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Summary  
 

The massive integration of Distributed Generation (DG) units in the electric distribution 
systems has created serious technical challenges for the Distribution System Operators (DSOs) 
including the voltage rise and local congestion problems. In order to deal with such arising 
issues, the conventional passive manner of the distribution network management based on the 
fit-and-forget policy is being replaced by the Active Network Management (ANM) schemes 
aiming at operating network in a safe and cost-effective way by taking advantage of the real-
time communication and optimal control of the available devices. This thesis addresses the 
voltage control problem of the Medium-Voltage (MV) distribution systems under deterministic 
to uncertain model. 

Inspired by the ANM framework, in the first part of the thesis, a centralized sensitivity-based 
voltage control approach is developed which manages the transformer tap position and DG 
active and reactive powers in order to maintain the node voltages and branch currents within 
their permitted limits. The sensitivity analysis determines impacts of the control variables on 
the operational limits of the system. Thanks to the information provided by the proposed 
sensitivity analysis methods, the voltage control problem is simplified to a linear optimization 
formulation that can remain tractable in almost real-time. Another important feature of the 
sensitivity-based voltage control approach is that it does not require the state estimation 
interface and with limited number of the voltage and power measurements, it can manage the 
voltage constraints.  

In the electric distribution systems, as an accurate and up-to-date model of the system is not 
available, the calculations and analyses are performed relying on the simplified deterministic 
model that can lead to erroneous analyses and eventually wrong control decisions. In the second 
part of the thesis, it is considered that the network model is not deterministic anymore but is 
rather uncertain varying within the predefined bounds. A probabilistic framework is developed 
in order to evaluate impacts of the uncertain models of the system components on the voltage 
control problem of the MV distribution systems. In addition, a robust voltage control algorithm 
is designed that considers the model uncertainty when taking corrective decisions of the control 
variables. It determines a solution, which remains immunized against all possible realizations 
of uncertainties associated with the network component models. 

 
Keywords: MV distribution systems, distributed generation units, voltage constraints 
management, branch ampacity limits, sensitivity analysis, model uncertainty, Monte Carlo 
simulation, robust optimization.   
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Chapter 1: Introduction 
 

1.1. Abstract  

In the first chapter of this thesis, generalities about the distribution systems hosting Distributed 
Generation (DG) units are presented. Then, voltage variation problem in such a network is 
introduced and voltage control methods for managing the voltage violations are discussed. 
Afterwards, a complete review is carried out on the existing Voltage Control Algorithms 
(VCAs) in the literature with a focus on the centralized-based schemes. Finally, the context and 
motivation of the current thesis is described which is followed by introducing the outline of the 
thesis.  

1.2. The current trends in the medium-voltage distribution systems 

In the recent years, the conventional structure of the electric power systems has been changed 
due to integration of DG units. The electric power that was only generated before in the large 
stations at small number of locations can be produced currently in the smaller scales but across 
the distribution systems. Consequently, the electric distribution systems that were designed 
previously to transfer electric power from the transmission networks to the end users are now 
changing to active circuits with bi-directional power flows hosting DG units and feeding the 
loads. Numbers of factors have led to an increasing interest in integration of DG units. The 
main drivers behind the growth of DGs are 

 Diversification of energy resources; 

 Energy efficiency issue and rational use of energy; 

 Deregulation and competition in energy market; 

 National power requirements; 

 Reduction of gaseous emissions, etc. 
 

Integration of DG units created new technical challenges for the safe operation and management 
of the distribution systems. Traditionally, the distribution networks were designed on the basis 
of the deterministic Load Flow (LF) studies considering the worst case scenarios to meet the 
forecasted load demands while keeping the branch ampacities and voltage limits. In other 
words, the system operation was done actually at the planning stage without almost any control 
on the real-time. This traditional manner of the distribution network management known as the 
fit-and-forget policy however could not be continued under the context of the active distribution 
systems integrating DG units given that the latter changes the power flow patterns to bi-
directional, increases the fault level, creates local congestions, and induces voltage rise 
problems. Moreover, volatility of DG powers adds a big source of uncertainty to the network 
management problem.  

The abovementioned shortcoming of the fit-and-forget policy has given rise to the new 
paradigm called Active Network Management (ANM) according to which, the up-to-date 
information about the system state and model is in disposal in order to optimally manage the 
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system in real-time by controlling loads, DG active and reactive powers, transformer tap 
changers, energy storage devices, and circuit breakers [1]. The ANM aims at keeping the 
network safe by employing an efficient monitoring and control system, maximizing the 
utilization of the existing network and postponing the network reinforcement. In order to deploy 
such a control scheme, investments are needed on the automation of the substations and feeders, 
control centre software like SCADA (Supervisory Control And Data Acquisition), as well as 
communication and measurement channels. It is expected that the benefits brought by the ANM 
in long-term will outweigh the costs of these investments [2].  

1.3. Voltage variation problem in the current distribution systems  

The electric power networks were traditionally operated in a passive mode where the power 
generated by the large power plants was delivered to the customers through the distribution 
networks. Thus, the power flow was from the interface of the transmission and distribution 
networks towards the end users. In such a configuration, voltage decreases towards end of 
distribution system feeders, as the line impedances cause voltage drops. Thus, the biggest 
voltage drop happens at the end of the feeder. In presence of DGs, if their generated powers 
exceed the local demands of loads, the power flow directions will be inversed and we will deal 
with voltage rise problem at the DG-connected buses. When injected DG powers are maximal 
and the load demands are low, the voltage rise may exceed the permitted voltage range. 
Conversely, when the load demands are maximal and DG powers are minimal, it leads to the 
voltage drop issue that conventionally we dealt with in the distribution systems. Consequently, 
as both voltage rise and drop issues might happen in the distribution systems with DG units, 
new voltage control strategies are needed to be designed.   

Let consider a simple 2-bus distribution system shown in figure 1-1. When there is only power 
consumption at node 2, active and reactive powers that flow between nodes 1 and 2 (Pbr1 and 
Qbr1) are equal to the load consumption (PL+jQL) at bus 2 (supposing that power losses in the 
line are negligible). 

 
Figure 1-1: A simple 2-bus distribution system 

The voltage variation along the line between nodes 1 and 2 is given by 

                                                 112 1 2 1 1( )brV V V I r jx                                                  (1-1) 

Pbr1, Qbr1 

PDG+ jQDG  

V1 V2 

PL + jQL 

   DG 

r1 + jx1 

Ibr1 
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where V1 1 and V2 are complex values of voltages at buses 1 and 2, respectively. Also, r1 and x1 
are resistance and reactance of the line between nodes 1 and 2, and I denotes to the complex 
current that passes in that line which is given by   

                                                             1 1
1 *

1

br br
br

P jQ
I

V


                                                      (1-2) 

 Substituting for the line current from (1-2), the voltage variation equation is rewritten as   

                                                1 1 1 1 1 1 1 1
12 * *

1 1

br br br brr P x Q x P rQ
V j

V V

 
                                     (1-3)  

Due to considerably high resistance and relatively low reactance of the lines in the distribution 
systems (with respect to the ones in the transmission systems), the voltage angles are small such 
that the voltage phasors can be represented with their absolute values. Consequently, the 
imaginary part of the voltage variation vector (1-3) can be neglected [3]. Figure 1-2 shows the 
vector diagram of the voltages in the above system when a lagging current is absorbed from 
node 2. As it can be seen, the imaginary part of the voltage variation vector (i.e. equal to 
𝑉ଶ sin 𝜃𝑉ଵଶ) over its real part is negligible. It should be noted that in figure 1-2, vectors of 
voltage variations on the line resistance and reactance have been enlarged for the illustration. 
In general, they have smaller amplitudes; consequently, ϴV12 is smaller than what has been 
shown in figure 1-2.  

 
Figure 1-2: Vector diagram of the voltages in the 2-bus system 

In addition, considering bus 1 as the slack bus with the voltage magnitude equal to 1 pu and 
phase angle equal to zero, the voltage variation is simplified to  

                                                                       12 1 1 1 1br brV r P x Q                                                       (1-4) 

In presence of both load consumption and DG powers (PDG+jQDG) at node 2, (1-4) is rewritten 
as                         

                                                              12 1 1L DG L DGV r P P x Q Q                                          (1-5) 

Supposing that the injected active power of DG has negative values2 (i.e. in the opposite 
direction of the load active power), when its absolute value is sufficiently high, the right side 

                                                           
1 In the rest of the work, the complex values are presented with a bar in below (e.g.: 𝑉ଵ) and the complex conjugate 

values with a bar in below and a star in above (e.g.:  𝑉ଵ
∗). Also, j stands for the imaginary unit (i.e., 𝑗 = √−1).  

2 Appendix 1 presents the adopted convention for directions of load and DG powers.  
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of (1-5) can become negative leading to V2 greater than V1. Thus, injection of DG active power 
can cause a voltage rise problem at node 2, particularly, when the Resistance to Reactance (R/X) 
ratio of the line is high that it is normally the case of the distribution grids. Conversely, when 
DG power is lower than the load demand at bus 2, the power is transferred from bus 1 to 2 and 
leads to a voltage drop at bus 2 with respect to bus 1. As it can be noticed from (1-5), the voltage 
variation at bus 2 depends on DG active and reactive powers, load powers and impedance of 
the line. Due to the fact that load demands and DG active powers are changing continuously, 
we will deal with both voltage rise and voltage drop problems. The voltage control problem is 
known as one of the biggest obstacles for increasing the integration of DG units in the 
distribution grids. If this problem is solved efficiently, then higher DG levels can be allowed to 
be installed in the system. 

1.4. Conventional voltage control techniques 

Different methods can be applied to manage the voltage control problem of the distribution 
systems. In the following sections, the most common voltage control techniques are introduced 
and their advantages and drawbacks are discussed.  

1.4.1. On-load tap changer action 

The transformer tap changer modifies the turn ratio of the transformer winding when the voltage 
value exceeds the predefined voltage range in order to provide the voltage control possibility at 
the secondary side of the transformer. The tap changer action is normally adjusted by an 
Automatic Voltage Control (AVC) relay, which continuously monitors the voltage and controls 
the action of the tap changer. The AVC relay works based on two controlling parameters, which 
are the reference voltage of the regulated point and a defined voltage deadband. The latter is 
considered in order to limit the unnecessary action of the tap changer. Voltage regulation using 
the On-load Tap Changer (OLTC) is a straightforward technique that can be easily 
implemented, if the transformer is equipped with the OLTC functionality. Given that the OLTC 
directly changes the node voltages, it will not cause congestion problem in the system branches 
and will not affect considerably the power losses. 

The drawback of the OLTC is that it cannot be used in the voltage regulation of the long radial 
feeders since it changes the sending-point voltage of the feeder and the biggest voltage violation 
normally occurs at the end of the line (ending-point of the feeder). In this situation, in order to 
return the ending-point voltage inside the permitted voltage range, OLTC must change 
noticeably the sending-point voltage that can cause a voltage violation at that point. In addition, 
the tap changing operation is done with a time delay due to the slow dynamic response of the 
OLTC mechanism. As the maintenance costs of the OLTC depend on the number of tap 
changing operations, there is a tendency to set a long delay for its activation, which results in 
dealing with some unexpected voltage violations during the time that the OLTC is starting to 
act. Moreover, the OLTC cannot work efficiently in the voltage regulation of the distribution 
systems with multiple feeders integrating DG units because depending on DG and load powers, 
it is possible to deal with voltage rise problem in some feeders while other feeders have the 
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voltage drop issue. It is known that with a unique set-point of the OLTC, it is not possible to 
manage both voltage rise and drop problems. 

In Belgium, the transformer related to the interface of the transmission and Medium-Voltage 
(MV) distribution systems is not under control of the distribution system operator (e.g. ORES) 
and it is recognized as the property of the transmission system operator (i.e. ELIA). Therefore, 
in order to employ the OLTC for the voltage management of the Belgian MV distribution 
systems, collaboration between the transmission and distribution system operators is required. 

1.4.2. Reactive power control of DGs 

Reactive power compensation is an old technique for the voltage regulation of the distribution 
systems. Traditionally, capacitor banks were used in the distribution systems to keep the load 
power factors close to one and to compensate the voltage drops due to the high load demands. 
In the DG-connected distribution systems, as we deal with both voltage drop and rise issues, 
we need a source of reactive power with the ability to work in both capacitive and inductive 
modes. The reactive power control of DG units can be utilized in this regard as explained in 
below.  

The synchronous machine-based DG unit offers reactive power control capability through 
modifying the excitation (rotor) current of the machine. Automatic Power Factor Control 
(APFC) and Automatic Voltage Regulation (AVR) schemes have been designed in [4] in order 
to achieve the voltage regulation objective by managing reactive power of synchronous 
machine-based DG unit. In the APFC mode, the reactive power of DG (QDG) follows any 

variation of the active power of DG (PDG). Therefore, the 
௉ವಸ

ொವಸ
 ratio is maintained constant in 

order to keep the voltage of the regulated point within the limits. This method is not applicable 
in the voltage regulation of the distribution systems with a high ratio of R/X. In addition, it is 
not an accurate approach, as it neglects the load variation of the regulated point. In the AVR 
mode, the difference between voltage of the regulated point and a predefined reference voltage 
defines the needed reactive power for the voltage regulation end. This action can be 
characterized by a droop control. Operation of DG in the AVR mode however can cause 
problems such as high field currents, overheating and triggering of over current protection 
systems. In reference [5], a deadband has been defined in order to limit the exchanged reactive 
power of DG in the unnecessary range. In reference [6], a new voltage control scheme has been 
proposed which combines the advantages of the AVR and APFC methods.    

Regarding the asynchronous machine-based DG units, it is known that reactive power control 
is not possible in self-excited and squirrel-cage induction generators. In case of Doubly-Fed 
Induction Generators (DFIG), reactive power control is possible through adjustment of the rotor 
current but the physical, thermal and converter power limitations must be considered [7]. In the 
photovoltaic cells-based DGs, reactive power control can be done through the inverter interface 
considering its capability curve as studied in [8]. Due to the abovementioned limitations of DGs 
in reactive power control, an alternative source of reactive power can be adopted for the voltage 
management purpose. Power electronics-based compensators like D-STATCOM (Distribution 



   

7 
  

Static Synchronous Compensator) can be used in this regard to tackle the limitations of DGs in 
the reactive power control. 

