r)

0 ≤ ξj,b,b′,t ⊥
(
PLb,b′ − Susb,b′

[
θj,b,t − θj,b′,t

])
≥ 0 ∀(b, b′) ∈ Φb,b′ , ∀{j, t}

(6.3s)

0 ≤ δj,b,t ⊥
(
θj,b,t + π

)
≥ 0 ∀b\{ref}, ∀{j, t} (6.3t)

0 ≤ δj,b,t ⊥
(
π − θj,b,t

)
≥ 0 ∀b\{ref}, ∀{j, t} (6.3u)

Together, the stationarity conditions (6.3a)–(6.3g), the complementary
slackness conditions (6.3h)–(6.3u), and the primal feasibility constraints of
Section 6.3.2 (including power balance, resource limits, and network equations)
form the complete KKT system of the lower-level market-clearing problem.

6.3.3.3 Resulting Single-Level MPEC and Linearization

Embedding the lower-level KKT conditions into the upper-level problem yields
a single-level optimization model that maximizes the hybrid CAES-LAES profit
(6.1a), subject to:

• the upper-level operational constraints (6.1b)–(6.1z),

• the lower-level equality constraints (6.2b) and (6.2i),

• the stationarity conditions (6.3a)–(6.3g), and
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• the complementary slackness constraints (6.3h)–(6.3u).

The resulting MPEC is non-convex and contains two main sources of nonlinear-
ity, which must be treated explicitly to obtain a tractable mixed-integer linear
formulation.

(i) A first source of nonlinearity is the set of bilinear terms in (6.1b) and
(6.1c), which involve the product of market-clearing prices and cleared
storage bids and offers. Appendix A.6 describes how these terms are directly
linearized following the approach in [69]. This linearization preserves the
economic interpretation of the objective function while expressing all revenue
components in affine form.

(ii) A second source of nonlinearity is the set of complementarity constraints
(6.3h)-(6.3u), which are intrinsic to the KKT conditions. In power system
optimization and operations research, big-M reformulations are a standard
technique to linearize such constraints at the expense of introducing auxiliary
binary variables [206]. Appendix A.7 presents the big-M linearization
adopted in this chapter. The procedure used to select appropriate big-M
values follows [68] and is designed to balance numerical stability and model
tightness by avoiding unnecessarily conservative upper bounds.

After these linearization steps, the final formulation becomes a MILP that
remains structurally complex due to the number of time periods, buses, market
participants, and KKT-related binaries introduced by the big-M reformulation.
Table 6.1 summarizes the nominal and effective decision-space dimensions of
the single-level optimization model as a function of the main sets. The nominal
space corresponds to the variable counts that would arise from a full nodal
representation, while the effective space accounts for the actual number of lines
and buses in the test system through the set Φb,b′ .

The scaling of the integer variable count with the number of time intervals,
days, and network elements illustrates that the resulting MILP is computation-
ally demanding, especially for long look-ahead horizons or large systems. This
complexity motivates the learning-assisted warm-start procedures developed in
Section 6.4, which aim to provide high-quality initial values for key binary vari-
ables and thereby improve the tractability of the strategic look-ahead dispatch
problem.
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Table 6.1: Breakdown of integer and continuous decision variables in the final
single-level optimization model.

Nominal # Int. 2|J||T|
[
|G|+ |W|+ |D|+ 2|F|+ |B|

(
|B|+ 1

)]
Space

# Cont. |J||T|
[
3|G|+ 3|W|+ 3|D|+ 18|F|+ 2

(
|B|2 + 2|B|

)
− 1
]

Effective # Int. 2|J||T|
[
|G|+ |W|+ |D|+ 2|F|+ |Φb,b′ |+ |B|

]
Space

# Cont. |J||T|
[
3|G|+ 3|W|+ 3|D|+ 18|F|+ 2

(
|Φb,b′ |+ 2|B|

)
− 1
]

6.4. Learning-Assisted Solution Approach for the
Mixed-Integer MPEC

The single-level formulation derived in Section 6.3.3 is linear in its algebraic
structure but remains an NP5-hard MILP problem due to the large number
of binary variables that it contains. As summarized in Table 6.1, both the
nominal and effective decision spaces grow rapidly with the number of buses,
generators, wind plants, demands, storage facilities, and with the length of
the look-ahead horizon. For the IEEE 118-bus system [73] with one hybrid
CAES-LAES plant and three wind sites over a six-day look-ahead horizon,
the nominal binary space exceeds four million variables, while the effective
binary space still contains more than 240,000 variables. This size makes a
direct branch-and-bound search computationally demanding, even when using
state-of-the-art mixed-integer solvers.

To improve tractability without altering the underlying MPEC formulation,
this section develops a learning-assisted solution approach that provides in-
formed initial values for the binary variables. The proposed framework treats
the mixed-integer MPEC as the exact reference model and uses machine learn-
ing only to generate warm-starts, not to replace the optimization problem
with an approximate surrogate. In this way, the solver remains free to adjust
the binary variables as needed to recover optimality, while benefiting from a
significant reduction in search effort.

5Non-deterministic Polynomial-time.
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6.4.1 Structure of Binary Variables and Motivation

The final single-level model contains two main tiers of binary variables:

(i) Operational mode binaries. The variables zαj,f,t and zβj,f,t indicate the operat-
ing mode of the CAES and LAES subsystems of each hybrid facility f at
day j and time interval t. A value of one indicates a charging state. These
binaries originate from the upper-level problem in Section 6.3.1 and carry
over directly into the single-level MPEC.

(ii) Big-M binaries from complementarity conditions. The second tier consists
of auxiliary binary variables introduced to linearize the complementarity
constraints (6.3h)–(6.3u) through the big-M reformulation described in
Appendix A.7. In the lower-level problem, a generic inequality constraint
of the form ℘(κ) ≥ 0, associated with dual variable ℓ, appears in the KKT
system as:

0 ≤ ℘(κ) ⊥ ℓ ≥ 0.

This complementarity relation is represented by a binary variable u and a
big-M constant M through:

℘(κ) ≤Mu, ℓ ≤M(1− u).

If u = 1, the optimum lies strictly inside the feasible region of ℘(κ) ≥ 0

and the constraint is inactive. In this case, small perturbations of the
constraint boundary do not affect the optimal objective value. If u = 0,
the optimum lies on the boundary and the constraint is active. In that
case, shifting the boundary changes the optimal objective. The complete
big-M reformulation applies this pattern to all complementarity conditions
associated with generators, wind units, demands, storage limits, line flows,
and voltage angles.

Together, the operational mode binaries and the big-M binaries form a
high-dimensional binary vector at each time interval and for each day of the look-
ahead horizon. The resulting search space is very large and highly structured.
Patterns in demand, wind forecasts, and generator offers induce regularities
in which constraints are active and which storage modes are optimal. The
learning-assisted framework seeks to exploit these regularities. It predicts good
candidate patterns for the binary variables as a function of observable system
features. These predictions are then used to warm-start the solver, which
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Figure 6.4: Overview of the learning-assisted optimization framework.

preserves the exact MPEC formulation and its optimality guarantees.

6.4.2 Three-Phase Learning-Assisted Framework

Figure 6.4 summarizes the proposed learning-assisted optimization framework.
The process consists of three main phases: (i) offline data acquisition, (ii)
training of a multi-label classifier, and (iii) warm-start assisted decision-making.

6.4.2.1 Phase I: Offline Data Acquisition

The first phase constructs a labeled data set that captures the relationship
between system conditions and optimal binary decisions. For each hour t in the
look-ahead horizon, a feature vector Xt is defined that contains the exogenous
inputs relevant for market clearing and storage operation, such as:

• hourly demand forecasts at all buses;

• wind power forecasts at all wind sites;

• offer curves or marginal cost parameters of conventional generators.
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Given a particular realization of Xt, the exact single-level MPEC is solved
offline to global optimality by allocating sufficient computational time. The
resulting optimal binary vector for that hour is denoted by Yt, which includes
both tiers of binary variables:

Yt =
(
zαj,f,t, z

β
j,f,t, u

(·)
j,·,t

)
.

Each sample therefore consists of an input–output pair

Θt = (Xt,Yt).

By varying demand profiles, wind conditions, and generator offers across
many scenarios [136], a diverse collection of samples is generated. This data
acquisition phase is carried out entirely offline and can be parallelized, since
each scenario is independent. It concentrates the computational burden in a
pre-processing stage and produces a data set that reflects the intrinsic mapping
between market conditions and optimal binary decisions for the strategic hybrid
plant.

6.4.2.2 Phase II: Multi-Label Neural Network Classifier

In the second phase, the collected samples are used to train a supervised learning
model that approximates the mapping Xt 7→ Yt. The binary decision vector Yt
is high dimensional, since it includes all mode-selection binaries and all big-M
binaries associated with the complementarity conditions. The learning task is
therefore a multi-label classification problem.

A deep feedforward neural network is adopted as the classifier. This choice
reflects its favorable scalability in high-dimensional output spaces, where alter-
native models such as support vector machines or decision trees tend to become
less efficient or require problem-specific feature engineering. The network
architecture follows a standard structure:

• an input layer that receives the feature vector Xt;

• several fully connected hidden layers with rectified linear unit (ReLU) ac-
tivation functions, arranged sequentially to capture non-linear interactions
among features;

• an output layer with sigmoidal neurons, one neuron for each binary component
of Yt.
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The network is trained using a binary cross-entropy loss function, which
is suitable for multi-label classification where each output neuron represents
an independent Bernoulli variable. During training, the network learns to
approximate the probability that each binary variable takes the value one,
conditional on the given features. The learning phase results in a set of trained
parameters that encode the empirical relationship between system conditions
and optimal binary strategies in the considered set of scenarios.

The aim of this phase is not to propose an advanced deep-learning archi-
tecture, but rather to assess the practicality of a standard feedforward neural
network in a bi-level setting with many integer variables. This assessment
provides a reference point for future work that may consider more specialized
architectures or hybrid learning–optimization schemes.

6.4.2.3 Phase III: Warm-Start Assisted Mixed-Integer Optimization

In the third phase, the trained neural network is integrated into the solution
process of the strategic look-ahead dispatch problem. For a new, out-of-sample
realization of the features Xt over the look-ahead window, the network is queried
hour by hour. For each hour, it returns predicted probabilities for all binary
variables. These probabilities are then converted into initial 0–1 values, for
example through a thresholding rule that assigns one if the predicted probability
exceeds a given threshold and zero otherwise.

The resulting binary vector is supplied to the mixed-integer solver as a
warm-start solution for the full single-level MPEC. The solver is not constrained
to accept the predicted binary pattern. It can branch away from this initial
point if this leads to a better objective value or if feasibility requires a different
combination of binaries.

In this framework, machine learning provides high-quality initial guesses
for the two tiers of binary variables. The mixed-integer solver then refines
these guesses and guarantees optimality with respect to the exact formulation
defined in Sections 6.3 and 6.4 and Appendices A.6–A.7. Numerical results in
Section 6.5 show that this learning-assisted warm-start can significantly reduce
the computational time required to solve the strategic look-ahead dispatch
problem, particularly in large systems and for longer look-ahead horizons,
while preserving the economic interpretation and rigor of the underlying hybrid
CAES-LAES model.
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6.5. Case Study Design and Numerical Results

Building on the strategic look-ahead formulation and the learning-assisted
solution framework developed in Sections 6.3 and 6.4, this section evaluates
the performance of the hybrid CAES-LAES plant in a market environment.
The analysis follows two main pathways. First, it investigates the profitability
and market impacts of the hybrid CAES-LAES plant under different look-
ahead horizons and price patterns. Second, it assesses the computational
efficiency gains obtained by warm-starting the mixed-integer MPEC with the
neural-network-based predictions described in Section 6.4.

6.5.1 Case Study Setup

The case study is designed to address two objectives:

• Assess the profitability of the hybrid CAES-LAES plant compared with
standalone CAES and LAES facilities under different look-ahead window
lengths, and

• Evaluate the computational benefits of the learning-assisted warm-start
scheme for solving the single-level mixed-integer MPEC.

6.5.1.1 Test System and Data

A 6-bus illustrative test network, shown in Figure 6.5, is adopted as the main
benchmark for the economic analysis of the hybrid CAES-LAES plant [68].
This compact system allows a transparent inspection of the plant’s strategic
behavior while preserving the essential features of nodal pricing and transmission
constraints.

A 50 MW wind facility is connected at bus b3, and a single hybrid
CAES-LAES plant is located at bus b5. The technical specifications of the
hybrid plant, including power ratings, storage capacities, efficiencies, and
operational cost parameters, are summarized in Table 6.2 6. Figure 6.5 also
illustrates generator capacities, transmission-line ratings, and the per-unit
reactances of all lines. Demand bids are set at 450 €/MWh in line with [68].