1.4.2.1. Reactive power control by D-STATCOM 

D-STATCOM is a member of FACTS (Flexible AC Transmission Systems) devices at the 
distribution level. It is a voltage source converter-based device, which converts a DC input into 
a set of three-phase sinusoidal voltage with a fast controllable amplitude and phase angle. D-
STATCOM can provide superior solutions for the voltage regulation, flicker elimination, and 
improvement of power quality. In the voltage regulation mode, thanks to its fast response, the 
voltage violations can instantly be removed and the voltage can quickly bring back to its 
targeted voltage value. D-STATCOM as a source of reactive power controls the voltage of the 
regulated point by providing the required value of injected or absorbed reactive power. When 
the voltage of the regulated point is lower than the reference voltage, D-STATCOM works in 
capacitive mode and if it is higher than the reference voltage, it works in inductive mode. As 
long as the exchanged reactive power stays within its maximal and minimal limits, the voltage 
of the regulated point is kept at the targeted value. Application of D-STATCOM in the 
distribution system management and control is currently limited due to its high cost. 

In reference [9], coordinated control of OLTC and STATCOM based on the artificial neural 
network has been investigated in order to maintain the voltage within the limits while 
minimizing tap changing operations and increasing reactive power capability margin of the 
STATCOM. Coordination of the OLTC and STATCOM for improvement of the transient and 
steady-state voltage responses of a wind park connected to the high-voltage grid has been 
studied in [10]. A coordinated voltage control method based on the OLTC and D-STATCOM 
has been presented in [11] and [12] in order to keep the voltages within the permitted limits and 
to reduce the power losses.     

1.4.3. Curtailment of DG active powers  

As it can be noticed from (1-5), the voltage rise problem is caused by the injected power of DG. 
Therefore, by curtailing the DG active power, we can mitigate the voltage rise issue. The 
drawback of this method is that the benefits of integrating DG units cannot be maximized since 
we need to cut the DG active powers. In the wind turbines, curtailment of the active power is 
done through pitch control of the turbine blades.  

1.4.4. Other voltage control techniques  

Beside the abovementioned voltage control methods, which are the most common ones in the 
MV distribution systems, network reconfiguration can be implemented for the voltage 
regulation end. In this method, circuit breakers of the system with voltage violations are 
managed (by opening or closing them) in order to form a new network topology in which the 
voltage regulation problem is solved. In addition, load side management and energy storage can 
be used in the voltage management of the distribution systems. Finally, given that the voltage 
violations strictly depend on the line impedances, network reinforcement (resizing the cables) 
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is another approach for the voltage regulation. However, it is an expensive method, which 
cannot be implemented in a short time, and it is considered normally as the last possible option.  

1.5. A review on the existing voltage control algorithms 

The voltage control schemes in the literature can be classified into two main categories namely 
centralized and distributed (or decentralized) approaches. The distributed approaches (e.g.: 
[13], [14], and [15]) are mostly based on the local control of the OLTC of the transformer or 
local power factor control of DG units. In the centralized algorithms (e.g.: [16], [17], [18], [19], 
[20], [21], [22], [23], [24], and [25]) a global solution for the entire network is defined. Then, 
the corrective control commands are sent to the controllers through the communication links.  

In [13], a decentralized voltage control approach based on the multi-agent concept is designed 
to manage the energy storage systems located in the clustered control zones. The partitioning 
of the control zones and linearization of the equations are implemented through the voltage 
sensitivity analysis. In [14], a partitioning model based on the sensitivity analysis is proposed 
where the particle swarm optimization algorithm is used to manage the reactive powers of DGs 
in order to keep the system voltages within the predefined limits. A coordinated distributed 
scheme for the voltage regulation of the distribution systems with multiple feeders is suggested 
in [15], which uses the Remote Terminal Units (RTUs) to construct a multi-agent system.  

A centralized VCA employing the discrete and continuous control variables has been 
introduced in [16]. The model predictive control using the voltage sensitivity data establishes a 
multi-step centralized voltage control scheme in [17] and [18]. A coordinated scheme for 
minimizing the cost of the system operation (which includes cost of the energy losses, cost of 
the curtailed energy and cost of the reactive power support) while maintaining the system 
voltages within the limits has been formulated as a linear optimization problem in [19]. Also, 
an algorithm for short-term scheduling of distribution systems has been developed in [20] which 
has a non-linear formulation and is linearized by the use of the voltage sensitivity coefficients. 
In addition, an ANM scheme that employs control of DG active and reactive powers to maintain 
the voltage and thermal limits has been developed in [21].The optimal reactive power control 
of DGs for voltage management of the radial distribution systems using the sensitivity analysis 
has been addressed in [22]. Volt-var control problem in the 3-phase balanced and unbalanced 
distribution systems is formulated as a mixed-integer linear programming in [23] and [24]. Soft 
open point, which is a power electronics-based device that can provide continuous reactive 
power, is integrated in the volt-var problem in [25] in order to realize a fast voltage regulation 
possibility. 

Comparative study of the distributed and centralized voltage control approaches for 
determining the hosting capacity of DG in an existing system has been done in [4]. In general, 
the centralized VCA has an overall view of the system states; eventually, it can manage the 
network in a more optimal way than the decentralized one. On the other hand, it needs extra 
measurements and data. Hybrid voltage control methods combining the centralized and 
localized schemes in the MV and Low-Voltage (LV) distribution levels have been developed 
in [26] and [27], respectively.    
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The existing voltage control algorithms can be categorized also based on their employed control 
strategies. The OLTC action in [11], [12], [15], [17], [20], [26], [27], [28], active power 
generation curtailment of DGs in [16], [17], [18], [19], [20], [26], [27], [29] and reactive power 
control of DGs in [16], [17], [18], [19], [20], [22], [23], [24], [26], [27] are used to provide the 
voltage control possibility. Other voltage control methods such as system reconfiguration in 
[16], [19], [30], load side management in [3], and integration of energy storage devices in [13] 
have been also utilized in the literature. 

The MV distribution systems are mostly assumed to have balanced characteristics within the  
phases, while in some limited works like [14], [24] and [31], the unbalanced model of the 
network is taken into account. Moreover, in most of the works, it is assumed that the load 
powers are independent of the voltage (i.e. the power constant load model). In [23], the load 
models are also incorporated in the volt-var problem. Impacts of the load models on the voltage 
regulation problem using reactive power compensation are studied in [32]. The latter topic is 
further studied in chapter 6 of the thesis.  

1.6. Centralized voltage control approach 

As it can be concluded from section 1-4, each of the introduced voltage control techniques has 
its own advantages and drawbacks and there is no perfect single voltage regulation method. 
Therefore, in order to have an efficient voltage control system, it is needed to employ different 
voltage control techniques in a coordinated manner. The centralized voltage control approach 
on the basis of an optimization process can take advantage of different control methods to 
efficiently manage the system voltages. In other words, while there are different possibilities 
for actions of the existing controllers, the centralized voltage control algorithm determines the 
most optimal solution according to its defined objective function.  

In order to deploy such a voltage regulation scheme, the first step is to evaluate the current state 
of the system. The real-time measurement and communication infrastructure play a major role 
here. Since in the distribution systems, limited real-time measurement data are available, the 
state estimation techniques can be used to define the current state of the system [33]. Then, if a 
voltage violation is found, the next step is to determine the optimal corrective decisions of the 
controllers in order to manage the voltage violation problem. The Optimal Power Flow (OPF) 
as described in below can be used in this regard.   

1.6.1. Centralized voltage control approach based on the optimal power flow  

OPF can be used as the central decision maker to define the most optimal control strategy while 
operating the system within its predefined limits. OPF can be introduced as an optimization 
algorithm, which is embedded in the conventional LF study. The LF programme with no 
optimization part determines the system voltages and currents according to a fixed set of values 
relating to the power injections and consumptions. Therefore, there is no degree of freedom in 
the LF calculations. However, active and reactive powers of generators (for instance) can be 
considered as the adjustable variables. Moreover, node voltages and branch currents can be 
treated as the flexible variables changing within the predefined ranges in order to provide 
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additional degree of freedom. OPF by adding an optimization layer to the conventional LF 
programme takes advantage of the provided flexibility to adjust the control variables such that, 
it optimizes the defined objective function while the system variables are kept within their 
predefined bounds. In other words, OPF seeks to optimize a given objective function by 
controlling the power flows within an electrical network without violating the network LF 
constraints and operating limits. Like conventional LF, OPF determines voltage, current, and 
power throughout the system. However, unlike the conventional LF, OPF works with an under-
constrained system, which means that multiple solutions are possible. Therefore, it performs 
multiple LF iterations, modifying the under-constrained variables in order to advance the 
objective [34].   

Since the early 60s when OPF has been firstly introduced, it has been applied to manage the 
power system operation and control problems. Different forms of formulations in a single or 
multi-objective sense have been utilized to minimize power losses, optimize operation costs of 
the system, maximize the social welfare, minimize the system emission etc. [34], [35]. OPF in 
a general form is formulated as a constrained optimization problem given in below. 
 

                                                                          Min:   ,( )f u x                                  

                                                               Subject to:  
, ) 0

, ) 0

(

(

g u x

h u x




                                                             (1-6)              

 

where f(u,x) is the objective function, g(u,x) and h(u,x) are the equality and inequality 
constraints, respectively. Also, u and x denote the controllable and state variables. The equality 
constraints take into account the nodal power balance equations, similarly to the LF programme. 
The nodal power balance equations are represented in the rectangular or polar coordinate. 
Consequently, they are inherently non-linear as they include quadratic or trigonometric terms. 
The inequality constraints are linked to the operational limits of the system (e.g. node voltages 
and branch currents). The OPF formulated for managing the operational limits aims at 
minimizing the total costs of the controllable variables while maintaining the voltage and 
current values within their predefined limits. 
  

In reference [36], application of the OPF in the voltage regulation of transmission systems by 
linearizing the objective function has been investigated. In the distribution systems 
management, OPF is utilized in order to calculate the DG hosting capacity in [37]. A research 
has been carried out on using OPF for curtailment of DG active powers in order to maintain the 
system voltages within the safe range in [38]. A comprehensive centralized approach for voltage 
constraints management based on the OPF formulation has been introduced in [16], which takes 
advantage of the continuous and discrete control variables. In addition, OPF in a 5-min time 
horizon employs the ANM of DG active and reactive powers to maintain the voltage and 
thermal limits in [21]. 

1.7. Context and motivation of the thesis  

OPF problem is a non-linear non-convex optimization problem that in practice, is difficult to 
solve. In addition, OPF can fail to converge in particular cases as studied in [39]. In the 



   

11 
  

literature, different approaches have been proposed to solve the OPF problem, which can be 
classified into three main groups. In the first group, it is attempted to simplify the LF-related 
constraints of the OPF formulation. The most known example of this category is the DC-OPF 
formulation according to which, line resistances, voltage magnitudes, reactive power flows and 
power losses are neglected to derive the linear counterparts of the LF-related constraints (i.e. 
inherently non-linear) of the generic OPF formulation. This is not definitely a proper approach 
to be used in the distribution systems, which have lines with a high ratio of R/X, and important 
reactive power flows. The second group aims at solving the non-linear problem with the 
analytical-based or heuristic-based optimization methods. The drawback of this methodology 
is that the determination of the global optimal point cannot be guaranteed, given that the non-
convexity of the OPF formulation is not taken into account. Moreover, the heuristic-based 
optimization methods lead generally to long calculation time, which is not compatible with the 
context of the real-time voltage management. In the last group, it is tried to convexify the LF-
related constraints of the OPF problem. Then, the derived convex counterpart of the generic 
OPF formulation is solved. It should be noted that the objective function of the OPF applied for 
the operational limits management is usually convex and even linear (e.g., [16]), therefore, the 
non-convexity lies in the equality constraints related to the LF equations. The convexification 
procedure however requires extensive and complicated mathematical formulations. References 
[40] and [41] have presented approaches for the convex relaxation of the OPF in the meshed 
and radial distribution networks, respectively. In addition, convexification of the OPF problem 
according to the semidefinite programming and conic programing formulations has been 
investigated in [42] and [43], respectively. The convex relaxation of the LF-related constraints 
in the bus injection model and branch flow model has been studied in [44]. 

Moreover, OPF needs comprehensive data regarding the network model and variable states. 
Given that in the distribution systems, the network variables are partially known due to the lack 
of sufficient measurements, a state estimation interface is required to provide the network state 
to the OPF. Therefore, the OPF works with an assumption that the network state is available 
through the pre-processing stage of the state estimation. 

In the first part of this thesis, motivated by the complexity of the generic OPF problem and 
unobservability of the network state, a centralized sensitivity-based voltage control approach is 
designed that includes a linear objective function and linear constraints. The sensitivity analysis 
determines impacts of the control variables on the operational limits of the system. Thanks to 
the information provided by the sensitivity analysis, the OPF problem presented in (1-6) is 
linearized around the system working point. Therefore, there is no need to consider the LF-
related constraints of the generic OPF problem, which indicates that the equality constraints 
corresponding to nodal power balance equations can be deleted from (1-6). As a result, the 
generic OPF formulation is simplified to a linear optimization formulation that has less 
computational complexity and eventually, it can be solved in a faster and more straightforward 
manner. If the accuracy of the results obtained by the sensitivity-based voltage control approach 
is confirmed, then, it can be concluded that the proposed method is more suitable than the VCA 
based on the conventional OPF formulation for the voltage constraints management of the MV 
distribution systems, particularly for the threefold reasons. Firstly, the sensitivity-based voltage 
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control approach has a much simpler formulation compared to the OPF-based one and can give 
us a better understanding about the voltage control procedure. Secondly, due to its simplified 
formulation, the solution of the optimization problem of the sensitivity-based voltage control 
approach can be obtained in a faster way, which makes it more suitable for the on-line 
management of the operational limits. Finally, the sensitivity-based voltage control approach 
does not require the state estimation interface and with limited number of voltage and power 
measurements, it can manage the operational limits of the system. The main features of the 
proposed linear voltage control scheme are as follows.     

 Centralized 

The proposed voltage control scheme as a central decision maker receives the network state 
through the limited number of the voltage and power measurements (or from an initial LF 
study). Once its corrective decisions are executed based on the defined optimization procedure, 
they will be sent to the network from a unique point. 