Wind production, load profiles, and hourly generator offer prices are derived
6Parameter values for charging and discharging power, storage capacities, heat rate, energy

ratio, and round-trip efficiency are adopted from [57]; cryogenic tank sizing from [207]; the
10% minimum state-of-charge threshold from [63, 173]; coupling machinery efficiencies from
[35]; and the USD–EUR exchange rate from [63].
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Figure 6.5: Illustrative 6-bus test network.

from Spanish market records. Two distinct historical periods are considered:

• First time frame: 7–12 December 2021, and

• Second time frame: 1–6 October 2021.

Figures 6.6 and 6.7 show the corresponding demand and wind power profiles.
Demand is split equally between two loads, d1 and d2. Generator offer prices are
not publicly disclosed for confidentiality reasons. Following [68, 69], generator
offers are therefore assumed to vary within ±15% of the market-clearing prices
of the corresponding period. Inverse optimization techniques for recovering
offer curves from clearing prices exist [208] but are outside the scope of this
chapter. The natural gas price is set to 107.98 €/MWh in the first time frame
and to 92.94 €/MWh in the second time frame [209].

6.5.1.2 Look-Ahead Window Configurations

To examine the effect of the look-ahead horizon on strategic storage behavior
and profitability, four cases are defined. All cases use the same six-day data
sets, but differ in the length of the dispatch window internalized by the hybrid
CAES-LAES plant:

• Cases 1, 2, and 3 : one-day, two-day, and three-day look-ahead windows,
respectively;

• Case 4 : full six-day look-ahead window.

In the general formulation, the cyclic end-of-horizon conditions for the
compressed air and cryogenic tanks are enforced through constraints (6.1t)
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Table 6.2: Technical specifications of the hybrid CAES-LAES plant.

Parameter Value Unit Parameter Value Unit

Cα,xf 2.5374 €/MWh Cα,yf 2.5374 €/MWh

Cβ,xf 2.5374 €/MWh Cβ,yf 2.5374 €/MWh

Q
α→β
f 75 MWh Q

β→α
f 100 MWh

P
α,x
f 38 MW P

α,y
f 50 MW

P
β,x
f 60 MW P

β,y
f 32.9 MW

Sαf,0 175 MWh Sβf,0 100 MWh

Sαf 250 MWh Sαf 25 MWh

Sβf 900 MWh Sβf 90 MWh

Γαf 1.144 MWhth
MWhout

Υα
f 0.692 MWhin

MWhout

ηα→β
f 73 % ηβ→α

f 96 %

ηβ,RTE
f 55 % - - -

and (6.1y), which require the final state-of-charge to return to the initial level
Sαf,0 and Sβf,0. In the present case study, these conditions are refined to match
the length of each look-ahead window.

For Cases 1, 2, and 3, the modified cyclic conditions read:

sαj,f,t = Sαf,0, sβj,f,t = Sβf,0 ∀{f, j}, t = 24 (6.4)

sαj,f,t = Sαf,0, sβj,f,t = Sβf,0 ∀f, ∀j ∈ {2, 4, 6}, t = 24 (6.5)

sαj,f,t = Sαf,0, sβj,f,t = Sβf,0 ∀f, ∀j ∈ {3, 6}, t = 24 (6.6)

For Case 4, the six-day look-ahead window restores the initial state-of-charge
only at the end of the entire horizon:

sαj,f,t = Sαf,0, sβj,f,t = Sβf,0 ∀f, ∀j = 6, t = 24 (6.7)

These variations preserve the structure of the look-ahead formulation in
Section 6.3, while enabling a consistent comparison of different dispatch hori-
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Figure 6.6: Demand and wind power profiles (MW) during the first time frame
(7–12 December 2021).

zons.

6.5.1.3 Simulation Settings and Scenario Generation

The MILP formulation derived in Section 6.3.3 is implemented and solved with
Gurobi. The optimality gap is set to zero in order to obtain exact benchmark
solutions. All simulations are performed on a Windows laptop equipped with
an 11th-generation Intel Core i7 processor at 2.50 GHz and 16 GB of RAM.

To represent uncertainty in wind, load, and generator offer prices, ten
equiprobable scenarios are generated. In each scenario, these quantities are
independently perturbed by multiplicative factors drawn from a uniform dis-
tribution U(0.85, 1.15) around the nominal values of each lead day. The cor-
responding solutions approximate those of a static stochastic programming
model [203]. Throughout this section, all reported results are scenario averages.
For brevity, the term “average” is omitted in the presentation of results. The
impact of replacing the fixed symmetric deviation band with a lead-dependent,
widening band is investigated in Appendix A.8.

6.5.2 Profitability Analysis of the Hybrid CAES-LAES Plant

The profitability analysis compares hybrid CAES-LAES operation against a
benchmark in which the CAES and LAES units are operated as standalone
facilities with no internal energy transfer. Both configurations participate
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Figure 6.7: Demand and wind power profiles (MW) during the second time
frame (1–6 October 2021).

Table 6.3: Profit and cleared offers/bids in standalone and hybrid CAES-CES
systems across Cases 1 and 2—First time frame results (December 7-12, 2021).

System

Case 1 Case 2

Profit
∑
pγ,y

∑
pγ,x Profit

∑
pγ,y

∑
pγ,x

[€] [MWh] [MWh] [€] [MWh] [MWh]

Standalone Facilities 86, 729 1, 149 1, 237 114, 972 1, 486 1, 462

Hybrid Plant 93, 518 1, 306 1, 407 118, 003 1, 606 1, 558

strategically in the day-ahead market under the Stackelberg formulation of
Section 6.3. The analysis covers the two time frames introduced above. To
avoid repetition, the discussion focuses on the first period and then highlights
the main differences observed in the second period.

6.5.2.1 First Time Frame: 7–12 December 2021

Tables 6.3 and 6.4 report the total profit and the cumulative cleared offers and
bids of the standalone and hybrid configurations for Cases 1 to 4 in the first
time frame. The hybrid technology consistently outperforms the standalone
configuration for all look-ahead window lengths.
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Table 6.4: Profit and cleared offers/bids in standalone and hybrid CAES-CES
systems across Cases 3 and 4—First time frame results (December 7-12, 2021).

System

Case 3 Case 4

Profit
∑
pγ,y

∑
pγ,x Profit

∑
pγ,y

∑
pγ,x

[€] [MWh] [MWh] [€] [MWh] [MWh]

Standalone Facilities 146, 324 1, 552 1, 765 164, 946 1, 704 1, 879

Hybrid Plant 160, 124 1, 803 2, 003 179, 925 1, 882 1, 972

For a given configuration, extending the look-ahead horizon increases profit
by enabling the plant to exploit multi-day price patterns. In Case 4, the hybrid
plant gains an additional €14,979 relative to the standalone configuration,
which corresponds to a profit uplift of 9.08%. When measured with respect to
the daily look-ahead case (Case 1), the hybrid plant obtains 26.18%, 71.22%,
and 92.39% higher profit in Cases 2, 3, and 4, respectively. These figures
illustrate that carefully selecting the length of the dispatch window is a key
design choice for strategic storage operators.

The mechanisms behind these profit gains can be understood by examining
the market-clearing price trajectories and the daily profit breakdowns. Figure 6.8
shows the nodal prices at bus b5 in Case 4 over the six days. Since no line
congestion occurs in this small system, prices remain uniform across buses. The
alternation of high and low prices creates arbitrage opportunities that are more
or less accessible depending on the length of the look-ahead horizon.

Figure 6.9 decomposes the hybrid plant’s total profit into daily contributions
for all four cases. In Case 1, the plant optimizes its operation on a day-by-day
basis and must restore both storage tanks to their initial state-of-charge at the
end of each day. This restriction limits the ability to move energy across days
and leads to a relatively conservative use of storage.

In Case 2, the plant optimizes decisions over rolling two-day windows. By
anticipating low prices on day 2, it can sell pre-existing energy during high-price
hours of day 1, then recharge during low-price hours on day 2. The very
low prices at the end of day 2 also create additional arbitrage opportunities.
However, because the cyclicity condition is enforced every second day, the plant
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Figure 6.8: Market-clearing prices (€/MWh) in Case 4 (first time frame, 7–12
December 2021).

cannot fully exploit high-price episodes that occur beyond the two-day window.
Case 3 illustrates the benefit of further extending the horizon. With a three-

day look-ahead, the plant anticipates the high prices on day 3 and strategically
accumulates energy on day 2 to sell it on day 3, which results in a marked
increase in cumulative profit. Case 4 then provides the most flexible setting in
which the storage levels only need to return to their initial values at the end of
day 6. The hybrid plant can then coordinate the use of the compressed air and
cryogenic tanks over the entire period and align its charge-discharge pattern
with the most favorable price cycles.

The strategic actions on day 6 in Case 4 are depicted in Figure 6.10, which
shows the hybrid plant’s hourly commitment and the corresponding market-
clearing prices. Relative to Case 1, the plant discharges at a higher rate and
sells at a lower price in the final hours, thereby increasing its market share.
This behavior reduces the market-clearing price and illustrates how a strategic
hybrid storage operator can influence market outcomes.

Table 6.5 details the impact of the look-ahead horizon on social welfare
components. The table reports the expected profits of storage, conventional
generators, and wind producers, along with consumers’ expected surplus. The
latter is defined as willingness-to-pay minus actual payment.

As the look-ahead horizon increases, the hybrid storage plant captures a
larger share of the total supplier profit, mainly at the expense of conventional
generators. At the same time, consumers benefit from lower prices, which
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Figure 6.9: Daily net profit of the hybrid plant in Cases 1–4 (first time frame,
7–12 December 2021).

translate into higher surplus. The effect on wind producers is more nuanced
and depends on the alignment between wind availability and periods in which
the hybrid plant behaves strategically.

Finally, Figure 6.11 analyzes the sensitivity of profits to the sizes of the
compressed air and cryogenic tanks in Case 4. Panel 6.11a focuses on the
standalone configuration, while panel 6.11b reports the corresponding results
for the hybrid plant.

For the standalone LAES facility, once the cryogenic tank exceeds approxi-
mately 800 MWh, further expansion brings only marginal increases in profit.
The relatively low round-trip efficiency of the cryogenic subsystem limits the
additional value of storing more energy. In contrast, increasing the CAES en-
ergy capacity enhances profitability in the standalone CAES system, due to its
higher round-trip efficiency. In practice, however, above-ground high-pressure
tanks are expensive, which may constrain this expansion.

In the hybrid configuration, increasing cryogenic storage capacity has a
more pronounced effect on profitability than in the standalone LAES case. The
profit trend in Figure 6.11b is generally upward with increasing cryogenic tank
size, although not strictly monotonic. Beyond a certain threshold (for example,
from 1,000 MWh to 1,100 MWh), the incremental gains become small. These
observations point to the need for a dedicated sizing and siting study that
optimizes tank capacities jointly with market participation decisions.
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Figure 6.10: Hourly hybrid storage commitment (bars, MW) and market-
clearing price (line, €/MWh) on day 6 (first time frame, 7–12 December 2021).

(a) Standalone facilities. (b) Hybrid plant.

Figure 6.11: Profit sensitivity to cryogenic and compressed air tank sizes (MWh)
in Case 4 (first time frame, 7–12 December 2021).

6.5.2.2 Second Time Frame: 1–6 October 2021

The second time frame, 1–6 October 2021, is used to verify the robustness of
the previous findings under different demand and wind patterns. Figure 6.7
illustrates these profiles, which differ markedly from those of the December
period. Figure 6.12 shows the market-clearing prices at bus b5 in Case 4. The
presence of recurring price dips creates new arbitrage opportunities for the
hybrid storage operator.
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Table 6.5: Social welfare breakdown in Cases 1–4 (first time frame, 7–12
December 2021).

Case Expected Profit [€] Expected Surplus [€]

Study ∑
H Storage

∑
G Generator

∑
W Wind

∑
D Consumer

Case 1 93,518 252,419 680,224 4,914,322

Case 2 118,003 249,185 680,045 4,918,085

Case 3 160,124 247,813 681,406 4,919,603

Case 4 179,925 245,824 681,114 4,921,983

Table 6.6: Profitability assessment of standalone and hybrid CAES-LAES
systems for 1–6 October 2021.

System
Profit [€]

Case 1 Case 2 Case 3 Case 4

Standalone Facilities 64,110 90,345 80,301 120,732

Hybrid Plant 65,491 98,076 81,339 130,031

Table 6.6 compares the profits of the standalone and hybrid configurations
across Cases 1 to 4 for this second period. The hybrid CAES-LAES plant
again outperforms the standalone configuration for all look-ahead windows.
Increasing the dispatch horizon from one to six days raises the hybrid profit from
€65,491 to €130,031 by exploiting price variability more effectively. Standalone
facilities also benefit from longer horizons, with profit increasing from €64,110 to
€120,732. The hybrid configuration, however, maintains a consistent advantage,
which confirms the value of technological coupling.