 Sensitivity-based 

The proposed voltage control approach uses the sensitivity analysis to linearize the system 
around its operating point and to eliminate the LF-related equations in its optimization 
formulation.  

 On-line 

The corrective decision of the proposed voltage control scheme should be executed in a very 
short time (close to real-time) so that the developed control tool can be used for the on-line 
management of the operational limits.  

 Coordinated 

Different voltage control methods will be employed in the VCA including the OLTC action of 
the substation transformer, reactive power control of DGs and generation curtailment of DGs. 
The above controllers are utilized in the voltage control procedure based on the impacts that 
they have on the operational limits (i.e. known from the sensitivity analysis).  

 Selective  

The proposed voltage control scheme distinguishes between the available control options based 
on their operating costs. Therefore, the priority is given to the voltage control option that has a 
high impact on the operational limits and a low operating cost.  

 Closed-loop or open-loop  

The sensitivity data are used to develop two voltage control algorithms in the open-loop and 
closed-loop forms. In the former type, the voltage violations are managed at once while in the 
latter one, the working point with violations is moved to the safe state within some steps. The 
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corrective commands of the closed-loop VCA are applied to the controllers in each step. The 
voltage control procedure continues as long as a voltage violation exists in the system.  

 Static 

The proposed voltage control approach does not incorporate the dynamic response of the 
controllers. It means that the evolution of the system from the initial point (with the violation 
of the operational limits) towards the safe state is neglected. The choice is motivated by the fact 
that the reactive power control of DG (i.e., here the DFIG-based type) has very fast dynamic 
response thanks to its power electronics-based control structure. The active power curtailment 
of DG and OLTC action are implemented with longer delays in order of a few seconds to 10 
seconds.  

 Snapshot-based 

Assuming that the network model is in our disposal, the proposed VCA receives the state 
variables (i.e. nodal voltages and powers) as an input. When a violation of the predefined limits 
is found, the VCA determines a corrective solution, which is optimal with respect to the 
considered working point. The set-point of the control variables is remained unchanged until a 
new violation is observed. Alternatively, an outer optimization layer with a longer activation 
delay can be implemented in order to minimize the network losses, similarly to the 3-level 
hierarchical voltage control method of the transmission systems [45]. In the latter context, our 
proposed VCA belongs to the innermost loop known as the primary voltage control, which 
compensates against rapid voltage variations. Note that in this thesis, we will not focus on the 
loss minimization loop.  

The voltage control approach developed in the first part of this thesis relies on a simplified 
deterministic network model by adopting certain assumptions given in below.  

 3-phase balanced model  

Given that the voltage control problem of the MV distribution systems is addressed, it is 
supposed that the nodal powers are balanced within the three phases.  

 Power constant model  

In addition, it is assumed that DG and load powers are of the voltage independent type (i.e., 
power constant model).  

 Short-length line model  

Finally, system lines are modelled with the series impedances similar to the most of the practical 
cases in the distribution systems. This means that the shunt admittances of the lines are 
neglected.   
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In the second part of this thesis, which includes chapters 6 and 7, we consider that the network 
model is not anymore deterministic (as before) but it is rather uncertain varying within the 
predefined bounds. Firstly, a probabilistic framework is proposed in order to determine the 
upper and lower bounds of voltage variations arisen from the uncertainties of the network 
component models. The obtained bounds can be utilized in order to reset the targeted points of 
the VCA such that the VCA solutions remain robust against uncertainties of the system 
component models. Then, in the end of this part, uncertainties associated with the network 
models are considered in the VCA when taking corrective decisions of the control variables. 
The proposed VCA of the last chapter determines a solution, which remains robust against all 
possible realizations of uncertainties associated with the network component models. Based on 
our best knowledge, the only work that considers the uncertainty of the network model in the 
voltage constraints management problem has been published in 2017 [46]. In the latter paper, 
the uncertainty is arisen from the thermal dependency effects of the lines. In the last chapter of 
this thesis, we further extend this subject by developing a robust VCA that accounts for 
uncertainties associated with the voltage dependency of loads, power factor of loads, thermal 
dependency of lines, shunt admittances of lines and internal resistance of substation 
transformer.      

In view of the above discussion, the main objectives of the current thesis are as follows. 

       

The outline of the thesis is presented in the next section. 

1.8. Thesis outline  

The rest of this thesis is organized as follows: 

In the next chapter, a centralized sensitivity-based voltage control scheme is designed in order 
to bring back the violated voltages within the predefined voltage limits through optimal 
management of DG reactive powers while keeping the ampacity limits of the system branches. 
A novel voltage sensitivity analysis method is developed which extracts the relations between 
the node voltages and reactive powers directly on the basis of the topological structure of the 
network. Moreover, a new formulation is proposed in order to consider the branch ampacity 
limits as a function of DG reactive power changes. The voltage control problem is formulated 

 To extract the dependencies between the control variables (i.e. OLTC as well 
as DG active and reactive powers) and the node voltages. 

  

 To formulate the centralized sensitivity-based voltage control approach as a 
linear optimization problem.  
 

 To validate the accuracy of the proposed sensitivity-based voltage control 
approach and evaluate its computation time. 
 

 To determine the model uncertainty impacts on the VCA results relying on 
the simplified deterministic models of the network components. 
 

 To derive the robust counterpart of the sensitivity-based VCA and validate it 
under uncertainty of the network model.  
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as an optimization problem, which uses the sensitivity analysis for linearizing the relations 
between the operational limits and the DG reactive powers.  

In chapter 3, the direct voltage sensitivity analysis method developed in chapter 2 is used to 
linearize the relationships between the system voltages and the nodal active and reactive 
powers. The VCAs presented in chapter 2 in the single-step and multi-step forms are equipped 
with a complementary functionality to control (curtail) active powers of DG units. Therefore, 
in this chapter, the proposed VCAs modify both active and reactive powers of DG units in order 
to return the system voltages within the permitted voltage range while maintaining the branch 
ampacity limits. The proposed VCAs distinguish between the cheap and expensive control 
options using the defined weighting coefficients in their objective functions.  

In chapter 4, the improved direct sensitivity analysis method is developed. It is a 
complementary representation of the direct voltage sensitivity analysis method, which 
considers impacts of power loss variations due to nodal power changes on the system voltages. 
Effectiveness of the improved direct sensitivity analysis method is investigated and compared 
with the voltage results obtained through other studied methods. To this end, firstly, the 
considered voltage sensitivity methods are tested when active or reactive power is changed at 
the selected nodes of the studied test system. Then, performance of the considered voltage 
sensitivity methods is examined when they are separately embedded in the single-step and 
multi-step VCAs. 

In chapter 5, functionality of the sensitivity-based VCAs presented in chapter 3 is evolved by 
adding the possibility of controlling the voltage level at the secondary side of the substation 
transformer through the transformer OLTC. Due to introduction of the latter with a discrete 
model, the voltage control problem is converted into the mixed-integer linear programing 
having the DG active and reactive powers as the continuous variables and the OLTC set-point 
as the discrete one. In the end of this chapter, it is explained how the proposed sensitivity-based 
voltage control approach should be modified in order to be compatible with the practical context 
of the MV distribution systems.    

In chapter 6, a framework is proposed in order to evaluate impacts of the uncertain models of 
the system components on the voltage control problem of the MV distribution systems. To this 
end, firstly, the voltage constraints are managed using the sensitivity-based VCA relying on the 
simplified deterministic models of the system components. The system loads and lines as well 
as the substation transformer are then modelled with the uncertain variables, which are bounded 
in the predefined ranges. Monte Carlo simulations are utilized to create series of scenarios that 
cover the possible values that the parameters of the system components can take. The model 
uncertainty impacts on the voltage control problem are finally evaluated by the LF calculations 
considering the scenarios created by the Monte Carlo simulations and the set-point obtained by 
the VCA.  

In chapter 7, uncertainties related to the network component models are considered in the VCA 
when taking corrective decisions of the control variables. The proposed VCA of this chapter 
determines a solution, which remains robust against all possible realizations of uncertainties 
associated with the network component models. To this end, prior to formulating the voltage 



   

16 
  

control problem, Monte Carlo simulations are used to characterize the uncertain models of the 
network components and LF calculations are carried out to evaluate their impacts. The robust 
optimization counterpart of the proposed VCA is derived based on the results obtained through 
the Monte Carlo simulations and LF calculations. Once the robust optimization problem is 
solved, in order to check the robustness of the solution, system voltages are evaluated using the 
LF calculations considering the new set-points of control variables and uncertainties of the 
network component models.  

Finally, in chapter 8, main contributions of the thesis are summarized, the overall conclusions 
are presented, applications of the conducted research are discussed, and its future perspectives 
are highlighted.  
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Chapter 2: Optimal reactive power control of DGs for managing 

the voltage constraints 

 

2.1. Abstract 

In this chapter, a centralized sensitivity-based voltage control scheme is designed in order to 
bring back the violated voltages within the predefined voltage limits through optimal 
management of DG reactive powers while maintaining the ampacity limits of the branches. The 
proposed voltage control technique consists of three parts, which are the LF calculation, 
sensitivity analysis and optimization formulation. The LF study is used to evaluate the node 
voltages and branch currents and to check if there is any violation of the limits. An efficient LF 
approach tailored for the MV distribution systems is introduced in this chapter, which works 
on the basis of the network topology. The sensitivity analysis determines impacts of DG 
reactive powers on the operational limits of the system. A novel Voltage Sensitivity Analysis 
(VSA) method is derived from the introduced LF approach. As a result, the proposed VSA is 
also based on the topological structure of the network and remains independent of the network 
operating point. Therefore, once it is calculated with the LF program, it can be used in all the 
system working conditions. Moreover, a new formulation is proposed in order to take the 
ampacity limits of the system branches into account when reactive powers of DGs are changed 
for the voltage regulation purpose. The voltage control problem is finally formulated as an 
optimization problem, which aims at minimizing the total changes of DG reactive powers while 
returning the violated voltages within the predefined voltage limits and keeping currents of the 
system branches within their permitted ampacity limits.  

2.2. Direct load flow approach for the distribution systems  

The idea of the Direct Load Flow (DLF) approach in the distribution systems has been presented 
in [47]. In the DLF approach, two matrices named BIBC (bus injection to branch current) and 
BCBV (branch current to bus voltage) are constructed. These matrices present the topological 
structure of the network. The BIBC matrix is responsible for the relations between the node 
current injections and branch currents. Thus, branch current variations, which are created by 
the node current changes, can be found through the BIBC matrix. The BCBV matrix presents 
the relations between the branch currents and node voltages. The variations of system voltages 
caused by the branch current changes are found through the BCBV matrix. In order to introduce 
the DLF method, let consider the 5-bus distribution system shown in figure 2-1 where bus 
number 1 is supposed to be the slack bus with a constant voltage magnitude equal to 1 pu and 
a phase angle equal to zero.   
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In the above 5-bus system, the currents of branches 1 to 4 denoted respectively by Ibr1, Ibr2, Ibr3, 
and Ibr4 can be obtained by applying the Kirchhoff’s current law to the nodal currents I2, I3, I4 
and I5 (related to nodes 2 to 5, respectively) as follows. 

                                                           1 2 3 4 5brI I I I I                                                     (2-1) 

                                                              2 3 4 5brI I I I                                                        (2-2) 

                                                                     3 4brI I                                                             (2-3) 

                                                                     4 5brI I                                                             (2-4) 

In the matrix form, the above equations can be written as 
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                                              (2-5) 

The BIBC matrix, which gives the relationships between branch currents and nodal currents is 
obtained from (2-5) as 

                                                               brI = BIBC I                                                        (2-6) 

Similarly, the relations between node voltage variations (with respect to the slack bus voltage) 
and branch currents can be written in the matrix form as below.   

                                            

1 11 2

1 2 21 3

1 2 3 31 4

1 2 4 41 5

0 0 0

0 0

0

0

br
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br
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       
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                                   (2-7) 

 
Figure 2-1: Simple 5-bus radial distribution system 
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where V1 to V5 correspond to voltages at buses 1 to 5, respectively. Also, Z1, Z2, Z3 and Z4 

respectively denote series impedances of the branches 1 to 4. The BCBV matrix can be obtained 
from the over-mentioned equation. 

                                                               brΔV = BCBV I                                                   (2-8) 

Substituting for Ibr from (2-6), a direct relation between ΔV (i.e. vector of nodal voltage 
variations with respect to the slack voltage) and I (i.e. vector of nodal current injections) is 
obtained through the so-called DLF matrix through multiplication of BCBV and BIBC 
matrices, as follows.      

                                                              ΔV = BCBV BIBC I                                                              

                                                                    = DLF I                                                          (2-9)        

The DLF matrix is built once for a given network and it remains constant as it contains the 
topological structure of the network. In order to solve the LF problem, (2-9) is used in an 
iterative-based procedure. In the first iteration (it=1), assuming that all node voltages are equal 
to 1 pu with phase angles equal to zero, the node current injections are calculated using the 
following equation 

                                                              
*

it k k
k it

k

P jQ
I

V

 
  
 

                                                  (2-10)   

where 𝐼௞
௜௧ and 𝑉௞

௜௧ are the node current and voltage at bus k ( 𝑘 ∈ 𝑁𝐿, NL is set of the load buses) 

at the iteration number it, respectively. Also, Pk and Qk are the net active and reactive powers 
of bus k, respectively. Then, the obtained node currents in it=1 are used to calculate the vector 
of node voltage variations for the second iteration using (2-11). Afterwards, node voltages are 
updated by (2-12). 

                                                                
it +1 itΔV = DLF I                                                (2-11)                                                 

                                                                
it+1 it+1

1V = V - ΔV                                              (2-12) 

where V1
 is vector of reference voltages equal to 1 pu (considered for all load buses). The node 

voltages obtained by (2-12) are used to update the node currents using (2-10) in the second 
iteration. Similarly, the voltage variation vector and node voltages are again updated by the last 
node currents. The new available node voltages create the new node currents and this procedure 
continues. The solution of the LF problem is obtained when the difference between the absolute 
value of voltage at bus k in two consecutive iterations is less than a predefined error (∀𝑘, 𝑘 ∈

𝑁𝐿).  

In the DLF approach, time-consuming LU decomposition and forward/backward substitution 
of the Jacobian matrix or admittance matrix required in the traditional LF methods are no longer 
necessary and only, the DLF matrix is used to solve the LF problem [47]. Therefore, a 
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considerable computation time can be saved in this method that makes it suitable for the on-
line operation and management of the distribution systems. 

2.3. Voltage sensitivity analysis 

As known, changing any parameter of an electric power system has an effect on the system 
performance (state). While some parameters have significant impacts on the system state, others 
can have less important impacts. The VSA, in particular, gives us the impacts of changing nodal 
active and reactive powers on the system voltages. It determines relations between the nodal 
voltages and the powers through the linear approximations. The VSA is a known topic in control 
and operation of the electric power systems. A review on the existing VSA methods is carried 
out in the following section.   

2.3.1. Review on the existing voltage sensitivity analysis methods 

Sensitivity of system voltages with respect to the active and reactive powers is conventionally 
obtained from the inverse of the Jacobian matrix in the Newton-Raphson Load Flow (NRLF) 
study. The NRLF method has been basically developed for the LF study in the transmission 
systems which have different characteristics compared to the distribution systems, particularly, 
regarding the Resistance to Reactance ratio of their lines. Distribution networks by having the 
lines with wide range of lengths, high R/X ratio, and the radial structure fall into the category 
of ill-conditioned systems for the NRLF algorithm [48] and [49]. As a result, application of the 
Jacobian-Based Sensitivity Analysis (JBSA) approach in the distribution systems may 
encounter problems including inaccuracy or convergence failure [31], [50] and [51]. Moreover, 
when the NRLF method is not used for the LF calculation, the Jacobian matrix would not be 
available in order to derive the voltage sensitivity coefficients. In addition, the JBSA approach 
cannot give us sensitivity of power losses and branch currents with respect to the nodal power 
changes. In order to tackle these shortcomings of the JBSA method, some research has been 
carried out in the literature aiming at proposing new VSA approaches that are tailored for the 
distribution systems.   

An analytical sensitivity analysis method has been proposed in [46] in order to calculate the 
sensitivity of nodal voltages and currents with respect to the active and reactive power 
variations in the 3-phase unbalanced distribution system. In this method, it is assumed that the 
phasors of all system voltages are known through a state estimation tool. Also, a new VSA 
approach based on the Gauss-Seidel LF method and Z-bus matrix has been introduced in [50] 
in order to derive the voltage and loss sensitivity factors. It is shown that with this proposed 
VSA method, some results similar to the ones using JBSA approach can be obtained. In [51], 
voltage and loss sensitivity coefficients with respect to the node powers are obtained by running 
an initial LF calculation and forming a matrix based on the topological structure of the system. 
The drawback of this method is that all DG-connected buses should be modelled as the voltage-
controlled (PV) nodes with fixed voltage magnitudes. A VSA method for the radial MV 
distribution system considering the constant current models for loads and generators is 
developed in [52]. However, it is known that all types of DG units cannot be modelled with the 
constant current model as studied in [53]. A software toolkit is implemented in [54] based on 
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the perturb-and-observe sensitivity analysis approach in order to determine the relations 
between system voltages and nodal powers in MV distribution systems. Application of the 
Tellegen’s theorem for calculating sensitivity indices based on the adjoint network is studied in 
[55], [56] and [57] for the transmission and distribution levels. 

2.3.2. The proposed direct sensitivity analysis method 

In this chapter, a new VSA method is proposed which defines the dependencies between the 
nodal voltages and powers directly on the basis of the network topology. The proposed method 
named Direct Sensitivity Analysis (DSA) is independent of the network operating point given 
that it is derived from the network structure. Therefore, once the sensitivity coefficients are 
obtained for a given network, they remain constant for all working points of that system. This 
is the main advantage of the proposed DSA method over the classical JBSA or other approaches 
introduced in the previous section since in a real-time voltage control application, updating the 
VSA data is time-consuming procedure, which results in increasing the execution time of the 
developed voltage control algorithm. The DSA method is introduced as follows.    

Let consider again the simple 2-bus system shown in figure 1-1. In equation (1-5) which gives 
the voltage variation at bus 2 with respect to the voltage at bus 1 (i.e. the slack bus). It is 
observed that the active power that flows in the line (Pbr1) is coupled with the resistance of the 
line (r1) and the reactive power that flows in the line (Qbr1) is coupled with the reactance of the 
line (x1). The voltage variation at bus 2 is a function of the active and reactive power flows of 
the line located between nodes 1 and 2, but the influence degrees of Pbr1 and Qbr1 on voltage at 
bus 2 depend on r1 and x1, respectively. Now, let refer to the 5-bus radial distribution system 
shown in figure 2-1. Supposing that node voltages are nearly close to 1 pu and the imaginary 
parts of the voltage variation vectors are negligible, (1-5) can be recursively applied to the 5-
bus system as below. 
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          

              (2-13)       

where Pbr1, Pbr2, Pbr3 and Pbr4 stand for the active powers entering to branches 1 to 4, 
respectively, as shown in figure 2-1. Similarly, reactive power flows in these branches are given 
by Qbr1, Qbr2, Qbr3 and Qbr4. Also, r1 and x1 are the resistance and reactance of the branch 1. The 
same notation is adopted for resistances and reactances of other branches. Due to the fact that 
the sensitivity of bus voltages with respect to nodal powers is needed, the branch power flows 
in above equation must be replaced by the nodal powers. The relations between branch power 
flows and the nodal powers can be obtained through the BIBC matrix in the DLF approach, 
similarly to (2-5) which gives relations between branch current flows and nodal currents. For 
the active powers, we have 
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                                            (2-14)                            

 
where P2, P3, P4 and P5 denote the net active powers of the buses 2, 3, 4 and 5, respectively. It 
is worth noting that in the above equation, active power losses of the lines are assumed to be 
negligible. Similarly, relations between the branch reactive power flows and the nodal reactive 
powers can be also obtained by the BIBC matrix.  
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                                           (2-15)                                                                   

where Q2, Q3, Q4 and Q5 denote the net reactive powers of the buses 2, 3, 4 and 5, respectively. 
Substituting for the branch power flows from (2-14) and (2-15), (2-13) is rewritten as follows.       
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                            (2-16)                                                                                                                             

The above equation gives the relations between bus voltages and nodal active and reactive 
powers. In a matrix form, it can be shown as 

                                                             1 kV - V = R P + X Q                                           (2-17) 

where Vk is vector of voltages at the load buses. Also, P and Q stand for vectors of the nodal 
active and reactive powers, respectively. R and X contain data regarding the sensitivity of 
system voltages with respect to nodal active and reactive powers, respectively. Given that bus 

number 1 is the slack bus, its voltage is always constant, which indicates that 
డ௏భ

డ௉೙
=  

డ௏భ

డொ೙
= 0 

(𝑛 ∈ 𝑁𝐿, 𝑁𝐿 = {2, 3, 4, … , 𝑛𝑏𝑢𝑠}, nbus is the total number of the system buses). Therefore, 
voltage sensitivity at bus k with respect to active or reactive power at bus n is obtained by the 
following rules. 

                                                              -1, -1-k
k n

n

V
R

P





                                                          (2-18) 
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                                                              -1, -1-k
k n

n

V
X

Q





                                                         (2-19) 

The entry Rk-1,n-1 which is the (k-1)th row and the (n-1)th column of R equals to the sum of the 
resistances of the branches in which both Pk and Pn flow. For instance, in order to obtain R3,2 

(i.e. entry of R in the third row and the second column), the branch resistance between nodes 1 
and 2 as well as the one between nodes 2 and 3 in which both P4 and P3 flow are considered. 
According to the abovementioned rule, R3,2 gives the sensitivity of voltage at bus 4 with respect 
to the active power at bus 3 as below.  

                                                 
 1 4 4

3,2 1 2
3 3

V V V
R r r

P P

  
   

 
                                      (2-20) 

The DSA is formulated on the basis of the topological structure of the network. The sensitivity 
coefficients are built considering the directions in which active and reactive powers flow. The 
matrices R and X determine the relationships between bus voltages and nodal active and 
reactive powers. The same procedure has been followed to develop the DLF matrix in the DLF 
approach. The DLF matrix is built in the same way as matrices R and X. It presents the 
relationships between ΔV and I. The DLF matrix contains the same data as matrices R and X. 
The only difference is that DLF matrix includes resistance and reactance together in each of its 
entries in the complex (impedance) form. Thus, we have          

                                                           j[DLF] = [R]+ [X]                                                     (2-21) 

Consequently, in the DSA method, the voltage sensitivity coefficients are obtained from the 
DLF matrix in the DLF approach. The real part of the DLF matrix composes the R and its 
imaginary part gives the X. It is worth noting that the proposed DSA method needs only branch 
parameters (i.e. resistances and reactances) and network topology as the input data, while the 
VSA methods introduced in section 2.3.1 require the state estimation interface or data regarding 
the state variables such as voltage phasors, node powers, etc.   

2.4. The proposed method to consider the branch ampacity limit as a 
function of the DG reactive power   

In this section, a new formulation is proposed in order to consider the ampacity limits of the 
system branches in the voltage control problem. The objective is to keep the branch currents 
within the maximal ampacities of the system conductors when the reactive powers of DGs vary 
for the voltage regulation purpose. In order to introduce the proposed method, let us consider 
again the simple 2-bus distribution system shown in figure 1-1. We suppose that the current in 
the branch 1 between nodes 1 and 2 must be maintained within the predefined ampacity of the 
branch named 𝐼௕௥ଵ

௠௔௫ when reactive power of DG at bus 2 changes. We consider also that the 

initial current of the branch 1 is known as 𝐼௕௥ଵ
௜௡௜௧ = 𝐼௕௥ଵ

௜௡௜௧𝑒௝ఏ಺భ. The active and reactive powers 

flowing in the branch 1 are given by   

                                                            *

111 1
init
brbr brP jQ V I                                                 (2-22) 
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Given that bus number one is the slack bus, voltage at bus 1 is equal to 1 pu and its phase angle 
is zero. Therefore, above equation can be simplified as   

                                                              *

11 1

init

brbr brP jQ I                                        

                                              1 1 1 1 1 1cos sininit init

br br br I br IP jQ I jI                                         (2-23) 

Now, if we change the reactive power of DG (at bus 2) equal to ΔQDG, it can be noticed from 

(2-23) that the real part of 𝐼௕௥ଵ
௜௡௜௧ remains constant and it only affects the imaginary part of the 

initial current [58]. In other words, we have 

                           1 1 1 1 1 1( ) cos sininit init

br br DG br I br I DGP j Q Q I jI j Q                                  (2-24) 

After the reactive power variation at bus 2, the new current of the branch 1 (𝐼௕௥ଵ
௡௘௪) is equal to 

                                        1 1 1 1 1cos sinnew init init
br br I br I DGI I jI j Q                                          (2-25) 

The absolute value of the new current of the branch is given by 

                                     2 2
1 1 1 1( ) 2 sinnew init init

br br DG DG br II I Q Q I                                        (2-26) 

In order to maintain the branch current within its predefined ampacity limit, the absolute value 
of the new current should be smaller than or equal to the maximal ampacity of the branch 
(𝐼௕௥ଵ

௡௘௪ ≤ 𝐼௕௥ଵ
௠௔௫). The maximum possible reactive power variation in branch 1 denoted by ∆𝑄௕௥ଵ

௠௔௫ 
(caused by the reactive power change at bus 2) which creates a current equal to the permitted 
ampacity of the branch 1 is obtained as follows.   

                                   2max 2 max max
1 1 1 1 1 1( ) 2 sininit init

br br br br br II I Q Q I       

                                  2max max 2 max 2
1 1 1 1 1 12 sin ( ) ( ) 0init init

br br br I br brQ Q I I I                                  (2-27) 

Assuming that the initial current value of the branch and its phase angle are known, ∆𝑄௕௥
௠௔௫

 for 

a given 𝐼௕௥ଵ
௠௔௫can be obtained by solving the above quadratic equation. In other words, roots of 

the above equation give the maximum possible variations of DG while keeping the current in 
the branch 1 within its predefined ampacity limit. There are two roots for the above equation 
that correspond to the reactive power variations towards the inductive and capacitive directions. 
In order to make it more vivid, let consider figure 2-2 that shows the vector diagram of the 
currents in the simple 2-bus system. In this figure, it is assumed that the vector of the initial 
branch current is behind the voltage vector (i.e. the reference axe). The maximal ampacity of 
the branch 1 is found on the plotted circle with the radius equal to 𝐼௕௥ଵ

௠௔௫.   
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Given that reactive power variation of DG changes the imaginary part of the initial current in 
the considered branch, roots of (2-27) can be graphically shown with two vertical lines that 

connect ending point of 𝐼௕௥ଵ
௜௡௜௧ to the circle of 𝐼௕௥ଵ

௠௔௫. In figure 2-2, ∆𝑄௕௥ଵ
௠௔௫ଵ and  ∆𝑄௕௥ଵ

௠௔௫  show the 

maximum permitted reactive power variations of DG towards the inductive and capacitive 
directions, respectively. As the initial current has a lagging phase with respect to the voltage, 
the absolute value (length) of ∆𝑄௕௥ଵ

௠௔௫ଵ (i.e. the maximum permitted inductive reactive power 

changes while keeping the ampacity limit of branch 1) is smaller than that of ∆𝑄௕௥ଵ
௠௔௫ଶ (that 

corresponds to the maximum permitted capacitive changes). 

In figure 2-2, the initial branch current is placed inside the circle of maximum current meaning 

that 𝐼௕௥ଵ
௜௡௜௧ < 𝐼௕௥ଵ

௠௔௫. When the initial branch current exceeded the maximum branch current, if it 
has a lagging phase, the roots of (2-27) are both negative since the capacitive reactive power 

changes will return 𝐼௕௥ଵ
௜௡௜௧ to circle of 𝐼௕௥ଵ

௠௔௫. In case of leading current with 𝐼௕௥ଵ
௜௡௜௧ > 𝐼௕௥ଵ

௠௔௫, both 
roots of (2-27) are positive as inductive reactive power changes are needed to bring back the 
branch current within the limit. The smaller root corresponds to the nearest vertical distance 

between  𝐼௕௥ଵ
௜௡௜௧ and circle of the maximum current and the bigger one shows the vertical distance 

that passes along the circle and reaches the surface of the circle of maximum current.      