Unlike in the December period, extending the look-ahead horizon does not
always lead to strictly increasing profit. Moving from one to two days improves
profitability, but extending to three days slightly reduces gains because the
requirement to restore the initial storage levels at day 3 constrains the ability
to benefit from later low-price hours. Extending the horizon further to six days
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Figure 6.12: Market-clearing prices (€/MWh) in Case 4 during the second time
frame (1–6 October 2021).

restores the positive trend and yields a substantial profit increase. These results
reinforce the conclusion that an appropriate minimum look-ahead horizon must
be selected in light of prevailing market conditions.

6.5.3 Computational Efficiency of the Learning-Assisted Model

The second part of this section quantifies the computational efficiency gains
achieved by the learning-assisted framework proposed in Section 6.4. The focus
is on the potential reduction in solution time and branch-and-cut iterations
obtained by warm-starting large numbers of binary variables with a standard
multi-label neural network classifier. All simulations in this part use data from
the first time frame (7–12 December 2021).

6.5.3.1 Test Systems and Problem Dimensionality

Three network sizes are considered: the 6-bus system of Figure 6.5, the IEEE
24-bus test system, and the IEEE 118-bus test system. In each case, a single
strategic hybrid CAES-LAES plant is installed at a representative bus, namely
b5 in the 6-bus network, b1 in the 24-bus system, and b15 in the 118-bus system.
The detailed network, generation, demand, and wind data for the IEEE 24-bus
and 118-bus systems are reported in Appendices A.9 and A.10, respectively.

To reflect realistic system complexities, the sets of generators, demands,
and wind plants are defined as follows:
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Table 6.7: Comparison of integer and continuous decision variable counts across
three test systems (six-day look-ahead).

Test Systems 6-bus 24-bus 118-bus

Nominal # Integers 14,688 182,016 4,089,600

Space # Continuous 19,296 195,120 4,147,920

Effective # Integers 8,352 35,712 182,592

Space # Continuous 12,960 48,816 240,912

• for the 6-bus network: {|G|, |D|, |W|} = {4, 2, 1},

• for the 24-bus network: {|G|, |D|, |W|} = {12, 17, 1},

• for the 118-bus network: {|G|, |D|, |W|} = {54, 99, 3}.

For the 24-bus and 118-bus systems, the rated capacity of each wind farm
is set to 100 MW. The feature vectors used by the neural network classifier
therefore contain 7, 30, and 156 hourly features for the 6-bus, 24-bus, and
118-bus networks, respectively.

Table 6.7 summarizes the number of integer and continuous decision variables
in the nominal and effective spaces of the six-day look-ahead formulation,
following the definitions in Table 6.1. The effective space accounts for the
actual number of transmission lines.

These figures confirm that the final mixed-integer problem is large even for
moderate system sizes, and that the 118-bus case lies well within the range of
challenging real-world market-clearing applications.

6.5.3.2 Data Generation and Neural Network Training

To explore a wide range of operating regimes, 19,440 samples are generated
for each test system. For every sample, the components of the feature vec-
tor (demand forecasts, wind power forecasts, and generator offer prices) are
independently scaled by factors drawn from a uniform distribution U(0.7, 1.3)
around their nominal values. Demand forecasts are based on the nominal
values reported in [210]. Wind forecasts are derived from data collected in
Spain, Belgium, and France for the period 7–12 December 2021 [211] and are
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Table 6.8: Hyperparameter tuning results for the neural network classifiers
across test systems.

Test Systems # Layers # Units Learning rate Epochs Batch Size

6-bus 5 452 3.047e-4 1,000 100

24-bus 4 433 4.585e-4 1,000 100

118-bus 4 510 2.511e-4 1,000 100

downscaled to represent 100 MW wind farms.7

Out of the 19,440 samples, 15,120 are used for training and the remaining
samples are reserved for out-of-sample testing. For each sample, the full MILP
formulation is solved offline with Gurobi and the resulting optimal binary vector
is stored. These binaries correspond to both tiers of variables described in
Section 6.4.1, that is, the operational mode binaries zαj,f,t, z

β
j,f,t and the big-M

binaries associated with complementarity conditions.
For each test system, a single deep feedforward neural network classifier is

trained to predict all binary variables simultaneously. The network architecture
is tuned with Optuna [212] in PyTorch by varying:

• the number of hidden layers in the range {1, . . . , 5},

• the number of units per hidden layer in the range {4, . . . , 512},

• the learning rate in the interval [10−5, 10−1].

During hyperparameter tuning, the number of epochs and the batch size are
kept fixed. A total of 30 trials are performed, and the configuration with the
highest classification accuracy on the validation set is selected. The resulting
architectures are summarized in Table 6.8.

6.5.3.3 Classification Performance

Table 6.9 reports the out-of-sample classification metrics for the three test
systems. The table lists the percentages of false negatives, false positives, true
negatives, and true positives, along with the true negative rate, true positive
rate, and overall accuracy. Here, an inactive binary is coded as 0 (negative)
and an active binary is coded as 1 (positive).

7For the 24-bus network, only the wind data from Spain has been used.
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Table 6.9: Out-of-sample classification metrics across test systems.

Test Systems
(%)

FN FP TN TP TNR TPR Accuracy

6-bus 0.78 0.67 19.82 78.73 96.23 99.15 98.55

24-bus 0.40 0.41 13.42 85.77 97.16 99.52 99.19

118-bus 0.58 0.60 12.77 86.05 95.64 99.30 98.82

Acronyms: FN: False Negative; FP: False Positive; TN: True Negative; TP: True Positive;
TNR: True Negative Rate; TPR: True Positive Rate.

All classifiers achieve an accuracy above 98%, with both true negative
and true positive rates above 95%. The fractions of false negatives and false
positives remain below 1% in all systems. These values indicate that the neural
networks can reliably distinguish between active and inactive binaries in the
high-dimensional decision space induced by the mixed-integer MPEC.

6.5.3.4 Warm-Started Optimization and Efficiency Gains

The trained neural networks are then used to predict binary variables for
new, out-of-sample feature vectors. For each time period and test system, the
predicted probabilities are converted into 0-1 values through a thresholding
rule and passed to Gurobi as a warm-start solution. The solver remains free to
modify these values during branch-and-cut, so feasibility and global optimality
with respect to the exact formulation are preserved.

The performance of the Warm-started Mixed-Integer Linear Programming
(WMILP) is compared with that of the conventional MILP solved without
warm-start [68, 69]. Table 6.10 summarizes the average solution times, the
average number of iterations of the branch-and-cut algorithm, the percentage
time savings, and the resulting out-of-sample profits for each test system.

The warm-started approach yields substantial reductions in both solution
time and iteration count. Time savings reach up to 29.30% in the 24-bus system.
The 118-bus system shows the largest absolute reduction in iterations but a
more moderate time-saving rate, which reflects the dominant role of continuous
variables and linear algebra operations in large-scale problems. In all cases, the
out-of-sample profits obtained with MILP and WMILP are indistinguishable
at the reported precision, which confirms that the warm-start strategy does
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Table 6.10: Out-of-sample performance comparison between conventional MILP
and WMILP.

Test
Systems

Solution
time (s)

# of iterations
(average) Time saving

(%, average)
Out-of-sample

profit (€, average)
MILPWMILP MILP WMILP

6-bus 340 270 29,576 25,719 20.59 216,214

24-bus 546 386 51,989 42,640 29.30 244,382

118-bus 4,323 3,746 217,249 185,132 13.35 160,516

not compromise the quality of the optimal solution.
An additional observation is that the reduction in iterations correlates with

the classification accuracy reported in Table 6.9. Systems with higher prediction
accuracy tend to exhibit larger iteration reductions. This behavior is consistent
with the interpretation of the neural network as a provider of high-quality
initial patterns for the two tiers of binary variables, which in turn reduces the
size of the effective search tree explored by the branch-and-cut algorithm.

Overall, the numerical results in this section show that the proposed hybrid
CAES-LAES plant can significantly increase storage profitability and consumer
surplus when operated with a suitably chosen look-ahead horizon. At the
same time, the learning-assisted warm-start procedure provides a practical
means of solving the resulting mixed-integer MPEC in large systems within
reasonable computational times, while preserving the exactness and economic
interpretability of the underlying strategic dispatch model.

6.6. Chapter Conclusion

This chapter developed a strategic dispatch framework for a hybrid CAES-LAES
plant that participates in a day-ahead electricity market as a price-making
agent. The model jointly coordinates the operation of the compressed air and
cryogenic subsystems, including the bi-directional conversion machinery, and
extends the dispatch problem to a multi-day look-ahead formulation. The
resulting bi-level market-participation model, in which the hybrid plant acts as
a leader and the market-clearing operator as a follower, was reformulated as
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a single-level MILP using the KKT conditions of the lower-level problem. To
address the large number of binary variables that arise in realistic systems, the
chapter introduced a learning-assisted solution approach that uses a standard
multi-label feedforward neural network to provide high-quality warm starts for
the mixed-integer solver.

The numerical case studies, conducted on a 6-bus test system and extended
to the IEEE 24-bus and 118-bus systems, yielded several key insights. First, the
hybrid CAES-LAES configuration consistently outperforms the corresponding
set of standalone CAES and LAES units in total profit, as it better exploits
the complementarities between high-efficiency compressed air storage and high-
density cryogenic storage. Second, the length of the dispatch window is a critical
design parameter: in the studied setting, extending the horizon from one day to
six days led to profit increases of up to about 90% relative to a purely day-ahead
perspective and systematically improved consumers’ expected surplus. Third,
profit sensitivity analyses showed that increasing cryogenic storage capacity in
the hybrid plant enhances profitability only up to a certain threshold, beyond
which additional capacity brings negligible gains, which points to the need
for carefully designed sizing studies. The robustness experiment with lead-
dependent forecast-error bands in Appendix A.8 confirmed that these qualitative
conclusions remain valid when forecast accuracy deteriorates with lead time.
Finally, the learning-assisted warm-start strategy reduced the average solution
time of the mixed-integer formulation by approximately 29.30% in the IEEE
24-bus system and 13.35% in the IEEE 118-bus system, without compromising
optimality, which demonstrates its practical value for large-scale bi-level market
models.

Chapter Publication

• H. Khaloie, A. Stankovski, B. Gjorgiev, G. Sansavini, and F. Vallée,
“Hybrid Energy Storage Dispatch: A Bi-Level Look-Ahead Learning-
Assisted Model,” IEEE Transactions on Energy Markets, Policy and
Regulation, vol. 3, no. 3, pp. 376–392, Sept. 2025.
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CHAPTER 7
Conclusions and Perspectives

7.1. Summary

This thesis has introduced a set of optimization and learning-assisted models
for the operation and market integration of bulk and long-duration energy
storage technologies in liberalized electricity and multi-energy markets. It
has combined detailed techno-economic representations of storage plants with
stochastic programming, multi-level optimization, and data-driven warm-start
strategies. The work has focused on three main classes of storage assets, namely
grid-scale lithium-ion batteries, an integrated LAES-LNG configuration, and a
hybrid CAES-LAES plant, and has examined both non-strategic and strategic
market participation. Across these different settings, the thesis has sought to
understand how storage operators can translate physical flexibility into stable
and interpretable revenue streams under uncertainty.

Chapter 1 introduced the motivation and background of the thesis. It
outlined the challenges that arose when variable renewable generation displaced
conventional plants, highlighted the need for bulk and long-duration flexibility,
and positioned storage as a central enabler of net-zero electricity systems.
The chapter formulated the main research questions, targeted operational and
market-integration aspects rather than pure investment planning, and explained
how the subsequent chapters were connected.

Chapter 2 reviewed energy storage technologies and applications with
emphasis on large-scale devices. It classified storage by power and energy
ratings, response times, and discharge durations, and summarized the central
roles storage played across system timescales. The chapter described the
physical and economic characteristics of key technologies, including lithium-ion
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batteries, compressed air, and liquid air energy storage, and explained how
storage participated in wholesale electricity markets, thereby providing the
physical and market context for the modeling work.

Chapter 3 developed the optimization and learning framework that sup-
ported the thesis. It introduced deterministic formulations for operational
planning and extended them to scenario-based stochastic programming to
capture uncertainty. The chapter presented multi-level optimization and opti-
mality conditions, showed how these concepts led to MPEC in strategic market
environments, and discussed the role of machine learning as a complement to
optimization, forming the methodological toolbox used later.