The proposed approach to consider the branch ampacity limit has been applied to 2-bus 
distribution system where the voltage at bus one is equal to 1 pu and its phase is zero. In the 
realistic distribution systems, this assumption does not hold, as a consequence, an error is found 
in the presented methodology. The accuracy of the proposed formulation will be tested later in 
this chapter through the numerical simulations.   

 
 

Figure 2-2: Current variations with respect to the reactive power changes 
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2.5. Sensitivity-based voltage control scheme managing reactive powers of 
DGs 

A centralized sensitivity-based voltage control approach is proposed here in order to maintain 
the node voltages and branch currents within their predefined limits through the reactive power 
control of DGs. It consists of three parts, which are the LF calculation, sensitivity analysis and 
the optimization formulation. In contrast with the classical OPF-based VCA which includes the 
LF-related (i.e. nodal power balances) constraints inside the optimization problem, in the 
proposed method, LF program and optimization part can be decoupled thanks to information 
provided by the sensitivity analysis. In the proposed voltage control approach, the DLF method 
is used to define the initial voltages and currents of the system and to check if there is any 
voltage and current violations. Sensitivity analysis gives us information regarding the influence 
of changing reactive powers of DGs on the node voltages and branch currents. Therefore, there 
is no need to consider the LF-related constraints inside the optimization problem. Using the 
sensitivity analysis, the voltage control problem is linearized around its operating point. The 
optimization part aims at determining the required modifications of control variables in order 
to satisfy the voltage and current constraints. On the basis of the above framework, two voltage 
control algorithms are developed in this chapter using which the initial system working point 
(with operational limit violations) is directed towards the targeted (safe) point at once in a single 
step or progressively within some steps. The former constructs an open-loop VCA and the latter 
works as a closed-loop VCA. The proposed VCAs will be introduced further in the following 
sections.  

2.5.1. Multi-step voltage control algorithm 

In the Multi-Step Voltage Control Algorithm (MSVCA), the priority of voltage regulation is 
given to the bus with the biggest voltage violation such that in each step (or iteration) of the 
voltage regulation procedure, voltage violation problem at the worst bus (i.e. the one with the 
biggest voltage violation) is removed. The MSVCA starts with running an initial LF calculation. 
If the voltage violations are found in the system, the main iterative-based procedure of the 
MSVCA starts with I=1. In the first iteration (I=1), the bus with the biggest voltage violation is 
selected and the value of voltage violation at that bus from the permitted voltage range is 
determined. It gives us the needed value of voltage modification in order to return voltage of that 
bus inside the permitted voltage range. In case of the voltage drop problem, the required value 
of voltage modification to remove the voltage violation problem at the worst bus is calculated 
with respect to the lower permitted voltage limit (i.e. 0.97 pu [59]) as follows.  

                                                             0.97req
w wV V                                                      (2-28) 

where ∆𝑉௪
௥௘௤ gives the required value of voltage modification to solve the voltage violation 

problem at the worst bus. Also, w is index relating to the bus with the worst voltage violation. 
The main objective of the MSVCA is to bring back the voltage of the worst bus inside the 
permitted voltage range through the optimal management of the DG reactive powers. In 
addition, thermal limits of the branches and physical limits of DGs in reactive power production 
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are taken into consideration. Voltage control problem of the MSVCA at I=1 is formulated as 
an optimization problem given in below.  

                                                    Minimize:
1

 
GN

DGx
x

OF Q


                                                (2-29) 

                                                     
1

GN
reqw

DGx w
x DGx

V
Q V

Q


  

                                                 (2-30) 

                                                       max   ,  brs brsI I s s C                                                       (2-31) 

                                            min max   ,  DGx DGx DGxQ Q Q x x G                                               (2-32) 

where NG is the total number of DG units that contribute in the voltage control problem. ΔQDGx 

gives the reactive power change of the DG number x. Also, 
డ௏ೢ

డொವಸೣ
 denotes the voltage sensitivity 

of the worst bus with respect to the reactive power change of DG number x. The inequality 
constraint (2-30) represents the fact that the reactive power changes of DGs must return the 
voltage of the bus with the biggest voltage violation inside the permitted voltage range. The left 
side of (2-30) gives the voltage modification at the worst bus due to reactive power variations 
of DGs. The inequality constraint (2-31) takes into consideration the ampacity limits of the 
branches according to the method presented in section 2-4. Thus, the reactive powers of DGs 
are changed taking into account the maximum current limits of the system branches. For the 
sake of simplicity, the thermal limits are considered in some selected branches given by the set 
C. The inclusion of ampacity limits in the voltage control problem is discussed more in section 
2.6.1. Furthermore, the reactive power contribution of DGs is limited by several factors as 
studied in [7] and [60]. The reactive power limitations of DGs are considered in the MSVCA 
as inequality constraint (2-32) representing the capability curves of DGs.   

In the presented optimization problem, the reactive power changes of DGs are restricted in the 
range from negative to positive values corresponding to capacitive and inductive reactive 
powers. The solution of the linear optimization problem when control variables are unrestricted 
in sign would be the lower or upper bound of the variables. This is not definitely a proper 
solution for the voltage control problem. Therefore, the presented optimization problem must 
be rewritten in the standard form of the linear optimization problem according to [61] such that 
it only includes the control variables with non-negative bounds. To this end, the reactive power 
changes of DGs will be replaced by two new auxiliary variables as 

                                                   ind cap
DGx DGx DGxQ Q Q                                                 (2-33) 

where ∆𝑄஽ீ௫
௜௡ௗ  represents the reactive power changes of DGs towards the inductive direction and 

∆𝑄஽ீ௫
௖௔௣  takes into account the capacitive reactive power changes of DGs. Both new auxiliary 

variables are restricted in the non-negative ranges. Substituting for ΔQDGx from (2-33), the 
aforementioned optimization problem is rewritten as 
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1
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ind cap
DGx DGx

x

OF Q Q


   Minimize:                                          (2-34) 
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DGx DGx w

x DGx

V
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 
      

                                         (2-35) 

                                                          max   ,  brs brsI I s s C                                                   (2-36) 

                                       
min max   ,  ind cap
DGx DGx DGx DGxQ Q Q Q x x G                                          (2-37)                  

                                                  , 0  ,  ind cap
DGx DGxQ Q x x G                                            (2-38) 

In order to have always a positive objective function, ΔQDGx in (2-29) is replaced by the absolute 
value of its equivalence given in (2-33) as it can be seen in (2-34). In the above optimization 
problem, the voltage sensitivity coefficients are known parameters, which are obtained from 

the matrix X. The required value of voltage change (∆𝑉௪
௥௘௤) for solving the voltage problem of 

the worst bus is also a defined parameter but ∆𝑄஽ீ௫
௜௡ௗ  and ∆𝑄஽ீ௫

௖௔௣  (x ∈ G, G={1, 2, 3, …, NG }) 

are decision variables that must be optimally selected. The linear programming solver of 
MATLAB optimization toolbox is used to solve the optimization problem of the MSVCA. Due 

to the fact that ∆𝑉௪
௥௘௤  is positive in the voltage drop situation (see (2-28)), and the voltage 

sensitivity coefficients extracted from the matrix X are negative (see (2-19)), reactive power 

changes towards the capacitive direction (through ∆𝑄஽ீ௫
௖௔௣ ) will satisfy the voltage constraint of 

bus w. The positive objective function guarantees that as soon as the Left-Hand Side (LHS) of 
(2-35) reaches its Right-Hand Side (RHS) (and when other constraints are satisfied too), the 

optimal solution is obtained. It should be noted that since −∆𝑄஽ீ௫
௖௔௣  is always non-positive, by 

removing the absolute operator in the objective function, the optimal solution tends towards the 

lower bound of (2-37) because increasing ∆𝑄஽ீ௫
௖௔௣  will minimize the objective function. The latter 

solution however will lead to unnecessary reactive power changes. To avoid such an issue, the 
absolute operator is used in the objective function.  

Once the optimization problem regarding I=1 is solved, the needed reactive power changes of 
DGs in order to manage the biggest voltage violation in I=1 are determined. Then, a new LF 
calculation is done at the end of the iteration one (including the new set-points of control 
variables) in order to define whether the MSVCA must go to the next iteration or it can stop. If 
a new voltage violation is found, the iteration 2 (I=2) starts, and a new optimization problem is 
composed (similar to that of the first iteration but with the updated values) in order to bring 
back the biggest voltage violation of the second iteration within the permitted voltage limits. 
By solving this new optimization problem, the control commands to return the biggest voltage 
violation of the second iteration within the permitted voltage range are defined. Again at the 
end of I=2, a new LF calculation is performed to decide if the next iteration of the MSVCA is 
needed or not. The iterative procedure of the MSVCA continues as long as there is a voltage 
violation. The flowchart of the proposed MSVCA is shown in figure 2-3. 
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 Figure 2-3: Flowchart of the MSVCA 

In the voltage rise case, the needed value of voltage change at the bus with the biggest voltage 
rise is calculated with regard to the permitted upper voltage limit (i.e. 1.03 pu) using the 
following equation.  

                                                           1.03req
w wV V                                                         (2-39) 

where ∆𝑉௪
௥௘௤ gives the required value of the voltage change to remove the voltage violation at 

the bus with the biggest voltage rise. The optimization problem of the MSVCA mentioned in 
(2-34) to (2-38) is generally valid for the voltage regulation in the voltage rise state with one 
exception (difference) that the inequality constraint relating to the required value of voltage 
change given in (2-35) must be replaced by the following one.  

                                            
1

( )
GN

ind cap reqw
DGx DGx w

x DGx

V
Q Q V

Q

 
      

                                     (2-40) 

YES 

NO 

Run a new load flow calculation 
to check the system voltages 

Solve the optimization problem and 
update DG powers   

Construct the presented optimization 
problem of the MSVCA  

Calculate ∆𝑉௪
௥௘௤ and select the voltage 

sensitivity coefficients relating to bus w 

I=I+1 

  

Is there any 
voltage violation? 
 

STOP 

Load system data, run initial load flow, 
and derive the voltage sensitivity matrix 

START (I=0) 
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Given that ∆𝑉௪
௥௘௤  is negative in the voltage rise case, and voltage sensitivity coefficients 

extracted from matrix X are also always negative (see (2-19)), in order to satisfy the above 
constraint, the inductive reactive power changes of DGs will be needed.  

2.5.2. Single-step voltage control algorithm   
 
The Single-Step Voltage Control Algorithm (SSVCA) is designed to bring back simultaneously 
all the violated voltages inside the permitted voltage range through the optimal management of 
DG reactive powers. It starts with running an initial LF calculation. If voltage violations are 
found in the system, all buses with the voltage violations are selected. The voltage control 
problem in the SSVCA is formulated as an optimization problem, which aims at minimizing 
the total reactive power changes of DGs subject to the voltage constraints relating to all the 
violated voltages as well as the limits on the branch currents and the bounds on the reactive 
powers of DGs. Once the optimization problem is solved, the needed reactive power changes 
of DGs to solve the voltage control problem are determined. Then, a new LF calculation is 
carried out including the new set-points of DG reactive powers. At this stage, the corrected 
system voltages obtained by the LF study are plotted and the SSVCA stops. It can be noticed 
that, unlike the MSVCA, the SSVCA is an open-loop control system as there is no feedback on 
the corrected voltages. Consequently, in case of error in the VSA, it would not be possible 
anymore to bring back the system voltages within the permitted voltage range. 

We suppose that l denotes index of the buses with the voltage drop issue and L gives the set of 
the buses with the voltage drop. In the voltage drop case, the needed voltage changes to bring 
back the violated voltages within the permitted lower limit are given by 

                                                        0.97   req
l lV V l L                                                   (2-41) 

The voltage control problem of the SSVCA in the voltage drop state is formulated as the 
following optimization problem.  

                                               
1

GN
ind cap
DGx DGx

x

OF Q Q


  Minimize:                                            (2-42) 

                                     
1

( )   ,  
GN

ind cap reql
DGx DGx l

x DGx

V
Q Q V l l L

Q

 
        

                                (2-43) 

                                                          max   ,  brs brsI I s s C                                                   (2-44) 

                                       
min max   ,  ind cap
DGx DGx DGx DGxQ Q Q Q x x G                                          (2-45)                  

                                             , 0  ,  ind cap
DGx DGxQ Q x x G                                                 (2-46) 

where 
డ௏೗

డொವಸೣ
 is the voltage sensitivity at bus l with respect to the reactive power changes of 

DGx. It is worth noting that (2-43) is applied to all the buses with the voltage drop given in the 
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set L. Inequality constraints (2-44) to (2-47) are similar to the ones introduced in the MSVCA. 
The abovementioned optimization problem is generally valid for the voltage control problem 
in the voltage rise condition with one exception that the constraint (2-43) should be updated in 
the latter case. In the voltage rise situation, the permitted upper voltage limit is chosen as the 
targeted point for the violated voltages. Therefore, equation (2-41) is rewritten considering the 
1.03 pu voltage limit as 

                                                     1.03   ,  req
u uV V u u U                                               (2-47) 

where u stands for the index of the buses with the voltage rise and set U includes all the buses 
with the voltage rise issue. Consequently, the voltage constraint of the above optimization 
problem in the voltage rise case is replaced by  

                                      
1

  ,  
GN

ind cap requ
DGx DGx u

x DGx

V
Q Q V u u U

Q


     

                               (2-48)                                    

Therefore, the optimization problem of the SSVCA in the voltage rise case is composed of (2-
42) as the objective function subject to the inequality constraints given in (2-48), (2-44), (2-45) 
and (2-46).  

2.6. 33-bus test system 

In order to test the effectiveness of the proposed voltage control algorithms, a 33-bus, 12.6 kV 
radial distribution system shown in figure 2-4 is considered. Network parameters regarding the 
load and line data are given in appendix 2 [62]. Total active and reactive powers of the system 
loads are 3.72 MW and 2.3 Mvar, respectively. The system under study also consists of 4 DG 
units, which are located at the buses 6, 12, 18 and 33. The DG units are DFIG-based type and 
identical with a maximum rated power equal to 1 MW. The capability curve of under study DG 
units is obtained from [7] and is linearized by the points given in table 2-1. It is approximated 
as a symmetrical curve. As it can be noticed from table 2-1, the maximum reactive power 
contribution of DGs is a function of its active power.   