Chapter 4 proposed a risk-aware bidding and dispatch framework for a
grid-scale lithium-ion battery that participated in day-ahead and intraday
electricity markets as a price-taking agent. It formulated a benchmark risk-
neutral model that co-optimized charging and discharging decisions across
the two market stages under technical constraints, and then introduced an
extension with second-order SSD constraints to control the downside risk of
revenues. Numerical studies evaluated how risk aversion and benchmark choice
affected expected profit, revenue variability, and regret, and illustrated how
non-strategic storage operators could embed explicit risk considerations into
their bidding strategies.

Chapter 5 examined an integrated LAES-LNG configuration that coupled
electricity and gas systems through a shared thermodynamic layout. It described
the plant architecture, combining liquid air storage with liquefaction and
regasification processes and cold exergy recovery, and formulated a two-stage
stochastic dispatch model that co-optimized electricity generation and LNG
regasification under uncertain electricity and LNG prices. To assess investment
attractiveness, the chapter introduced a probabilistic payback period and
showed how correlations between price uncertain revenue and plant investment
costs influenced long-term economic feasibility.

Chapter 6 focused on the strategic look-ahead operation of a hybrid
CAES-LAES plant in a network-constrained day-ahead electricity market. It
described the main operating modes of the hybrid system and explained how the
plant could exploit both compressed air and liquid air storage to provide long-
duration flexibility. The chapter formulated a bi-level optimization model in
which the hybrid plant acted as a strategic price-maker at the upper level, while
the lower level cleared the day-ahead market under a direct-current approxima-
tion of power flows, and reformulated the problem as a mixed-integerMPEC.
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To mitigate the computational burden, it proposed a learning-assisted solution
strategy in which a feedforward neural network predicted promising integer
patterns that warm-started the solver, and case studies on 6-bus, IEEE 24-bus,
and IEEE 118-bus networks illustrated how hybridization and forecast horizon
shaped the profitability and market impact of long-duration storage.

7.2. Conclusions

The main conclusions of this thesis relate to how bulk and long-duration storage
can operate in liberalized markets under uncertainty and to how advanced
optimization and learning techniques can support this operation. The models
developed here show that it is possible to represent the economic behavior of
storage assets in a unified framework that handles non-strategic and strategic
participation, incorporates risk preferences, and captures sector-coupling effects.
They also demonstrate that computational challenges, especially in bi-level and
mixed-integer formulations, can be alleviated through informed use of machine
learning without sacrificing solution quality.

For grid-scale lithium-ion batteries, the risk-aware bidding framework devel-
oped in this thesis highlights the importance of modeling revenue distributions
rather than only expected values. The SSD formulation allows a storage op-
erator to control downside risk in a transparent way by specifying acceptable
dominance relations relative to a benchmark portfolio. Numerical results show
that modest levels of risk aversion can substantially reduce regret and revenue
volatility. The analysis also reveals that the choice of benchmark and the
quality of the scenario set are crucial. Poorly chosen benchmarks or unrep-
resentative scenarios can lead to overly conservative strategies or misleading
risk assessments. A key conclusion is that non-strategic batteries can improve
their economic performance in uncertain markets by combining high-resolution
inter-temporal models with risk measures that reflect investor preferences in an
explicit and tractable manner.

The study of the integrated LAES-LNG configuration led to several spe-
cific conclusions about sector-coupled long-duration storage. The two-stage
stochastic model showed that a coordinated operation of electricity genera-
tion, liquefaction, regasification, and cold exergy recovery allowed the plant
to exploit temporal and cross-sector arbitrage opportunities that were not
accessible for standalone LAES facilities. As a result, the integrated facility
achieved higher expected operating profits and shorter payback periods than
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reference configurations without sector-coupling. The probabilistic payback
period metric proved particularly useful, since it summarized not only the
central tendency of investment performance but also the likelihood of unfavor-
able outcomes, thereby offering a more informed view of economic feasibility
than deterministic indicators. Finally, the case studies confirmed that both
profitability and payback risk were strongly driven by LNG and electricity price
volatility, emphasizing the need for carefully designed scenario sets and a robust
evaluation of sector-coupled storage investments across a range of plausible
market conditions.

The strategic hybrid CAES-LAES study provides insights into both long-
duration storage behavior and the use of learning-assisted optimization in
complex bi-level models. The results indicate that the length of the look-ahead
horizon has a marked effect on optimal bidding strategies and on realized
profits. Longer horizons allow the hybrid plant to exploit inter-temporal
opportunities more fully, but they also increase model size and computational
effort. Hybridization between compressed air and liquid air storage adds
further flexibility by allowing the plant to exploit different efficiency profiles,
charging pathways, and storage media, which can be particularly valuable under
network congestion. From a methodological standpoint, the learning-assisted
warm-start strategy emerges as an effective way to improve solver performance.
By predicting promising patterns for integer variables, the neural network
accelerates the search process and reduces solution times, especially in larger
networks. The case studies confirm that this approach maintains near-optimal
solution quality while enabling analyses that would otherwise be prohibitively
expensive.

Across these three methodological studies, a unifying conclusion is that
optimization-based models for bulk and long-duration storage must respect
the interplay between technology, market design, and uncertainty. Risk-aware
formulations can capture investor preferences and can support more stable
revenue profiles. Sector-coupled technologies can quantify the added value of
integrating storage with other infrastructures and can reveal conditions under
which such integration is beneficial. Strategic bi-level formulations can represent
the behavior of large storage units that influence market outcomes.

These conclusions also translate into practical recommendations for stake-
holders who plan, operate, and regulate large-scale storage assets in liberalized
electricity markets. For asset owners and system operators, a first implication
is to select the market-participation model in line with the asset’s expected
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influence on market prices. When a storage plant is large relative to the relevant
node or zone, price-taking dispatch may misrepresent both revenues and system
impacts; in such cases, strategic formulations based on equilibrium constraints
or MPEC provide a more appropriate decision-support tool than purely price-
taking models. In addition, storage operators should treat the look-ahead
horizon as a tunable operational design choice rather than a fixed modeling con-
vention. In practice, the preferred horizon depends on the persistence of price
signals, the accuracy of forecasts across lead days, and the operational flexibility
of the technology. Operators can therefore rely on structured procedures to
quantify the marginal value of extending the dispatch window and to identify
a horizon that balances economic gains with forecast risk and computational
tractability [213]. Finally, storage owners are typically able to retain detailed
records of dispatch decisions and realized market outcomes; these data streams
can support learning-assisted optimization workflows that warm-start commer-
cial solvers from historical operation, thereby reducing computation time in
large-scale implementations without additional data-collection requirements.

For policymakers, regulators, and market designers, the central implication
is that the evaluation of long-duration storage should explicitly account for
strategic behavior and forward-looking decision-making when such assets can
affect price formation. Equilibrium-based tools, including MPEC formulations,
offer a transparent means to assess how large storage resources reshape nodal
prices, congestion rents, investment signals, and welfare distribution across
market participants. These models are particularly valuable for stress-testing
alternative market designs and regulatory measures before implementation
and for quantifying system-level benefits of hybrid long-duration storage. In
this context, targeted incentives or revenue-stabilization mechanisms may be
justified to accelerate deployment when storage delivers measurable welfare
gains that are not fully captured by private revenues [214]. More broadly,
combining strategic equilibrium models with improved forecasting and learning-
assisted optimization can provide a rigorous basis for planning, operating, and
regulating next-generation storage portfolios in decarbonized power systems.

7.3. Prospects

The work presented in this thesis opens several paths for future research. One
broad direction concerns richer representations of market products and more
detailed market designs. The current models focus on energy markets and do
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not explicitly include ancillary services, reserves, or capacity mechanisms, even
though bulk and long-duration storage can provide such products. Extending
the LAES-LNG model to co-optimize participation in energy and ancillary
service markets, both in the electricity and gas domains, would provide a more
complete picture of the plant’s economic potential. Similarly, the strategic
hybrid CAES-LAES framework could be expanded to include joint energy and
reserve bidding, allowing a better understanding of how long-duration storage
interacts with system balancing and security services.

A second direction relates to methodological enhancements of the strate-
gic hybrid storage model and its solution techniques. The learning-assisted
approach developed here relies on training data obtained from solving a KKT-
based reformulation of the bi-level problem. This process becomes difficult for
larger networks and longer horizons, since each additional feature combination
requires solving a large mixed-integer program. Future work could investi-
gate decomposition strategies, such as Benders-like methods or Lagrangian
relaxations, to generate training data more efficiently. Alternative bi-level
reformulations, for example duality-based approaches, may offer more compact
representations that reduce the computational effort needed during dataset
generation. Another important topic is the determination of economically
meaningful look-ahead horizons in a price-making environment. While such
models are available for price-taking batteries [213], extending them to strategic
hybrid storage would require explicit consideration of network topology, rival
strategies, demand uncertainty, and renewable generation patterns, as well as
plant-specific thermodynamic behavior.

A third theme concerns richer representations of uncertainty and decision
timing. The models in this thesis mainly adopt single-stage or two-stage
formulations over limited horizons. Multi-stage stochastic programming would
allow sequential decision processes in which storage operators update their
actions as new information arrives. Such models could represent the interaction
between forward, day-ahead, intraday, and real-time markets more accurately,
especially for long-duration technologies that operate over multiple days or
weeks. The challenge is to maintain computational tractability while introducing
more refined risk measures, such as nested risk metrics or stage-wise dominance
constraints. For the LAES-LNG case, multi-stage formulations could capture
interactions between long-term fuel contracts, infrastructure utilization, and
short-term dispatch decisions in a unified framework.

A fourth line of research involves deeper and more systematic integration
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of machine learning into storage optimization. The feedforward neural network
used here for warm-starting integer decisions is simple and effective, but it
does not exploit temporal structures in the data and remains a black box from
the perspective of the optimizer. Future work could test time series models,
such as recurrent or long short-term memory networks, to forecast prices, loads,
or binary on/off decisions under inter-temporal constraints, and to compare
their performance with simpler architectures in terms of solution speed and
robustness. It would also be valuable to study which features most strongly
influence warm-start quality and how solver heuristics respond to different types
of suggested integer configurations. Research on explainable machine learning
and on tighter integration of forecasting modules within commercial solvers
could help move warm-start strategies from empirical tools to more principled
components of large-scale optimization workflows.

Finally, there is significant scope for more detailed techno-economic as-
sessment and comparative analysis across storage technologies and market
designs. The thesis has focused on operational optimization for given plant
configurations and has used probabilistic payback periods as a first step toward
investment evaluation. Future work could combine the developed operational
models with detailed cost data and degradation representations to conduct
comprehensive cost-benefit studies that compare standalone batteries, LAES,
CAES, and integrated hybrids. Such studies could explore how technology
improvements, policy changes, and different market rules influence the relative
attractiveness of each option. They could also examine market environments
in which operators relinquish some control over state-of-charge trajectories
to system operators, as in designs where the market authority schedules stor-
age within specified technical bounds. Linking these analyses to system-level
planning models would provide insight into how portfolios of flexible assets,
including bulk and long-duration storage, can support the long-term transition
to net-zero energy systems.

Overall, the prospects outlined above show that the models and insights
developed in this thesis are starting points rather than endpoints. They provide
a structured foundation on which more detailed, more realistic, and more
ambitious studies can build in order to understand and shape the role of
large-scale storage in future energy systems.
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APPENDIX A
Appendices

A.1. Perfect-Foresight Benchmark for Regret Evalua-
tion

The ideal scenario-wise profits F ideal
ω used in the regret metric of Section 4.4.1

are obtained from a perfect-foresight version of the battery bidding problem. In
this setting, the operator is assumed to know the realization of day-ahead and
intraday prices in advance and is allowed to adapt all decisions to each scenario
ω. The resulting problem is a single-stage stochastic program, in which the
only coupling across scenarios occurs in the objective function.

Let F ideal
ω denote the maximum attainable profit in scenario ω. The perfect-

information benchmark is then defined by

max
Ω∑
ω=1

πωF
ideal
ω , (A.1a)

s.t. F ideal
ω =

T∑
t=1

[
λDA
t,ω

(
PDA,dis
t,ω − PDA,ch

t,ω

)
+ λIDt,ω

(
P ID,dis
t,ω − P ID,ch

t,ω

)
−

S∑
s=1

Φs
(
ξDA,dis
s,t,ω + ξID,diss,t,ω

)]
∀ω,

(A.1b)

where all operational variables carry the scenario index ω. The parameters λDA
t,ω

and λIDt,ω are the scenario-dependent day-ahead and intraday prices, while Φs
is the degradation cost coefficient of segment s in the piecewise linear aging
model, as in Section 4.2.2.
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The operational constraints of the perfect-information problem are obtained
by replicating the two-stage constraints (4.2)–(4.16) for each scenario and
allowing all first-stage variables to depend on ω. More precisely:

• aggregated and segment-wise charge and discharge powers in both markets
are indexed by (t, ω), that is,

PDA,dis
t → PDA,dis

t,ω , PDA,ch
t → PDA,ch

t,ω ,

ξDA,dis
s,t → ξDA,dis

s,t,ω , ξDA,ch
s,t → ξDA,ch

s,t,ω ,

and similarly for the intraday quantities P ID,dis
t,ω , P ID,ch

t,ω , ξID,diss,t,ω , and ξID,chs,t,ω ;

• the binary commitment variable becomes scenario-dependent, βt → βt,ω;

• the segment-wise and total state-of-charge variables, δSoCs,t,ω and ∆SoC
t,ω ,

remain indexed by (s, t, ω) as in Section 4.2.2.