In the LF study, bus number 1 is considered as the slack bus and all other buses are load (PQ) 
buses. The load powers are considered to be voltage independent (i.e. power constant load 
model). DG active power is modelled as a negative load. The base voltage and power are equal 
to 12.66 kV and 1 MW. The upper and lower permitted voltage limits are 1.03 and 0.97 pu, 
respectively, for all the buses [59]. 
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2.6.1. On the consideration of ampacity limits of the branches in the studied test 
system 

As mentioned before, in the proposed VCAs, the branch current limits are not considered in all 
the system branches. The branches with the ampacity limits are chosen in an optimal manner 
such that with consideration of the minimum number of branches, we can monitor and control 
the currents in all the system branches. To do so, firstly, we divide the studied network into 4 
zones as shown in figure 2-4. We suppose that the nominal ampacities of the branches located 
in each zone are identical. Also, the zonal branch limits decrease when moving from slack bus 
towards the end of feeders. Within such a network topology, in order to keep currents of all the 
branches in each zone with the predefined limit, it is enough to maintain the currents that enter 
to and exit from each zone within the predefined current limit of that zone. The idea is motivated 
by the fact that in the full-load-and-min-generation condition, the first branch of each zone has 
the smallest available ampacity among all branches of the zone since all the power of the zone 
enters to the first branch and then it reduces gradually towards the end of the zone. In the full-
generation-and-min-load state, the branch that is located in the end of each zone has the lowest 
free ampacity as the power is flowing from DGs towards the slack bus. Note that there is no 
DG in the middle of the considered zones. Consequently, if the currents in the branches located 
in the beginning and ending points of each zone do not exceed the zone limit, currents of other 
branches placed at that zone will be within the predefined zone current limit. Considering the 

Figure 2-4: 33-bus radial distribution system 
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TABLE 2-1: POWER CAPABILITY CURVE OF DGS  
(% IN DG RATED POWER) 

Point  PDG Qୈୋ
୫ୟ୶/Qୈୋ

୫୧୬ 

1 0 ± 95% 
2 25% ± 95% 

3 50% ± 90% 

4 100% ± 60% 
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fact that there are 4 zones in the studied system, we need to take ampacity limits of 8 branches 
into account as listed in table 2-2. 

 

It is worth noting that the branches located between buses 3 to 25 and the ones between nodes 
2 to 22 are not considered in the voltage control problem because the reactive power variations 
of DGs do not pass from these branches.  

The reactive power variations in the selected branches due to reactive power changes of DGs 
are given by the following equation considering the directions in which DG powers flow.   

                                                

1

5

6 1

11 2

12 3

17 4

25

32

1 1 1 1

1 1 1 1

0 1 1 0

0 1 1 0

0 0 1 0

0 0 1 0

0 0 0 1

0 0 0 1

br

br

br DG

br DG

br DG

br DG

br

br

Q

Q
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Q Q

Q Q

Q Q

Q

Q

   
      
    
                 
          
   
   
    

                                     (2-49) 

In a matrix form, above equation is written as  

                                                         br DGΔQ = DGIB ΔQ                                              (2-50) 

The relations between DG injections and power flows in the selected branches are known 
through DGIB matrix. The latter can be constructed from the BIBC matrix in the DLF approach 
while the rows related to the selected branches and columns associated with the DG-connected 
buses are only kept and all other rows and columns of the BIBC matrix are deleted. Therefore, 
DGIB matrix has 8 rows and 4 columns as can be seen in (2-49). The maximum reactive power 
variations (towards inductive and capacitive directions) while keeping the branch limit in each 
of the selected branches are calculated using (2-27). Therefore, the following inequality 
constraint is introduced in the proposed VCAs in order to maintain the currents of the selected 

TABLE 2-2: BRANCH CURRENT LIMITS  

Branch Between nodes Zone Rated ampacity (pu) 

1 1-2 1 3.6 

5 5-6 1 3.6 
6 6-7 2 1.6 
11 11-12 2 1.6 

12 12-13 3 0.8 

17 17-18 3 0.8 

25 6-26 4 0.8 

32 32-33 4 0.8 
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branches within the predefined limits when reactive powers of DGs change for the voltage 
regulation end.  

                                      max1 max 2
,

1

  ,
GN

brs b x DGx brs
x

Q DGIB Q Q s s C


                                 (2-51) 

where s is index for branches with the current limits (s ∈ C, C = {1, 5, 6, 11, 12, 17, 25, 32}) 
and b is an index equal to order of element s in set C. For instance, for s=5, b is equal to 2, as 5 
is the second element of C. Considering (2-51), reactive powers of DGs are changed such that 

they create variations within the roots of (2-27) namely ∆𝑄௕௥௦
௠௔௫ଵ and ∆𝑄௕௥௦

௠௔௫ଶ in branch s. As a 
consequence, the current in the branch s is kept within its predefined ampacity. Replacing 
ΔQDGx with the two defined auxiliary variables, the above constraint is rewritten as      

                              max1 max 2
,

1

( )   ,
GN

ind cap
brs b x DGx DGx brs

x

Q DGIB Q Q Q s s C


                         (2-52) 

Finally, in the MSVCA and SSVCA, the above constraint is introduced in order to take the 
current limits in all the selected branches into account when the reactive powers of DGs are 
changed.  

2.7. Simulation results  

The proposed VCAs in the single-step and multi-step forms are coded in the MATLAB 
environment. Effectiveness of the MSVCA and SSVCA is evaluated through the simulations 
carried out on the 33-bus test system shown in figure 2-4. Two working points corresponding 
to the full-load-and-min-generation and full-generation-and-min-load states are considered in 
order to test performance of the proposed VCAs in the voltage drop and rise conditions. The 
influence of considering ampacity limits of the system branches on the VCA results will be also 
investigated.    

2.7.1. Case A: Working point corresponding to the full-load-and-min-generation 
situation   

 

In the first studied working point, all the system loads are considered to be at 90% of their 
nominal values while DG active powers are at 15% of their rated values. The initial reactive 
powers of DGs are equal to zero. The main objective of this section is to test performance of 
the proposed VCAs in the voltage drop situation. According to the capability curve of DGs 
given in table 2-1, the maximum reactive power contribution of each DG in this working point 
is equal to ±95% of its rated power (= ±0.95 Mvar).  
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2.7.1.1. Case A.1: Using multi-step voltage control algorithm when ampacity limits of the 
system branches are disregarded 

In the first studied case, the MSVCA is used to manage the voltage constraints when ampacity 
limits of the branches are not considered. As a result, the MSVCA can employ the most efficient 
DGs to return the system voltages inside the permitted voltage limits. In the studied working 
point, the worst voltage drop is found at bus 17 with voltage violation equal to -0.0315 pu from 
the 0.97 pu permitted voltage limit. Table 2-3 presents the demanded reactive power changes 
of DGs in order to remove the voltage violations. Figure 2-5 shows the initial system voltages 
as well as the ones obtained after voltage regulation by the MSVCA.   

 

In table 2-3, the negative values of ΔQDG mean reactive powers of DGs are changed towards 
the capacitive direction of the capability curve. Also, OF Tot gives the cumulative objective 
function of the MSVCA in all iterations. At I=1, the voltage control algorithm employs only 
DG3 (at bus 18) to manage the voltage drop at bus 17 because the sensitivity of voltage at bus 
17 with respect to the reactive power change at bus 18 is the highest among all DGs. Also, as 
the available capacity of DG3 is enough to solve the voltage problem at bus 17 and the thermal 
limits of the branches are disregarded, DG3 is used alone. 

At the second iteration (I=2), the MSVCA must solve the voltage drop at bus 32. DG4 which 
has the biggest effect on the voltage at bus 32 is used to this end. Finally, at I=3, the voltage 
drop at bus 30 is removed using the available reactive power changes of DG4 towards the 
capacitive direction (i.e. -0.95--0.852=-0.098 Mvar). Given that DG4 cannot solve this voltage 
violation alone, DG1, DG2 and DG3 are used as well. It is worth noting that according to the 
DSA, reactive power changes of DG1, DG2 and DG3 have the same impacts on the voltage at 

bus 30 ( ቚ
డ௏యబ

డொల
ቚ = ቚ

డ௏యబ

డொభమ
ቚ = ቚ

డ௏యబ

డொభఴ
ቚ ). Therefore, there is no change on the optimal objective 

function when using each of them. In figure 2-5, the blue dotted line shows the system voltages 
at the end of the iteration number 3 (I=3) when the MSVCA stops as all system voltages are 
returned to the predefined voltage limits. Also, hereafter, the red solid line on the 0.97 pu (or 
1.03 pu) represents the permitted lower (or upper) voltage limit.   

TABLE 2-3: REACTIVE POWER CHANGES OF DGS IN CASE A.1 

 I=1 I=2 I=3 

∆V୵
୰ୣ୯

 (pu) 
w 

0.0315 
17 

0.0258 
32 

0.0028 
30 

ΔQDG1 (Mvar) 0 0 -0.0278 

ΔQDG2 (Mvar) 0 0 -0.0278 
ΔQDG3 (Mvar) -0.5282 0 -0.0167 

ΔQDG4 (Mvar) 0 -0.852 -0.098 

OF Tot (Mvar) 1.5504 
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2.7.1.2. Case A.2: Using the multi-step voltage control algorithm when ampacity limits of 
the system branches are considered 

Considering the same working point as the one of the case A.1, in the current test case, ampacity 
limits of the selected branches are added to the MSVCA. The objective is to evaluate impact of 
considering the ampacity limits of the system branches on the MSVCA performance. The 
corrected voltages obtained using the MSVCA while considering ampacity limits of the system 
branches are depicted in figure 2-5. Also, table 2-4 presents the reactive power changes of DGs 
demanded by the MSVCA. 

 

In the considered working point for the full-load-and-min-generation condition, the current of 
the branch 25 has exceeded the permitted 0.8 pu limit of the zone 4. Therefore, in the first 
iteration, in addition to managing the voltage drop at bus 17 (i.e. the one with the worst voltage 
drop), the current violation in the branch 25 should be removed as well. Given that the initial 

current of the branch 25 is bigger than the maximal branch current, 𝐼௕௥ଶହ
௜௡௜௧  is placed outside of 

the circle of the maximal current shown in figure 2-2. As a consequence, the roots of (2-27) are 
both negative values meaning that the capacitive reactive power changes are needed to return 
the current of the branch 25 within its ampacity limit. In I=1, in branch 25, the reactive power 
changes between -0.5698 and -1.2239 Mvar can return the current of that branch within the 0.8 

 
Figure 2-5: System voltages in cases A.1 and A.2 using the MSVCA 

 

TABLE 2-4: REACTIVE POWER CHANGES OF DGS IN CASE A.2 

 I=1 I=2 

∆V୵
୰ୣ୯

 (pu) 
w 

0.0315 
17 

0.0098 
30 

ΔQDG1 (Mvar) 0 -0.2492 
ΔQDG2 (Mvar) 0 -0.1854 
ΔQDG3 (Mvar) -0.4456 -0.0836 

ΔQDG4 (Mvar) -0.5698 -0.2396 

OF Tot (Mvar) 1.7732 
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pu predefined zone limit. These values are found through solving (2-27). Since the reactive 
power of branch 25 varies by ΔQDG4, in order to satisfy the constraint regarding the branch 25, 
DG4 is used only. On the other hand, DG4 does not have a high impact on the voltage at bus 
17, and to manage the voltage drop at bus 17, reactive power changes of DG3 are preferred 
(rather than ΔQDG4). Consequently, in I=1, to satisfy the constraint regarding the branch 25, 
ΔQDG4 is changed by -0.5698 Mvar (the root with smaller absolute value) and to remove the 
voltage constraint at bus 17, ΔQDG3 is modified by -0.4456 Mvar.  

In I=2, bus number 30 has the worst voltage violation. DG4 which has the biggest impact on 
the voltage at bus 30 is employed by the MSVCA up to the limit defined by the ampacity limit 
of the branch 32. The latter is capable of transferring reactive powers between -0.2396 to 1.35 
Mvar from DG4 while keeping the 0.8 pu predefined limit of the zone 4. Given that the 
capacitive reactive power changes are needed to solve the voltage drop at bus 30, ΔQDG4 is set 
to -0.2396 Mvar. The rest of needed reactive power changes to remove the voltage violation at 
bus 30 is provided by the contribution of other DGs. Figure 2-6 shows the initial branch currents 
as well as the ones obtained after each iteration of the MSVCA using the LF calculations.  

 

As it can be seen in figure 2-6, the initial current violation in the branch 25 has been removed 
when reactive power changes of I=1 are applied. In addition, the reactive power changes of I=2 
do not cause violation of the ampacity limits in the selected branches. More importantly, it is 
observed that the currents of all branches located in zones 1 to 4 are within the predefined limits 
which verifies the efficiency of the proposed idea to consider only the ampacity limits in the 
first and last branches of each zone. The accuracy of the proposed method to calculate the 
maximal reactive power changes of DGs while keeping the branch ampacity limits can be found 
in figure 2-6. As it can be seen, in the end of I=1, the current of the branch 25 is smaller than 
0.8 pu. Its exact value equals to 0.767 pu which means that the proposed formulation leads to 
an error equal to 0.8-0.767=0.033 pu. Also, in the end of I=2, the current in the branch 32 
reaches 0.798 pu (instead of 0.8 pu) which means that an error of 0.002 pu is arisen from the 
proposed formulation.  

 
Figure 2-6: The branch currents along the voltage regulation procedure by the MSVCA 
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Taking into account figures 2-5 and 2-6, it is verified that the proposed MSVCA not only 
manages the voltage constraints while keeping the branch ampacity limits, but it also removes 
the initial branch overloads. Furthermore, considering the results given in tables 2-3 and 2-4, it 
is noticed that when ampacity limits of the branches are considered, a higher global reactive 
power changes are needed to solve the same voltage control problem (i.e. 1.7732 Mvar 
compared to 1.5504 Mvar in case A.1). It is explained by the fact that when ampacity limits are 
considered, it is not possible to use the most efficient DGs with their maximum available 
reactive powers (defined by the capability curve) because extra limits on DG reactive powers 
relating to the branch limits must be taken into account as well. Consequently, beside the 
efficient DGs (which have high impacts on the violated voltages), it is needed to utilize also 
DGs at buses which have smaller voltage sensitivity with respect to reactive power changes. 
Finally, it leads to an increase of the total needed reactive power changes for the voltage 
regulation purpose.  