With these substitutions, each scenario ω has its own copy of the power
limits, intraday adjustment limits, and state-of-charge dynamics, subject to the
same technical parameters and bounds as in the original model. The resulting
formulation yields F ideal

ω as the optimal value of (A.1b) for each scenario. These
values are then used in the regret definition

Gω(k1) = F ideal
ω −Rω(k1),

introduced in Section 4.4.1, where Rω(k1) is the profit of the SSD-constrained
two-stage strategy corresponding to a given benchmark k1.

A.2. Robust Counterpart of the Battery Bidding
Model

This appendix presents the robust counterpart of the battery bidding problem
used in the comparative analysis of Section 4.5.3. The robust formulation
captures bounded uncertainty in day-ahead and intraday prices by considering
all realizations within symmetric intervals around nominal values and by limiting
the number of periods in which prices can deviate from these nominal levels
through robustness parameters.

Let λ̄DA
t and λ̄IDt denote the nominal day-ahead and intraday prices, and let
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λ̂DA and λ̂ID be the corresponding deviation bounds, so that prices are allowed
to vary within ±10% of their nominal values. In the robust formulation, these
bounded deviations are incorporated through a budget-of-uncertainty structure
with parameters ϖDA and ϖID that take values in [0, T ] and limit the number
of time periods that can experience worst-case deviations in each market.

Let OFdet denote the deterministic objective function value obtained when
all prices are fixed at their nominal values. In the notation of Chapter 4, this
deterministic objective is

OFdet =

T∑
t=1

[
λ̄DA
t

(
PDA,dis
t − PDA,ch

t

)
+ λ̄IDt

(
P ID,dis
t − P ID,ch

t

)
−

S∑
s=1

Φs
(
ξDA,dis
s,t + ξID,diss,t

)]
. (A.2)

Under bounded price uncertainty, the robust counterpart of the profit-
maximization problem can be cast as a max–min problem, where the battery
operator chooses a bidding strategy that maximizes profit, while nature chooses
a realization of prices within the uncertainty sets that minimizes it. Using
duality theory, this max–min structure can be transformed into the following
single-level optimization problem [215]:

min −OFdet + χ1ϖDA + χ2ϖID +
T∑
t=1

(
q1t + q2t

)
, (A.3a)

subject to

q1t + χ1 ≥ λ̂DAy1t ∀t, (A.3b)

q2t + χ2 ≥ λ̂IDy2t ∀t, (A.3c)

q1t , q
2
t ≥ 0 ∀t, (A.3d)

y1t , y
2
t ≥ 0 ∀t, (A.3e)

χ1, χ2 ≥ 0, (A.3f)

PDA,dis
t − PDA,ch

t ≤ y1t ∀t, (A.3g)

P ID,dis
t − P ID,ch

t ≤ y2t ∀t, (A.3h)

Deterministic counterparts of constraints (4.2)–(4.16). (A.3i)

In this formulation, q1t and q2t are non-negative dual variables associated
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with the worst-case deviations of day-ahead and intraday prices in period t,
and χ1 and χ2 are the dual variables associated with the robustness budgets
ϖDA and ϖID, respectively. The auxiliary variables y1t and y2t bound the net
discharge revenues in each period and are introduced to linearize the robust
counterpart of the max–min structure. Constraints (A.3b)–(A.3c) link the dual
variables to the deviation bounds, while (A.3g)–(A.3h) connect the auxiliary
variables to the net discharge decisions. The deterministic counterparts of
constraints (4.2)–(4.16) in (A.3i) enforce the same technical limits and state-of-
charge dynamics as in the risk-neutral model, evaluated at nominal prices and
without scenario indices.

By varying the robustness parameters ϖDA and ϖID between zero and
T , the decision-maker can explore the trade-off between protection against
worst-case price deviations and expected profitability. These trade-offs are
evaluated in Section 4.5.3 in terms of regret and out-of-sample performance,
and the VIKOR method is used there to select a compromise robustness level.

A.3. Direct CO2 intensity benchmark for the LAES-
LNG discharge block

This appendix benchmarks the direct CO2 emission intensity associated with
the natural-gas-fired expansion block used during discharge of the LAES-LNG
facility against a reference simple-cycle gas turbine. The calculation accounts
for stack emissions from natural gas combustion only; upstream fuel-chain
emissions and the carbon intensity of charging electricity are not included.

Let EFNG denote the CO2 emission factor of natural gas per unit of fuel
energy. Following the U.S. environmental protection agency emission factor
hub, EFNG = 56.1 kgCO2/MMBtu (LHV basis) [216]. For a generation block
with heat rate HR in MMBtu/MWhout, the direct emission intensity is

ICO2 = HR× EFNG (A.4)

LAES-LNG discharge block: The discharge block of the LAES-LNG model
operates at HRLAES = 1.066 MWhth/MWhout. Using 1 MWhth = 3.6 MMBtu,
this corresponds to:

HRLAES = 1.066× 3.6 = 3.8376 MMBtu/MWhout (A.5)
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and therefore

ILAES
CO2

= 3.8376× 56.1 ≈ 215.3 kgCO2/MWhout (≈ 215 gCO2/kWh) (A.6)

Reference simple-cycle gas turbine: As a benchmark, the U.S. en-
ergy information administration reports an average operating heat rate
of 10,999 Btu/kWh for gas-turbine units [217]. This is equivalent to
HRSCGT = 10.999 MMBtu/MWhout, which yields

ISCGT
CO2

= 10.999× 53.06 ≈ 584 kgCO2/MWhel (≈ 584 gCO2/kWh) (A.7)

Relative comparison: The direct CO2 intensity of the LAES-LNG discharge
block is lower by

∆ =

(
1−

ILAES
CO2

ISCGT
CO2

)
× 100 ≈ 63.2% (A.8)

i.e., approximately 63% less direct CO2 per unit of electricity produced than
the reference simple-cycle gas turbine under the stated heat rate and emission
factor assumptions.

A.4. Day-Ahead Dispatch Model for a standalone
LAES Facility

To complement the LAES-LNG dispatch formulation developed in Section 5.3,
this section presents the day-ahead dispatch model for a standalone LAES facil-
ity that participates only in the day-ahead electricity market. The formulation
is adapted from [173] and is used throughout this thesis as a reference case to
isolate the impact of LNG integration on operational decisions and profitability.
The schematic layout of the standalone LAES plant is the one introduced in
Chapter 2. The model uses the same notation and structure as the LAES-LNG
formulation in Section 5.3, which facilitates a direct comparison between the
two setups.

The day-ahead dispatch problem is written as a stochastic profit maximiza-
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tion problem over a 24-hour horizon. The objective function is

max
ΞH&N ,ΞW&S

E F(y, θd) =
∑
t∈T

[
EH&N

[
P dis
d,t ktλ

Elec
d,t︸ ︷︷ ︸

O2

−P ch
d,tktλ

Elec
d,t︸ ︷︷ ︸

O3

− P dis
d,t ktϑ

dis︸ ︷︷ ︸
O4

−P ch
d,tktϑ

ch︸ ︷︷ ︸
O5

]]
(A.9)

where F(y, θd) denotes the profit of the standalone LAES facility, y is the vector
of decision variables, and θd collects the electricity price scenarios. For each
time period t, term O2 represents the revenue from selling electricity to the
day-ahead market, while term O3 is the cost of buying electricity for charging
and liquefying air. Terms O4 and O5 capture the variable operating costs
during discharging and charging, respectively. These four terms correspond
to O2 to O5 in the LAES-LNG objective (5.1), but without any LNG-related
component in the first stage.

The objective function (A.9) is subject to power limits, energy balance
constraints for the liquid air tank, and non-anticipativity and monotonicity
conditions for the day-ahead offering and bidding curves.

Power limits and operating modes. The power traded by the LAES
facility in the day-ahead electricity market must remain within the technical
limits of the plant. The following constraints impose lower and upper bounds
on discharge and charge power:

Pdisαdis
t ≤ P dis

d,t ≤ Pdisαdis
t ∀t, ∀d (A.10)

Pchαch
t ≤ P ch

d,t ≤ Pchαch
t ∀t, ∀d (A.11)

where Pdis and Pdis are the minimum and maximum discharge powers, and
Pch and Pch are the corresponding charging limits. The binary variables αdis

t

and αch
t indicate whether the plant is in discharging or charging mode in period

t. The LAES facility is not allowed to charge and discharge at the same time:

αdis
t + αch

t ≤ 1 ∀t,
{
αdis
t , αch

t

}
∈ {0, 1} (A.12)
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Energy balance and inventory limits of the liquid air tank. The energy
content of the liquid air tank evolves over time depending on the previous
inventory, boil-off losses, and the net effect of charging and discharging. For
the first time period and for the remaining periods, the inventory dynamics are
modeled as:

qLAES
d,t = qLAES

0

(
1− RLAES

24

)
+ P ch

d,tkt
√
ηETF −

P dis
d,t kt√
ηETF

∀t = 1, ∀d (A.13)

qLAES
d,t = qLAES

d,t−1

(
1− RLAES

24

)
+P ch

d,tkt
√
ηETF −

P dis
d,t kt√
ηETF

∀t ≥ 2,∀d (A.14)

where qLAES
d,t is the liquid air inventory, qLAES

0 is the initial inventory level,
RLAES is the hourly boil-off rate, and ηETF is the round-trip efficiency of the
LAES facility. The factor

√
ηETF appears in both charging and discharging

terms to represent the loss of energy between the two processes. To avoid
end-of-horizon artifacts, the inventory is required to be cyclic:

qLAES
d,t = qLAES

0 ∀t = 24,∀d (A.15)

and must remain within the operational limits of the tank:

QLAES ≤ qLAES
d,t ≤ QLAES ∀t, ∀d (A.16)

where QLAES and QLAES denote the minimum and maximum allowable liquid
air inventory.

Non-anticipativity and structure of offering and bidding curves. As
in the LAES-LNG case, the standalone LAES facility participates in the day-
ahead electricity market by submitting offering and bidding curves. The decision
variables P dis

d,t and P ch
d,t therefore depend on electricity price scenarios d. Non-

anticipativity requires that the facility cannot distinguish between scenarios
that are identical from the perspective of day-ahead prices. When two scenarios
d and d′ yield the same price in period t, the offered and bid power levels must
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coincide:

P dis
d,t = P dis

d′,t if λElecd,t = λElecd′,t ∀t, ∀d, d′ (A.17)

P ch
d,t = P ch

d′,t if λElecd,t = λElecd′,t ∀t, ∀d, d′ (A.18)

The market operator also enforces monotonicity properties for offering and
bidding curves. Offers must be non-decreasing in price and bids must be
non-increasing in price, which is modeled as

P dis
d,t ≥ P dis

d′,t if λElecd,t ≥ λElecd′,t ∀t, ∀d, d′ (A.19)

P ch
d,t ≤ P ch

d′,t if λElecd,t ≥ λElecd′,t ∀t, ∀d, d′ (A.20)

These constraints ensure that the facility submits economically rational supply
and demand curves that conform to the market rules. The round-trip efficiency
parameter

√
ηETF in (A.13) and (A.14) captures the net effect of conversion

losses between charging and discharging in a compact way. Constraints (A.10)
to (A.16) map directly to constraints (5.11) to (5.17) of the LAES-LNG model,
and constraints (A.17) to (A.20) are analogous to the non-anticipativity and
monotonicity constraints (5.20) to (5.23). The standalone LAES formulation
in this section can therefore be viewed as a special case of the more general
LAES-LNG model, with the LNG-related variables and constraints removed.
This consistency facilitates the comparison of numerical results and supports the
analysis of the incremental value of integrating LAES with LNG regasification.

A.5. Benchmark standalone LAES Configurations

This appendix documents the technical parameters of the two standalone LAES
facilities that serve as benchmarks for the integrated LAES-LNG configuration
analyzed in Chapter 5. These benchmark plants correspond to Case 2 and
Case 3 in Section 5.5 and are used to quantify the incremental value of thermal
integration with LNG regasification under identical market conditions.

Both benchmark facilities follow the same notation and modeling framework
as the integrated plant. The parameters reported below include charging and
discharging power limits, storage energy bounds, initial state of charge, daily
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Table A.1: Technical specifications of the standalone LAES facility in Case 2.

Parameter Value Unit Parameter Value Unit

Pdis 32.9 MW RLAES 0.5 %/day

Pdis 0.987 MW QLAES 480 MWh

Pch 60 MW QLAES 48 MWh

Pch 48 MW qLAES
0 50 MWh

ϑdis 2.54 €/MWh ηRTE 55 %

ϑch 2.54 €/MWh - - -

energy loss rate, round-trip efficiency, and variable operating costs. These
quantities enter the mixed-integer day-ahead dispatch formulation presented
in Appendix A.4 and allow a consistent comparison of short-term profitability
across all case studies.

Case 2 represents a realistic standalone LAES facility that is economically
equivalent to the LAES-LNG system in Case 1. Its energy capacity is set to
480 MWh, which matches the liquid air tank of the integrated plant, while the
round-trip efficiency is limited to 55%. The charging and discharging power
bounds, self-discharge rate, and variable operating costs reflect present-day
technology and are chosen in line with [57]. The corresponding parameter
values are summarized in Table A.1.

Case 3 represents an optimistic standalone LAES facility inspired by the
high-performance configuration proposed in [173]. This plant features a round-
trip efficiency of 70%, a reduced daily loss rate, and significantly lower variable
operating costs for both charging and discharging. Its energy capacity is
247 MWh, with power limits tailored to the technology assumptions in [173].
These parameters provide a technology frontier against which the performance
of the integrated LAES-LNG facility can be benchmarked. The detailed speci-
fication is given in Table A.2.
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Table A.2: Technical specifications of the standalone LAES facility in Case 3.

Parameter Value Unit Parameter Value Unit

Pdis 57 MW RLAES 0.15 %/day

Pdis 1.71 MW QLAES 247 MWh

Pch 50 MW QLAES 24.7 MWh

Pch 40 MW qLAES
0 25 MWh

ϑdis 0.2259 €/MWh ηRTE 70 %

ϑch 0.1321 €/MWh - - -

Together, Tables A.1 and A.2 provide the complete data required to re-
produce the benchmark simulations discussed in Section 5.5 and to evaluate,
in a transparent way, the incremental benefits of coupling LAES with LNG
regasification in market-based operation.

A.6. Linearization Strategy for Bilinear Expressions
in Equations (6.1b) and (6.1c)

This appendix complements Section 6.3.3 by detailing the linearization pro-
cedure used to remove the bilinear products between nodal electricity prices
and storage dispatch decisions in the upper-level objective function. The bilin-
ear terms appear in the revenue components of (6.1b) and (6.1c), where the
charging and discharging powers of the CAES and LAES units are multiplied
by the nodal electricity prices. To obtain a MILP formulation, these terms
are re-expressed in linear form by exploiting the stationarity conditions of the
lower-level KKT system and the strong duality property of the lower-level
problem.

Step 1: Expressing Prices in Terms of Bids and Dual Variables

Starting from the stationarity conditions of the lower-level problem with respect
to the cleared storage quantities, that is, constraints (6.3d) and (6.3e), the
nodal electricity price at the bus where storage facility f is connected can be
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written as

λElec
j,b∈ΦF

b ,t
= ργ,yj,f,t + µγ,yj,f,t − µγ,y

j,f,t
∀{j, f, t} (A.21)

λElec
j,b∈ΦF

b ,t
= ργ,xj,f,t − µγ,xj,f,t + µγ,x

j,f,t
∀{j, f, t} (A.22)

where ργ,yj,f,t and ργ,xj,f,t denote the offer and bid prices of the hybrid storage plant,

and µ
γ,(·)
j,f,t , µ

γ,(·)
j,f,t are the dual variables associated with the upper and lower

bounds on the cleared storage quantities.

Step 2: Substituting Prices into the Storage Revenue

Using (A.21)–(A.22) together with the complementary slackness constraints
(6.3n)–(6.3q), the revenue components R1 and R2 in (6.1b) and (6.1c) can be
rewritten as:

R1 =
∑
j∈J

∑
f∈F

∑
t∈T

(
pα,yj,f,t − pα,xj,f,t

)
λElec
j,b∈ΦF

b ,t

=
∑
j∈J

∑
f∈F

∑
t∈T

pα,yj,f,t
[
ργ,yj,f,t + µγ,yj,f,t − µγ,y

j,f,t

]∑
j∈J

∑
f∈F

∑
t∈T

pα,xj,f,t
[
ργ,xj,f,t − µγ,xj,f,t + µγ,x

j,f,t

]
(A.23)

R2 =
∑
j∈J

∑
f∈F

∑
t∈T

(
pβ,yj,f,t − pβ,xj,f,t

)
λElec
j,b∈ΦF

b ,t

=
∑
j∈J

∑
f∈F

∑
t∈T

[
pβ,yj,f,t

(
ργ,yj,f,t + µγ,yj,f,t − µγ,y

j,f,t

)
− pβ,xj,f,t

(
ργ,xj,f,t − µγ,xj,f,t + µγ,x

j,f,t

)]
(A.24)

Adding (A.23) and (A.24), grouping terms, and using the aggregation
relations (6.1f)–(6.1g), that is,

pγ,yj,f,t = pα,yj,f,t + pβ,yj,f,t, pγ,xj,f,t = pα,xj,f,t + pβ,xj,f,t,

together with the complementary slackness conditions that eliminate products
between primal and dual variables, the combined storage revenue can be written
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as

R1 +R2 =
∑
j∈J

∑
f∈F

∑
t∈T

[
pγ,yj,f,tρ

γ,y
j,f,t + ϕγ,yj,f,tµ

γ,y
j,f,t − pγ,xj,f,tρ

γ,x
j,f,t − ϕγ,xj,f,tµ

γ,x
j,f,t

]
.

(A.25)

Expression (A.25) is linear in the decision variables pγ,x, pγ,y, ϕγ,x, ϕγ,y, and
the associated dual variables.

Step 3: Applying Strong Duality to the Lower-Level Problem

The lower-level market-clearing problem is a linear program. Therefore, the
strong duality theorem applies and implies that, at optimality, the primal and
dual objective values are equal. Applying strong duality to the lower-level
objective function (6.2a) yields:

∑
j∈J

∑
g∈G

∑
t∈T

V G
j,g,tp

G
j,g,t −

∑
j∈J

∑
d∈D

∑
t∈T

V D
j,dp

D
j,d,t +

∑
j∈J

∑
f∈F

∑
t∈T

(
ργ,yj,f,tp

γ,y
j,f,t − ργ,xj,f,tp

γ,x
j,f,t

)
= −

∑
j∈J

∑
g∈G

∑
t∈T

µGj,g,tP
G
g −

∑
j∈J

∑
w∈W

∑
t∈T

µWj,w,tE
W
j,w,t

−
∑
j∈J

∑
d∈D

∑
t∈T

µDj,d,tE
D
j,d,t −

∑
j∈J

∑
b∈B\{ref}

∑
t∈T

π
(
δj,b,t + δj,b,t

)
−
∑
j∈J

∑
f∈F

∑
t∈T

(
µγ,yj,f,tϕ

γ,y
j,f,t − µγ,xj,f,tϕ

γ,x
j,f,t

)
−
∑
j∈J

∑
(b,b′)∈Φb,b′

∑
t∈T

PLb,b′
(
ξj,b,b′,t + ξ

j,b,b′,t

)
. (A.26)

Rearranging (A.26) and isolating the terms that involve the storage-related
quantities yields:
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∑
j∈J

∑
f∈F

∑
t∈T

[
µγ,yj,f,tϕ

γ,y
j,f,t + µγ,xj,f,tϕ

γ,x
j,f,t + ργ,yj,f,tp

γ,y
j,f,t − ργ,xj,f,tp

γ,x
j,f,t

]
= −

∑
j∈J

∑
g∈G

∑
t∈T

(
V G
j,g,tp

G
j,g,t + µGj,g,tP

G
g

)
+
∑
j∈J

∑
d∈D

∑
t∈T

(
V D
j,dp

D
j,d,t − µDj,d,tE

D
j,d,t

)
−
∑
j∈J

∑
w∈W

∑
t∈T

µWj,w,tE
W
j,w,t −

∑
j∈J

∑
(b,b′)∈Φb,b′

∑
t∈T

PLb,b′
(
ξj,b,b′,t + ξ

j,b,b′,t

)
−
∑
j∈J

∑
b∈B\{ref}

∑
t∈T

π
(
δj,b,t + δj,b,t

)
. (A.27)

Step 4: Final Linear Expression for the Storage Contribution

Combining (A.25) with (A.27), and substituting into the upper-level objective
function, leads to the following linear expression for R1 +R2:

R1 +R2 =
∑
j∈J

∑
f∈F

∑
t∈T

[
−pα,yj,f,t

(
Γαfλ

gas + Cα,yf

)
− pα,xj,f,tC

α,x
f

− pβ,yj,f,tC
β,y
f − pβ,xj,f,tC

β,x
f

]
−
∑
j∈J

∑
g∈G

∑
t∈T

(
V G
j,g,tp

G
j,g,t + µGj,g,tP

G
g

)
+
∑
j∈J

∑
d∈D

∑
t∈T

(
V D
j,dp

D
j,d,t − µDj,d,tE

D
j,d,t

)
−
∑
j∈J

∑
w∈W

∑
t∈T

µWj,w,tE
W
j,w,t

−
∑
j∈J

∑
(b,b′)∈Φb,b′

∑
t∈T

PLb,b′
(
ξj,b,b′,t + ξ

j,b,b′,t

)
−
∑
j∈J

∑
b∈B\{ref}

∑
t∈T

π
(
δj,b,t + δj,b,t

)
. (A.28)

Expression (A.28) is fully linear in the primal and dual variables of the single-
level formulation. It replaces the original bilinear revenue terms in (6.1b) and
(6.1c) and is used directly in the MILP model described in Section 6.3.3.
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A.7. Linearization Strategy for Complementarity Con-
straints in Equations (6.3h)–(6.3u)

This appendix details the big-M linearization of the complementarity constraints
associated with the lower-level KKT conditions in Section 6.3.3. The nonlinear
relationships in (6.3h)–(6.3u) have the generic form

0 ≤ a ⊥ b ≥ 0,

which encodes the condition a ≥ 0, b ≥ 0, and a · b = 0. In the final single-
level MILP, each complementarity relation is represented by a set of linear
constraints that use auxiliary binary variables and big-M parameters. The role
of the auxiliary binaries is to select whether the primal inequality is binding
or the associated dual variable is strictly positive, while the big-M constants
enforce the corresponding bounds in a numerically stable manner.

Overview of the Big-M Reformulation

The nonlinear complementarity pairs are grouped according to the type of
resource or network constraint they represent. Table A.3 summarizes the
mapping from each pair of complementarity conditions in (6.3h)–(6.3u) to the
linear constraints that replace them in the MILP model. For each group, M̌ (·)

and M̂ (·) denote resource-specific big-M values, while u(·) and u(·) are the
auxiliary binary variables that encode the on/off status of the corresponding
primal and dual variables.

Table A.3: Nonlinear complementarity constraints and their corresponding
linearized counterparts.

Nonlinear Linearized Nonlinear Linearized
constraints constraints constraints constraints

(6.3h), (6.3i) −→ (A.29a)–(A.29f) (6.3j), (6.3k) −→ (A.30a)–(A.30f)

(6.3l), (6.3m) −→ (A.31a)–(A.31f) (6.3n)–(6.3q) −→ (A.32a)–(A.32k)

(6.3r), (6.3s) −→ (A.33a)–(A.33g) (6.3t), (6.3u) −→ (A.34a)–(A.34g)

In the constraints that follow, each pair (M̌ (·), M̂ (·)) is selected according
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to the magnitude of the corresponding primal and dual variables, following the
guidelines in [68]. This selection avoids excessively loose bounds and contributes
to a tighter and more numerically stable MILP formulation.

Generators, Wind Units, and Demands

The complementarity conditions for conventional generators in (6.3h)–(6.3i)
are linearized as:

pGj,g,t ≤ M̌GuGj,g,t ∀{j, g, t} (A.29a)

µG
j,g,t

≤ M̂G(1− uGj,g,t) ∀{j, g, t} (A.29b)

P
G
g − pGj,g,t ≥ 0 ∀{j, g, t} (A.29c)

P
G
g − pGj,g,t ≤ M̌GuGj,g,t ∀{j, g, t} (A.29d)

µGj,g,t ≤ M̂G(1− uGj,g,t) ∀{j, g, t} (A.29e)

µG
j,g,t

, µGj,g,t ≥ 0 ∀{j, g, t} (A.29f)

where uGj,g,t and uGj,g,t are binary variables that indicate whether the lower or
upper generator capacity constraint is potentially binding.