2.7.1.3. Case A.3: Using the single-step voltage control algorithm when ampacity limits of 
the system branches are disregarded  

The SSVCA performance is tested here to manage the voltage constraints of the same working 
point while ampacity limits of the branches are neglected. As introduced before, the SSVCA 
finds the optimal combination of DG reactive power changes in order to return simultaneously 
all the violated voltages inside the permitted voltage range. Table 2-5 presents the reactive 
power changes of DGs demanded by the SSVCA to manage the voltage constraints.   

                                                 

In the SSVCA, there will be one inequality constraint per each of the buses with the voltage 
violation. In the voltage drop state, set L includes all the buses with the voltage drop issue. 
Cardinality of set L gives the number of the voltage constraints that exist in the SSVCA. In 
order to remove the initial voltage violations, all these voltage constraints must be satisfied 
simultaneously. However, all the voltage constraints will not be of the binding type. By 
definition, in an optimization problem, a constraint is binding if there is no difference between 
its RHS and LHS in the optimal point [61]. Therefore, if we change its RHS, the objective 
function of the optimal point will be affected. Thus, it can be concluded that in the optimal 
point, a binding constraint is satisfied while other constraints (non-binding ones) have been 
satisfied with less control effort. Consequently, non-binding constraints are the ones that do not 
impose an increase or decrease of the objective function in the optimal point. Considering the 
above definition, in the SSVCA context, ‘‘all the voltage constraints are not of the binding 
type’’ means that there will be one constraint (or more) relating to the binding constraint that 
needs to be certainly satisfied, and if so, other voltage constraints (non-binding ones) are 
managed too. 

TABLE 2-5: REACTIVE POWER CHANGES OF DGS IN CASE A.3 

ΔQDG1 (Mvar) -0.1322 

ΔQDG2 (Mvar) -0.2388 
ΔQDG3 (Mvar) -0.397 

ΔQDG4 (Mvar) -0.95 

OF (Mvar) 1.7181 
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In the considered working point, bus 30 constructs the binding voltage constraint. When the 
LHS of the voltage constraint relating to bus 30 is equal to its RHS, voltage at bus 30 reaches 
the targeted point (i.e. 0.97 pu) and all other violated voltages are returned inside the permitted 
voltage range (having voltage values bigger than 0.97 pu). It should be noted that bus 30 
constructs the binding constraint although bus 17 has the worst initial voltage violation. 
Therefore, the binding constraint does not necessarily belong to the bus with the biggest voltage 
violation, but it corresponds to the one that demands more control effort to have the LHS equal 
to the RHS. In fact, voltage drop at bus 17 (the worst voltage violation) does not create binding 
constraint as the voltage violation at bus 17 can be solved easily by action of DG3. It is 
mentioned before that reactive power change of DG3 has high impact on the voltage at bus 17. 
On the contrary, in order to manage the voltage drop at bus 30, reactive power change equal to 
-0.95 Mvar from DG4 is not sufficient, thus, contribution of other DGs is needed as well, as it 
can be seen in table 2-5. 

Figure 2-7 shows the initial and corrected voltages obtained using the SSVCA. It is seen that 
after voltage regulation, voltage at bus 30 reaches almost 0.97 pu and all other violated voltages 
are returned inside the permitted voltage range. It is worth mentioning that the distance between 
the corrected voltage at bus 30 (i.e. 0.9715 pu) and the 0.97 pu voltage limit represents the error 
arisen from the linearization of the voltage and reactive power relationships using the DSA 
method.   

 

2.7.1.4. Case A.4: Using the single-step voltage control algorithm when ampacity limits of 
the system branches are considered  

Considering the ampacity limits of the selected branches, the SSVCA is used here in order to 
manage the voltage control problem of the same working point as before. In case A.2, it was 
shown that in addition to the existing voltage violations, the initial current in the branch 25 is 
over its ampacity limit. Therefore, the reactive power modifications of DGs must at once 
remove the voltage drop of the buses, and return the current in the branch 25 within its ampacity 

 
Figure 2-7: System voltages in cases A.3 and A.4 using the SSVCA 
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limit while maintaining the currents in all other branches within the predefined limits. Table 2-
6 gives the reactive power changes of DGs to this end. 

 

Similarly to case A.2, in order to return the current in branch 25 within its ampacity limit, we 
need to change reactive power of the branch 25 between -0.5698 to -1.2239 Mvar. In addition, 
the branch 32 is capable of transferring reactive power changes between the range of -0.8334 
to 0.7536 Mvar. The reactive powers of both branches 25 and 32 are only influenced by ΔQDG4. 
Given that bus 30 creates the binding voltage constraint and due to the fact that DG4 has the 
highest impact on the voltage at bus 30, the optimal solution of the SSVCA optimization 
problem will be to use DG4 with its maximum possible contribution defined by the branch 32 
(i.e. -0.8334 Mvar). In this way, the initial violation of the current in branch 25 will be solved 
too as ΔQDG4=-0.8334 Mvar is within the range -0.5698 to -1.2239 Mvar. The contribution of 
other DGs is needed to fully solve the voltage control problem of bus 30. Therefore, in the 
optimization problem of the SSVCA, the voltage constraint at bus 30 and the current limit in 
the branch 32 create the binding constraints. As it can be seen in figure 2-7, the corrected 
voltages do not exceed the permitted voltage range. Also, the voltage at bus 30 is the closest 
one to the 0.97 pu voltage limit since it was the binding voltage constraint. The difference 
between the corrected voltage at bus 30 and the 0.97 pu limit shows the error associated with 
the DSA method. Figure 2-8 depicts the initial branch currents as well as the ones obtained after 
the SSVCA action.   

 

As it can be seen in figure 2-8, after the SSVCA action, the initial violation of the current in 
branch 25 has been removed by reactive power changes of DG4. It can be noticed also that all 

TABLE 2-6: REACTIVE POWER CHANGES OF DGS IN CASE A.4 

ΔQDG1 (Mvar) -0.2618 
ΔQDG2 (Mvar) -0.3509 

ΔQDG3 (Mvar) -0.4520 

ΔQDG4 (Mvar) -0.8334 

OF (Mvar) 1.8981 

 

 
Figure 2-8: The branch currents along the voltage regulation procedure by the SSVCA 
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the branches located in the 4 predefined zones have the currents smaller than their rated 
ampacity limit except the branch 32. As mentioned before, the latter is one of the binding 
constraints of the optimization problem. Therefore, the RHS and LHS of that constraint are 
equal in the optimal solution. This means that the current in the branch 32 must reach 0.8 pu 
after the SSVCA action. The difference between the real current in the branch 32 (i.e. 0.82 pu) 
and the 0.8 ampacity limit occurs due to simplification of the relations between branch currents 
and DG reactive powers in the proposed formulation for considering ampacity limits. As a 
result, an error equal to 0.02 pu is found in the corrected current of the branch 32.           

Comparing results given in tables 2-5 and 2-6, it is observed that in the SSVCA when the branch 
limits are neglected, total OF equals to 1.7181 Mvar while by considering the ampacity limits, 
the needed reactive power changes of DGs increase to 1.8981 Mvar. 

2.7.2. Case B: Working point corresponding to the full-generation-and-min-load 
situation 

In the second studied working point, load powers and DG active power productions are 
considered to be at 20% and 70% of their respective rated values while the initial reactive 
powers of DGs are set to zero. The objective of this section is to examine performance of the 
MSVCA and SSVCA in the voltage rise condition. According to the capability curve of DGs, 
the available reactive power changes of DGs are equal to ±0.78 Mvar. 

2.7.2.1. Case B.1: Using the multi-step voltage control algorithm when ampacity limits of 
the system branches are disregarded 

In the first test case of the studied working point for the voltage rise state, the MSVCA is used 
to return the existing voltage violations inside the permitted voltage range. Table 2-7 presents 
the reactive power changes of DG units to this end. The ampacity limits of the branches are not 
considered here.  

 

In the first iteration, the biggest voltage rise is found at bus 18. DG3 which has the biggest 
effect on the voltage at bus 18 is used to remove that voltage violation. As the ampacity limits 
of the branches are neglected, DG3 can provide the needed reactive power up to its maximum 
available reactive power (i.e. 0.78 Mvar). The voltage rise problem at bus 18 is solved by 
changing reactive power of DG3 by 0.7265 Mvar towards the inductive direction. Then, at I=2, 

TABLE 2-7: REACTIVE POWER CHANGES OF DGS IN CASE B.1 

 I=1 I=2 I=3 

∆V୵
୰ୣ୯

 (pu) 
w 

- 0.0460 
18 

- 0.0033 
12 

-7.28×10-4 

33 

ΔQDG1 (Mvar) 0 0 0 
ΔQDG2 (Mvar) 0 0.054 0 
ΔQDG3 (Mvar) 0.7265 0.0535 0 

ΔQDG4 (Mvar) 0 0 0.0217 

OF Tot (Mvar) 0.8557 
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the new bus with the biggest voltage rise (i.e. bus 12) forms a new optimization problem subject 
to the updated available reactive powers of DGs. Given that DG2 and DG3 have an identical 
impact on the voltage at bus 12 according to the DSA method, they are both involved in the 
voltage regulation of bus 12. It should be noted that in I=2, available reactive power change for 
DG3 is equal to 0.78-0.7265=0.0535 Mvar. Finally, in I=3, the voltage rise problem at bus 33 
is solved using DG4 as it has the highest influence on that bus. Figure 2-9 shows the initial 
voltages as well as the ones obtained after the corrective action of the MSVCA. 

 

In figure 2-9, it is seen that the violated voltages are efficiently brought back to the permitted 
voltage range using the MSVCA. 

2.7.2.2. Case B.2: Using the multi-step voltage control algorithm when ampacity limits of 
the system branches are considered  

The MSVCA performance is tested here on the same working point as that of the previous case. 
However, unlike the case B.1, the ampacity limits of the branches have been also taken into 
account here. As a result, new constraints are added to the optimization problem of the MSVCA. 
If there is any binding constraint relating to the ampacity limits of the branches, the optimal 
point of the MSVCA will be changed with respect to that of the B.1. Table 2-8 presents the 
reactive power changes of DGs in order to manage the existing voltage violations while keeping 
the ampacity limits of the branches. 

 

Figure 2-9 System voltages in cases B.1 and B.2 using the MSVCA 
 



   

43 
  

                                            

Although the MSVCA is used, within one iteration, all the voltage violations are removed. 
Therefore, there is no need to go to the second iteration. In the optimization problem of I=1, 
there is one constraint regarding the voltage violation at bus 18 and there are 8 constraints 
relating to ampacity limits of the selected branches. The voltage constraint of bus 18 is certainly 
a binding one as it is the only voltage constraint of the optimization problem. Reactive power 
change of DG3 has the highest impact on the voltage of bus 18. Therefore, DG3 is used up to 
the limit defined by the ampacity of the branch 17 (i.e. 0.8 pu). The latter is capable of 
transferring reactive powers between the range of -0.5429 to 0.4388 Mvar. The inductive 
reactive power is needed to remove the voltage rise of bus 18, thus, ΔQDG3 is set to 0.4388 
Mvar. However, this is not enough to remove the voltage violation of bus 18. The next DG with 
the biggest impact on bus 18 is DG2. Utilization of DG2 is restricted by the ampacity limit of 
the branch 11. Reactive power of branch 11 can change within the range of -1.1631 to 0.9254 
Mvar while maintaining its ampacity limit (=1.6 pu). Considering the fact that ΔQDG3=0.4388 
Mvar will be also passed through the branch 11, DG2 changes by 0.9254-0.4388=0.4866 Mvar 
to not violate the ampacity limit of the branch 11. Finally, DG1 and DG4 are contributed to 
provide the rest of needed reactive power changes for solving voltage rise of bus 18. As known, 
DG1 and DG4 have an identical impact on the voltage of bus 18 on the basis of the DSA data. 
Figure 2-10 depicts the initial branch currents as well as the ones obtained after the MSVCA 
action using the LF calculation.   

 

TABLE 2-8: REACTIVE POWER CHANGES OF DGS IN CASE B.2 

 I=1 

∆V୵
୰ୣ୯

 (pu) 
w 

- 0.0460 
18 

ΔQDG1 (Mvar) 0.2354 

ΔQDG2 (Mvar) 0.4866 
ΔQDG3 (Mvar) 0.4388 

ΔQDG4 (Mvar) 0.1463 

OF (Mvar) 1.307 

 

Figure 2-10: The branch currents along the voltage regulation procedure by the MSVCA 
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As it can be seen in figure 2-10, the reactive power changes of DGs do not violate the ampacity 
limits of all branches in 4 defined zones. In the optimization problem, constraints relating to the 
branches 11 and 17 are the binding ones. The error arisen from the proposed formulation for 
considering the branch limits can be evaluated in these two branches. After the MSVCA action, 
currents in branches 11 and 17 reach 1.58 pu and 0.792 pu, respectively. Considering the rated 
ampacities of 1.6 pu and 0.8 pu for these branches, errors equal to 0.02 pu and 0.008 pu are 
found in branches 11 and 17, respectively.  

Comparing the results given in tables 2-7 and 2-8, it can be noticed that when ampacity limits 
of the branches are considered, the objective function of the MSVCA increases by 0.4513 Mvar 
compared to case B.1 (which neglects the branch limits). As mentioned before, it is justified by 
the fact that in presence of the branch limits, we cannot fully employ the DGs with the highest 
impacts on the violated voltages.  

2.7.2.3. Case B.3: Using the single-step voltage control algorithm when ampacity limits of 
the system branches are disregarded 

 

In this case study, the biggest voltage rise is found at bus 18, but voltage violations at buses 12 
and 33 construct the binding constraints of the SSVCA. Given that the biggest voltage 
violations happened in the buses ending at the bus 18, DG3 is employed to satisfy those voltage 
constraints. It is worth noting that DG3 and DG2 have the same impacts on the voltage at bus 
12, while the former has bigger impacts on buses ending at bus 18. Consequently, DG3 is 
preferred to DG2. In addition, DG4 is used to remove the voltage violations of nodes 29 to 33. 
Table 2-9 presents the reactive power changes of DG units in order to manage the system 
voltages using the SSVCA. Figure 2-11 shows the initial node voltages and the ones obtained 
after reactive power control of DGs using the SSVCA. As it can be seen, corrected voltages of 
buses 12 and 33 reach (almost) the 1.03 pu voltage limit and all other violated voltages are 
returned inside the permitted voltage range. The error arisen from the DSA method in the 
voltage control procedure can be found in figure 2-11 which is equal to the difference between 
the 1.03 pu voltage limit and the corrected voltages of buses 12 and 33.  