The complementarity conditions for wind units in (6.3j)–(6.3k) are treated
analogously:

pWj,w,t ≤ M̌WuWj,w,t ∀{j, w, t} (A.30a)

µW
j,w,t

≤ M̂W (1− uWj,w,t) ∀{j, w, t} (A.30b)

EWj,w,t − pWj,w,t ≥ 0 ∀{j, w, t} (A.30c)

EWj,w,t − pWj,w,t ≤ M̌WuWj,w,t ∀{j, w, t} (A.30d)

µWj,w,t ≤ M̂W (1− uWj,w,t) ∀{j, w, t} (A.30e)

µW
j,w,t

, µWj,w,t ≥ 0 ∀{j, w, t} (A.30f)

The complementarity conditions for demands in (6.3l)–(6.3m) are linearized
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as:

pDj,d,t ≤ M̌DuDj,d,t ∀{j, d, t} (A.31a)

µD
j,d,t

≤ M̂D(1− uDj,d,t) ∀{j, d, t} (A.31b)

E
D
j,d,t − pDj,d,t ≥ 0 ∀{j, d, t} (A.31c)

E
D
j,d,t − pDj,d,t ≤ M̌DuDj,d,t ∀{j, d, t} (A.31d)

µDj,d,t ≤ M̂D(1− uDj,d,t) ∀{j, d, t} (A.31e)

µD
j,d,t

, µDj,d,t ≥ 0 ∀{j, d, t} (A.31f)

Strategic Storage Participation

For the hybrid CAES-LAES plant, the complementarity relations (6.3n)–(6.3q)
involve the cleared storage quantities and the limits defined by the submitted
bids and offers. Their big-M linearization is given by:

pγ,yj,f,t ≤ M̌γ,yuγ,yj,f,t ∀{j, f, t} (A.32a)

µγ,y
j,f,t

≤ M̂γ,y(1− uγ,yj,f,t) ∀{j, f, t} (A.32b)

ϕγ,yj,f,t − pγ,yj,f,t ≥ 0 ∀{j, f, t} (A.32c)

ϕγ,yj,f,t − pγ,yj,f,t ≤ M̌γ,yuγ,yj,f,t ∀{j, f, t} (A.32d)

µγ,yj,f,t ≤ M̂γ,y(1− uγ,yj,f,t) ∀{j, f, t} (A.32e)

pγ,xj,f,t ≤ M̌γ,xuγ,xj,f,t ∀{j, f, t} (A.32f)

µγ,x
j,f,t

≤ M̂γ,x(1− uγ,xj,f,t) ∀{j, f, t} (A.32g)

ϕγ,xj,f,t − pγ,xj,f,t ≥ 0 ∀{j, f, t} (A.32h)

ϕγ,xj,f,t − pγ,xj,f,t ≤ M̌γ,xuγ,xj,f,t ∀{j, f, t} (A.32i)

µγ,xj,f,t ≤ M̂γ,x(1− uγ,xj,f,t) ∀{j, f, t} (A.32j)

µγ,y
j,f,t

, µγ,yj,f,t, µ
γ,x
j,f,t

, µγ,xj,f,t ≥ 0 ∀{j, f, t} (A.32k)

Transmission Line Flows

For each transmission line, the complementarity conditions (6.3r)–(6.3s) in-
volve the line-flow limits and the corresponding dual variables. The big-M
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reformulation is:

Susb,b′
[
θj,b,t − θj,b′,t

]
+ PLb,b′ ≥ 0 ∀(b, b′) ∈ Φb,b′ , ∀{j, t} (A.33a)

Susb,b′
[
θj,b,t − θj,b′,t

]
+ PLb,b′ ≤ M̌ ξuξj,b,b′,t ∀(b, b′) ∈ Φb,b′ , ∀{j, t} (A.33b)

ξ
j,b,b′,t

≤ M̂ ξ(1− uξj,b,b′,t) ∀(b, b′) ∈ Φb,b′ , ∀{j, t} (A.33c)

PLb,b′ − Susb,b′
[
θj,b,t − θj,b′,t

]
≥ 0 ∀(b, b′) ∈ Φb,b′ , ∀{j, t} (A.33d)

PLb,b′ − Susb,b′
[
θj,b,t − θj,b′,t

]
≤ M̌ ξuξj,b,b′,t ∀(b, b′) ∈ Φb,b′ , ∀{j, t} (A.33e)

ξj,b,b′,t ≤ M̂ ξ(1− uξj,b,b′,t) ∀(b, b′) ∈ Φb,b′ , ∀{j, t} (A.33f)

ξ
j,b,b′,t

, ξj,b,b′,t ≥ 0 ∀{j, b, b′, t} (A.33g)

Voltage Angle Bounds

Finally, the complementarity conditions (6.3t)–(6.3u) link the bounds on the
voltage angles at non-reference buses to the dual variables δ and δ. Their big-M
linearization is

θj,b,t + π ≥ 0 ∀b\{ref},∀{j, t} (A.34a)

θj,b,t + π ≤ M̌ δuδj,b,t ∀b\{ref},∀{j, t} (A.34b)

δj,b,t ≤ M̂ δ(1− uδj,b,t) ∀b\{ref}, ∀{j, t} (A.34c)

π − θj,b,t ≥ 0 ∀b\{ref}, ∀{j, t} (A.34d)

π − θj,b,t ≤ M̌ δuδj,b,t ∀b\{ref},∀{j, t} (A.34e)

δj,b,t ≤ M̂ δ(1− uδj,b,t) ∀b\{ref}, ∀{j, t} (A.34f)

δj,b,t, δj,b,t ≥ 0 ∀{j, b, t} (A.34g)

Together, constraints (A.29a)–(A.34g) replace the complementarity condi-
tions (6.3h)–(6.3u) in the single-level formulation. They generate the additional
binary variables that contribute to the computational complexity of the final
MILP, and they justify the learning-assisted warm-start procedures developed
in Section 6.4 to improve the tractability of the strategic look-ahead dispatch
model.
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A.8. Economic Performance under Lead-Dependent
Forecast Uncertainty

This appendix, which complements the analysis in Chapter 6, investigates how
the economic performance of the proposed look-ahead framework changes when
forecast uncertainty increases with lead time. The analysis complements the
baseline results of Section 6.5, where a uniform deviation band of ±15% around
nominal values was used for all lead days.

A.7.1 Motivation and Experimental Design

In practice, short-term forecasts are usually more accurate than medium-term
forecasts. To capture this feature in a simple way, the six-day look-ahead
simulation for 7–12 December 2021 is repeated with a linearly widening forecast-
error envelope. The deviation band starts at ±10% on day 1 and increases
by approximately four percentage points per day, reaching ±30% on day 6.
Formally, the bounds for day j ∈ {1, . . . , 6} can be written as:

±
(
10 + 4 (j − 1)

)
%,

which yields the sequence {±10,±14,±18,±22,±26,±30}%.
The same six-day market data set, system model, and look-ahead formu-

lation as in Section 6.5 are used. Scenario generation follows the baseline
procedure, but the support of the uniform distribution is adapted to the lead-
dependent band. For each lead day, wind production, load, and generator
offer prices are independently perturbed around their nominal values within
the corresponding band. The number of scenarios, solver settings, and all
technical parameters are identical to those in the uniform ±15% benchmark.
The MILPproblems are again solved with Gurobi at zero optimality gap, and
the reported values are averages over the same set of equiprobable scenarios.

A.7.2 Impact on Profitability and Consumer Surplus

Table A.4 compares the main economic indicators obtained under the uniform
and the lead-dependent error structures. For consistency with Section 6.5, the
table reports: (i) the profits of the standalone and hybrid configurations under
a six-day look-ahead horizon, (ii) the percentage advantage of the hybrid plant
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over the standalone setup, (iii) the relative gain of six-day look-ahead over a
purely day-ahead strategy for the hybrid plant, and (iv) the consumer surplus
for Case 1 (day-ahead) and Case 4 (six-day look-ahead).

Table A.4: Economic outcomes under uniform and lead-dependent forecast
error bands (7–12 December 2021).

Approach Uniform ±15% Lead-dependent
Standalone facilities profit [€] 164,946 182,873

Hybrid plant profit [€] 179,925 196,532

Hybrid vs standalone advantage [%] +9.08 +7.46

Look-ahead gain over day-ahead [%] +92.40 +81.42

Consumer surplus (Case 1) [€] 4,914,322 4,879,287

Consumer surplus (Case 4) [€] 4,921,983 4,890,725

Several observations emerge from Table A.4. First, both configurations
become more profitable under the lead-dependent band. The profit of the
standalone facilities increases from €164,946 to €182,873, and the hybrid
plant’s profit rises from €179,925 to €196,532. This approximate 9% increase
for the hybrid plant is consistent with the fact that a wider error band produces
more pronounced variations around the expected trajectories. These variations
create additional arbitrage opportunities, which the storage operator can exploit
through inter-temporal shifting of energy.

Second, the relative advantage of the hybrid configuration over the stan-
dalone setup remains positive and sizeable, but it becomes slightly smaller.
Under the uniform band, the hybrid plant earns 9.08% more profit than the stan-
dalone configuration. Under the lead-dependent band, this premium decreases
to 7.46%. The hybrid plant still captures more value from price fluctuations,
but the stronger volatility also allows the standalone units to improve their
individual arbitrage performance.

Third, the benefit of extending the dispatch horizon from one day to six days
remains substantial. For the hybrid plant, the relative gain of six-day look-ahead
over day-ahead drops from 92.40% under the uniform band to 81.42% under the
lead-dependent band. Even in the presence of stronger uncertainty at longer
horizons, the strategic coordination of storage over multiple days continues to
deliver large profit increases compared with a purely myopic operation.

Finally, consumer surplus slightly decreases when moving from the uni-
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form to the lead-dependent band. For Case 1 (day-ahead), surplus falls from
€4,914,322 to €4,879,287. For Case 4 (six-day look-ahead), it decreases from
€4,921,983 to €4,890,725. This reduction suggests that the additional volatility
induced by wider forecast bands leads to somewhat higher average consumer
payments, even though the look-ahead strategy still improves surplus relative
to day-ahead dispatch within each error structure.

The comparison in Table A.4 shows that introducing a simple lead-dependent
representation of forecast uncertainty does not fundamentally alter the con-
clusions of Section 6.5. Both the standalone and hybrid configurations benefit
from increased variability, but the hybrid plant remains more profitable across
all cases. The economic value of extending the dispatch horizon from day-ahead
to a six-day look-ahead horizon also remains high, even though the percentage
gains decrease slightly when forecast accuracy deteriorates with lead time.

A.9. IEEE 24-Bus System Data

This appendix documents the data of the IEEE 24-bus system used in the
comparative simulations of Chapter 6, and in particular in Section 6.5.3. The
underlying network corresponds to the IEEE 24-bus reliability test system,
adapted to host a hybrid CAES-LAES facility and a wind power plant. As
illustrated in Fig. A.1, the strategic hybrid CAES-LAES unit is connected
at bus 1, while a single 100 MW wind farm is located at bus 23. All line,
generation, and demand data employed in the simulations are summarized in
the following sections.

Transmission Line Data

The transmission network is represented by a set of lossless branches character-
ized by their series reactances and thermal capacity limits, and it is modeled
with a direct current power flow formulation. Table A.5 lists all transmission
lines, together with their series reactances (in p.u. on a 100 MVA base) and
the corresponding maximum admissible active power flows PL.

Generator Locations and Maximum Output

Conventional generating units are modeled with predetermined installed capac-
ities. Table A.6 reports the bus index and the maximum active power limit PG

for each generator unit.
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480 B 24-Node System Data
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Fig. B.1 24-node system

Storage

Figure A.1: Single-line diagram of the IEEE 24-bus system with the hybrid
CAES-LAES facility at bus 1 and a wind farm at bus 23.

Demand Locations and Nominal Power

System load is modeled through aggregated demand blocks connected to specific
buses. Table A.7 shows the nominal active power ED of each demand block.

Additional Modeling Details

In the numerical experiments of Chapter 6, the following modeling choices are
adopted for the IEEE 24-bus case:
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Table A.5: IEEE 24-bus system: transmission line reactances and power
capacities.

From To Reactance (p.u.) PL (MW) From To x (p.u.) PL (MW)
1 2 0.0146 175 1 3 0.2253 175
1 5 0.0907 350 2 4 0.1356 175
2 6 0.2050 175 3 9 0.1271 175
3 24 0.0840 400 4 9 0.1110 175
5 10 0.0940 350 6 10 0.0642 175
7 8 0.0652 350 8 9 0.1762 175
8 10 0.1762 175 9 11 0.0840 400
9 12 0.0840 400 10 11 0.0840 400
10 12 0.0840 400 11 13 0.0488 500
11 14 0.0426 500 12 13 0.0488 500
12 23 0.0985 500 13 23 0.0884 500
14 16 0.0594 500 15 16 0.0172 500
15 21 0.0249 1000 15 24 0.0529 500
16 17 0.0263 500 16 19 0.0234 500
17 18 0.0143 500 17 22 0.1069 500
18 21 0.0132 1000 19 20 0.0203 1000
20 23 0.0112 1000 21 22 0.0692 500

Table A.6: IEEE 24-bus system: generator locations and maximum active
power.

Gen Bus P
G (MW)

g1 1 152
g2 2 152
g3 7 350
g4 13 591
g5 15 60
g6 15 155
g7 16 155
g8 18 400
g9 21 400
g10 22 300
g11 23 310
g12 23 350

• Bus 13 is selected as the reference bus in the direct-current power flow
representation;

• The strategic hybrid CAES-LAES facility is connected at bus 1, and the
aggregated 100 MW wind farm is connected at bus 23, as depicted in
Fig. A.1;

• For each time period, the demand at each bus is obtained by scaling the
nominal value in Tables A.7 by a factor drawn from a continuous uniform
distribution U(0.7, 1.3), in order to represent temporal load variability
around the nominal demand levels.
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Table A.7: IEEE 24-bus system: demand locations and nominal active powers.

Load Bus E
D (MW)

d1 1 108
d2 2 97
d3 3 180
d4 4 74
d5 5 71
d6 6 136
d7 7 125
d8 8 171
d9 9 175
d10 10 195
d11 13 265
d12 14 194
d13 15 317
d14 16 100
d15 18 333
d16 19 181
d17 20 128

A.10. IEEE 118-Bus System Data

This appendix summarizes the data of the IEEE 118-bus system used in the
numerical experiments of Chapter 6 and in Section 6.5.3. The IEEE 118-bus
test system is here adapted to include a hybrid CAES-LAES facility and three
geographically distributed wind farms. As indicated in Fig. A.2, the hybrid
CAES-LAES unit is located at bus 15. Three 100 MW wind farms are connected
at buses 12, 54, and 112, and are associated with wind production profiles from
Spain, France, and Belgium, respectively [211]. The detailed line, generation,
and demand data are reported in the following tables.

Transmission Line Data

The transmission network is represented by a set of lines characterized by their
series reactances and thermal capacity limits. A direct current power flow model
is used, with reactances expressed in p.u. on a 100 MVA base. Due to the size
of the system, the data are presented in three compact tables. Tables A.8–A.10
list all branches with their series reactances and maximum active power flow
limits PL [218].
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Storage

Figure A.2: Single-line diagram of the IEEE 118-bus system with the hybrid
CAES-LAES facility at bus 15 and three wind farms at buses 12, 54, and 112.

Generator Locations and Maximum Output

Conventional generating units are characterized by given installed capacities.
Table A.11 reports the bus index and the maximum active power limit PG for
each generator.
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Table A.8: IEEE 118-bus system: transmission line reactances and capacities
(part 1).

From To Reactance (p.u.) PL (MW) From To Reactance (p.u.) PL (MW)
1 2 0.09990 600 1 3 0.04240 600
4 5 0.00798 1700 3 5 0.10800 600
5 6 0.05400 600 6 7 0.02080 600
8 9 0.03050 1700 8 5 0.02670 1700
9 10 0.03220 3500 4 11 0.06880 600
5 11 0.06820 600 11 12 0.01960 600
2 12 0.06160 600 3 12 0.16000 600
7 12 0.03400 600 11 13 0.07310 600
12 14 0.07070 600 13 15 0.24440 600
14 15 0.19500 600 12 16 0.08340 600
15 17 0.04370 1700 16 17 0.18010 600
17 18 0.05050 600 18 19 0.04930 600
19 20 0.11700 600 15 19 0.03940 600
20 21 0.08490 600 21 22 0.09700 600
22 23 0.15900 600 23 24 0.04920 600
23 25 0.08000 1700 26 25 0.03820 1700
25 27 0.16300 1700 27 28 0.08550 600
28 29 0.09430 600 30 17 0.03880 1700
8 30 0.05040 600 26 30 0.08600 1700
17 31 0.15630 600 29 31 0.03310 600
23 32 0.11530 600 31 32 0.09850 600
27 32 0.07550 600 15 33 0.12440 600
19 34 0.24700 600 35 36 0.01020 600
35 37 0.04970 600 33 37 0.14200 600
34 36 0.02680 600 34 37 0.00940 1700
38 37 0.03750 1700 37 39 0.10600 600
37 40 0.16800 600 30 38 0.05400 600
39 40 0.06050 600 40 41 0.04870 600
40 42 0.18300 600 41 42 0.13500 600
43 44 0.24540 600 34 43 0.16810 600

Table A.11: IEEE 118-bus system: generator locations and maximum active
power.

Gen Bus P
G (MW) Gen Bus P

G (MW)
g1 1 100.0 g2 4 100.0
g3 6 100.0 g4 8 100.0
g5 10 550.0 g6 12 185.0
g7 15 100.0 g8 18 100.0
g9 19 100.0 g10 24 100.0
g11 25 320.0 g12 26 414.0
g13 27 100.0 g14 31 107.0
g15 32 100.0 g16 34 100.0
g17 36 100.0 g18 40 100.0
g19 42 100.0 g20 46 119.0
g21 49 304.0 g22 54 148.0
g23 55 100.0 g24 56 100.0
g25 59 255.0 g26 61 260.0
g27 62 100.0 g28 65 491.0
g29 66 492.0 g30 69 805.2
g31 70 100.0 g32 72 100.0
g33 73 100.0 g34 74 100.0
g35 76 100.0 g36 77 100.0
g37 80 577.0 g38 85 100.0
g39 87 104.0 g40 89 707.0
g41 90 100.0 g42 91 100.0
g43 92 100.0 g44 99 100.0
g45 100 352.0 g46 103 140.0
g47 104 100.0 g48 105 100.0
g49 107 100.0 g50 110 100.0
g51 111 136.0 g52 112 100.0
g53 113 100.0 g54 116 100.0
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Table A.9: IEEE 118-bus system: transmission line reactances and capacities
(part 2).

From To Reactance (p.u.) PL (MW) From To Reactance (p.u.) PL (MW)
44 45 0.09010 600 45 46 0.13560 600
46 47 0.12700 600 46 48 0.18900 600
47 49 0.06250 600 42 49 0.16150 1200
45 49 0.18600 600 48 49 0.05050 600
49 50 0.07520 600 49 51 0.13700 600
51 52 0.05880 600 52 53 0.16350 600
53 54 0.12200 600 49 54 0.14490 1200
54 55 0.07070 600 54 56 0.00955 600
55 56 0.01510 600 56 57 0.09660 600
50 57 0.13400 600 56 58 0.09660 600
51 58 0.07190 600 54 59 0.22930 600
56 59 0.12240 1200 55 59 0.21580 600
59 60 0.14500 600 59 61 0.15000 600
60 61 0.01350 1700 60 62 0.05610 600
61 62 0.03760 600 63 59 0.03860 1700
63 64 0.02000 1700 64 61 0.02680 1700
38 65 0.09860 1700 64 65 0.03020 1700
49 66 0.04595 3400 62 66 0.21800 600
62 67 0.11700 600 65 66 0.03700 1700
66 67 0.10150 600 65 68 0.01600 1700
47 69 0.27780 600 49 69 0.32400 600
68 69 0.03700 1700 69 70 0.12700 1700
24 70 0.41150 600 70 71 0.03550 600
24 72 0.19600 600 71 72 0.18000 600
71 73 0.04540 600 70 74 0.13230 600
70 75 0.14100 600 69 75 0.12200 1700
74 75 0.04060 600 76 77 0.14800 600
69 77 0.10100 600 75 77 0.19990 600
77 78 0.01240 600 78 79 0.02440 600
77 80 0.03317 3400 79 80 0.07040 600

Demand Locations and Nominal Power

System load is again represented through aggregated demand blocks connected
to specific buses. Tables A.12 and A.13 summarize the nominal active power
E
D of each demand block in the IEEE 118-bus system.
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Table A.10: IEEE 118-bus system: transmission line reactances and capacity
limits (part 3).

From To Reactance (p.u.) PL (MW) From To Reactance (p.u.) PL (MW)
68 81 0.02020 1700 81 80 0.03700 1700
77 82 0.08530 700 82 83 0.03665 1700
83 84 0.13200 600 83 85 0.14800 600
84 85 0.06410 600 85 86 0.12300 3500
86 87 0.20740 3500 85 88 0.10200 1700
85 89 0.17300 600 88 89 0.07120 1700
89 90 0.06514 3400 90 91 0.08360 600
89 92 0.03827 3400 91 92 0.12720 600
92 93 0.08480 600 92 94 0.15800 600
93 94 0.07320 600 94 95 0.04340 600
80 96 0.18200 600 82 96 0.05300 600
94 96 0.08690 600 80 97 0.09340 600
80 98 0.10800 600 80 99 0.20600 700
92 100 0.29500 600 94 100 0.05800 600
95 96 0.05470 600 96 97 0.08850 600
98 100 0.17900 600 99 100 0.08130 600
100 101 0.12620 600 92 102 0.05590 600
101 102 0.11200 600 100 103 0.05250 1700
100 104 0.20400 600 103 104 0.15840 600
103 105 0.16250 600 100 106 0.22900 600
104 105 0.03780 600 105 106 0.05470 600
105 107 0.18300 600 105 108 0.07030 600
106 107 0.18300 600 108 109 0.02880 600
103 110 0.18130 600 109 110 0.07620 600
110 111 0.07550 600 110 112 0.06400 600
17 113 0.03010 600 32 113 0.20300 1700
32 114 0.06120 600 27 115 0.07410 600
114 115 0.01040 600 68 116 0.00405 1700
12 117 0.14000 600 75 118 0.04810 600
76 118 0.05440 600

Table A.12: IEEE 118-bus system: demand blocks and nominal active powers
(part 1).

Load Bus E
D (MW) Load Bus E

D (MW)
d1 1 51 d2 2 20
d3 3 39 d4 4 39
d5 6 52 d6 7 19
d7 8 28 d8 11 70
d9 12 47 d10 13 34
d11 14 14 d12 15 90
d13 16 25 d14 17 11
d15 18 60 d16 19 45
d17 20 18 d18 21 14
d19 22 10 d20 23 7
d21 24 13 d22 27 71
d23 28 17 d24 29 24
d25 31 43 d26 32 59
d27 33 23 d28 34 59
d29 35 33 d30 36 31
d31 39 27 d32 40 66
d33 41 37 d34 42 96
d35 43 18 d36 44 16
d37 45 53 d38 46 28
d39 47 34 d40 48 20
d41 49 87 d42 50 17
d43 51 17 d44 52 18
d45 53 23 d46 54 113
d47 55 63 d48 56 84
d49 57 12 d50 58 12
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Table A.13: IEEE 118-bus system: demand blocks and nominal active powers
(part 2).

Load Bus E
D (MW) Load Bus E

D (MW)
d51 59 277 d52 60 78
d53 62 77 d54 66 39
d55 67 28 d56 70 66
d57 72 12 d58 73 6
d59 74 68 d60 75 47
d61 76 68 d62 77 61
d63 78 71 d64 79 39
d65 80 130 d66 82 54
d67 83 20 d68 84 11
d69 85 24 d70 86 21
d71 88 48 d72 90 163
d73 91 10 d74 92 65
d75 93 12 d76 94 30
d77 95 42 d78 96 38
d79 97 15 d80 98 34
d81 99 42 d82 100 37
d83 101 22 d84 102 5
d85 103 23 d86 104 38
d87 105 31 d88 106 43
d89 107 50 d90 108 2
d91 109 8 d92 110 39
d93 112 68 d94 113 6
d95 114 8 d96 115 22
d97 116 184 d98 117 20
d99 118 33

Additional Modeling Details

In both test systems, the following additional modeling assumptions are adopted:

• A single reference bus is selected for the direct current power flow equations
(bus 13 of the IEEE 24-bus system and bus 69 of the IEEE 118-bus system
serve as the reference buses);

• The hybrid CAES-LAES facility participates strategically from bus 1 in
the IEEE 24-bus system and from bus 15 in the IEEE 118-bus system;

• At each time period, the demand at every bus is obtained by scaling the
nominal active power in Tables A.7, A.12, and A.13 by a factor drawn
from the continuous uniform distribution U(0.7, 1.3), which provides a
simplified representation of load variability around the nominal demand
levels.
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