                                                 

TABLE 2-9: REACTIVE POWER CHANGES OF DGS IN CASE B.3 

ΔQDG1 (Mvar) 0 
ΔQDG2 (Mvar) 0.1401 

ΔQDG3 (Mvar) 0.722  

ΔQDG4 (Mvar) 0.0395  

OF (Mvar) 0.9016 
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2.7.2.4. Case B.4: Using the single-step voltage control algorithm when ampacity limits of 
the system branches are considered 

Finally, in the last case study of this chapter, the SSVCA manages the voltage rise issue of the 
considered working point while maintaining the ampacity limits of the branches. Similarly to 
the case B.2, the constraints relating to branches 11 and 17 are binding ones in the optimization 
problem. As a result, the power changes of DG2 and DG3 are limited to 0.4866 Mvar and 
0.4388 Mvar, respectively, like case B.2. Given that branch 17 is capable of transferring 
maximum 0.4388 Mvar reactive power change from DG3, voltage constraint at bus 18 (having 
the biggest voltage violation) becomes the binding voltage constraint. In order to satisfy the 
voltage constraint at bus 18, as the first priority, reactive power of DG3 is changed according 
to the free capability of branch 17 (=0.4388 Mvar). Then, ΔQDG2=0.4866 Mvar (which is equal 
to the maximum reactive power variation of branch 11 while keeping its branch ampacity limit) 
is applied. Given that contributions of DG2 and DG3 are not sufficient, DG1 and DG4 are also 
employed in the SSVCA. Table 2-10 presents the reactive power changes of DG units 
demanded by the SSVCA in order to manage the node voltages considering the ampacity limits 
of the branches. Figure 2-12 shows the initial branch currents in the considered working point 
and the branch currents when the SSVCA action is completed.  

                                               

 
Figure 2-11: System voltages in cases B.3 and B.4 using the SSVCA 

TABLE 2-10: REACTIVE POWER CHANGES OF DGS IN CASE B.4 

ΔQDG1 (Mvar) 0.2169 

ΔQDG2 (Mvar) 0.4866 
ΔQDG3 (Mvar) 0.4388 

ΔQDG4 (Mvar) 0.1648 

OF (Mvar) 1.307 
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In figure 2-12, it is seen that the branch currents do not exceed the permitted defined limit of 
their own zone when reactive powers of DGs are changed by the SSVCA for the voltage 
regulation purpose. The constraints belonging to the branches 11 and 17 are the binding ones 
in the optimization problem. Therefore, after the SSVCA action, currents in branches 11 and 
17 reach almost 0.8 and 1.6, respectively, which are the rated ampacity of these branches. The 
differences between the corrected currents of branches 11 and 17 with their associated ampacity 
limits give the error arisen from the proposed method for consideration of the branch ampacity 
limits.  

As reported in tables 2-9 and 2-10, objective function of the SSVCA in the case of neglecting 
the branch ampacity limits is equal to 0.9016 Mvar while by adding the branch constraints, it 
increases to 1.307 Mvar. 

2.8. Discussion on the results 

The proposed DSA method has been developed on the basis of an assumption which considers 
that the voltage variation vector relating to two adjacent buses is equal to the real part of that 
vector given that the voltage angles are expected to be small in the distribution systems with 
the high R/X ratio. The error arisen from this assumption in the voltage control procedure can 
be evaluated in the simulated test cases of this chapter. When there is no error associating with 
the VSA method, corrected voltage of the binding voltage constraint reaches the 0.97 or 1.03 
pu voltage limit (i.e. the targeted point). Consequently, the difference between the permitted 
voltage limit and the corrected voltage at bus relating to the binding voltage constraint shows 
the error caused by the DSA method. In the studied test cases, the maximum error between the 
corrected voltage obtained by the LF study and the permitted voltage bound is found in cases 
A.3 and A.4 equal to 0.0015 pu. As it can be seen in figure 2-7, after the SSVCA action, the 
voltage at bus 30 (which created the binding voltage constraint) reaches 0.9715 pu instead of 
0.97 pu. Considering the base voltage of 12.66 kV in the studied network, when converting into 
the real values, this error equals to 18.9 V, which is not considerable.   

Figure 2-12: The branch currents along the voltage regulation procedure by the SSVCA 



   

47 
  

Furthermore, in the proposed formulation for inclusion of the branch ampacity limits, it is 
assumed that the reactive power changes of DGs will affect only the imaginary parts of the 
branch currents while the real parts of the branch currents remain constant. This is true when 
considering the branch current of a simple 2-bus system. However, in the larger-scale 
distribution systems, this assumption does not hold anymore. As a consequence, an error is 
found in the branch currents when using the proposed formulation. The simulation results 
confirm that as the system voltages are nearly close to 1 pu and the voltage angles are small, 
the error associated with the proposed formulation is within the reasonable values. In all studied 
test cases of this chapter, the error between the new branch current (obtained by the LF 
calculation considering DG reactive power changes) relating to the binding constraint and the 
predefined branch ampacity limit never exceeds 0.033 pu. Converting into the real values, this 
error equals to 1.5 A. 

The SSVCA aims at returning all the violated voltages inside the permitted voltage range at 
once. As a consequence, the initial working point of system may be moved largely towards the 
new (corrected) point. Therefore, in the SSVCA, error due to using the simplified relations of 
voltages and currents with respect to reactive power changes of DGs is increased compared to 
that in the MSVCA. Consequently, it is seen that the SSVCA asks a bigger value of reactive 
power changes for solving the same problem in comparison with the MSVCA. For instance, 
considering the simulation results of cases A.1 and A.3 for multi-step and single-step 
formulations (given in tables 2-3 and 2-5), it is seen that for the same working point while the 
ampacity limits are neglected in both cases, the SSVCA demands a higher global reactive power 
changes. Similar results are found when considering results of cases A.2 and A.4 or B.1 and 
B.3.  

Inside the MSVCA and SSVCA, the LF calculation is carried out on the basis of an iterative 
procedure. According to [63], convergence of the DLF approach on the studied 33-bus system 
is guaranteed when all line resistances are multiplied by the coefficients as big as 4.3. In general, 
when the input data of the DLF program are within the acceptable magnitudes, its convergence 
is guaranteed. Given that in this work, reactive power limitations of DGs are taken into account, 
the solution of the optimization problem will not demand unrealistic values of reactive power 
changes that can cause divergence of the DLF program. Consequently, convergence of the 
proposed VCAs is guaranteed when there are sufficient available reactive powers in DGs and 
enough free ampacities in the branches connected to DGs. 

In the end, it should be stated that the proposed sensitivity-based voltage control approach has 
very short execution time. In all studied cases of this chapter, the calculation time of the SSVCA 
and MSVCA does not exceed 0.2 s using an ordinary desktop computer (processor core i5, CPU 
3.1 GHz, RAM 8 GB). The notable speed of the proposed VCAs comes from the fact that the 
DLF method is developed for the distribution systems and it does not need the time-consuming 
procedure of the classical LF approaches. More importantly, thanks to information provided by 
the sensitivity analyses, the LF program is not embedded in the optimization problem of the 
VCAs and only effects of the control variables (i.e. reactive power changes of DGs) on node 
voltages and branch currents are employed in the optimization part. Therefore, number of the 
equality and inequality constraints as well as decision variables reduces noticeably compared 
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to the ones in the VCA according to the OPF formulation. In the studied 33-bus test system, an 
OPF formulation consists of two non-linear equality constraints per each node associating with 
the balance of nodal active and reactive powers, beside one non-linear inequality constraint per 
each node relating to the voltage limit and one non-linear inequality constraint per each branch 
linking to the branch ampacity limit. In contrast, in the MSVCA, there is one voltage constraint 
regarding the worst voltage violation and 8 constraints for the branch limits in 4 considered 
zones which are all of the linear type. Similarly, in the SSVCA, there are 8 linear inequality 
constraints for the branch limits and [L] or [U] linear inequality constraints regarding the 
voltage violated buses in the voltage drop or rise state, where [L] and [U] denote the cardinality 
of sets L and U.    

2.9. Conclusion 

In this chapter, a novel VSA method has been proposed that defines the dependencies between 
the system voltages and nodal powers on the basis of the topology of the network. Moreover, a 
new formulation has been introduced to determine the maximum reactive power changes of the 
branches while maintaining the branch currents within their predefined limits. Then, a 
sensitivity-based voltage control approach has been developed to manage the voltage and 
current violations using the reactive power control of DGs. Simulation results reveal that the 
proposed VCAs are capable of keeping the system voltages and currents within their predefined 
limits. Moreover, fast execution speed of the sensitivity-based voltage control approach makes 
it suitable for the on-line management of the voltage and current in the MV distribution systems. 
Furthermore, simulation results confirm that the proposed sensitivity analysis formulations with 
a reasonable accuracy can estimate the node voltages and branch currents when reactive powers 
of DGs are modified by the VCA. 

In addition, based on the simulation results, it is concluded that consideration of ampacity limits 
of the system branches can lead to an important increase of the total needed reactive powers of 
DGs. It happens when there is not enough free ampacity in the branches connected to DGs. In 
this case, it will not be possible to use the most efficient DGs with their maximum available 
reactive powers defined by their capability curves. Consequently, it is needed to use DGs with 
smaller effects on the violated voltages, which results in increasing total needed reactive power 
changes for the voltage regulation purpose.  

In the next chapter, we go one step further and we consider that in addition to the reactive 
power control, active power curtailment of DGs can be employed in the VCAs. A 77-bus 11 
kV radial distribution system with 8 feeders, which accommodates 22 DG units is used to test 
performance of the proposed SSVCA and MSVCA.  

2.10. Chapter publication  

This chapter has led to the following publications:  
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Chapter 3: Optimal control of DG active and reactive powers 

for managing the voltage constraints 

 

3.1. Abstract 

The functionality of the SSVCA and MSVCA presented in chapter 2 is evolved here by adding 
the possibility of curtailing the active powers of DGs beside the reactive power control of DGs. 
Therefore, the proposed VCAs of this chapter can modify both active and reactive powers of 
DG units in order to bring back the violated voltages within the permitted voltage range while 
keeping the ampacity limits of the system branches. The voltage control problem is formulated 
as a linear optimization problem using the sensitivity analysis. The DSA method developed in 
chapter 2 is utilized to define the linearized relationships between the system voltages and nodal 
active and reactive powers. Also, ampacity limits of the branches are taken into account using 
the method introduced in chapter 2. The proposed VCA in the single-step or multi-step form 
distinguishes between the cheap and expensive control actions using the defined weighting 
coefficients in the objective function of the optimization problem. The numerical validation of 
the proposed VCAs is carried out on the 77-bus 11 kV radial distribution system that hosts 22 
DG units. The effectiveness of the SSVCA and MSVCA in the voltage management of the 
aforementioned network is tested considering different values for the weighting coefficients of 
active and reactive powers.  

3.2. Sensitivity-based voltage control approach managing DG active and 
reactive powers    

The proposed voltage control approach of this chapter relies on the linear approximation of the 
relations between the system voltages and the control variables (namely active and reactive 
power changes of DGs) provided by the VSA. Therefore, similarly to the VCAs presented in 
the previous chapter, the LF-related constraints will not be considered in the optimization 
problem of the VCA given that the effects of control variables on node voltages are known 
through the DSA method. The MSVCA and SSVCA are adapted as follows in order to consider 
active power curtailment of DGs beside the reactive power control of DGs. 

3.2.1. Multi-step voltage control algorithm 
 
The MSVCA developed in this chapter has the same structure as the one presented in chapter 2 
(section 2.5.1). The only difference is that the active power curtailment is also involved here in 
the voltage management procedure. As mentioned before, the MSVCA starts with running an 
initial LF calculation. If the voltage violations are found in the system, the main loop of the 
MSVCA starts with I=1. Then, the bus with the biggest voltage violation is selected. The 
voltage violation of that bus from the permitted voltage limit is calculated. It gives us the 

required value of voltage modification (∆𝑉௪
௥௘௤) in order to return the voltage of the worst bus 

(bus w) inside the permitted voltage range. Voltage control problem of the MSVCA at I=1 is 
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formulated as an optimization problem which aims at minimizing the total weighted changes 
of active and reactive powers of DGs subject to the voltage constraint of the bus with the biggest 
voltage violation as well as the branch ampacity limits and bounds on DG powers. The 
optimization problem of the MSVCA corresponding to the voltage rise state is given as follows. 

                             
1

GN
ind cap

Q DGx DGx P DGx
x

OF C Q Q C P


    Minimize:                                    (3-1) 

                              
1

( )
GN

ind cap reqw w
DGx DGx DGx w

x DGx DGx

V V
Q Q P V

Q P

  
         

                                   (3-2) 

                                                        max   ,  brs brsI I s s C                                                       (3-3) 

                                  
min max   ,  ind cap
DGx DGx DGx DGxQ Q Q Q x x G                                                 (3-4)   

                                         0  ,  DGx DGxP P x x G                                                         (3-5) 

                                             , 0  ,  ind cap
DGx DGxQ Q x x G                                                  (3-6) 

where NG is the total number of the DG units that contribute in the voltage control problem.  
PDGx and ΔPDGx give the injected active power and active power curtailment of the DG number 
x, respectively. Also, CP and CQ denote the weighting coefficients defined for active and 
reactive power changes of DGs. They are used to give a priority to the control action of DGs 
and can be associated with the operating costs of the DG active and reactive powers. The voltage 
sensitivity coefficients relevant to the bus with the biggest voltage violation (bus w) with respect 
to active and reactive power changes at the DG-connected buses are extracted from matrices R 
and X to construct the inequality constraint given in (3-2). It considers the fact that the DG 
power changes must return the voltage of the bus with the biggest violation into the permitted 
upper limit. The LHS of (3-2) is equal to the voltage variation at bus w due to DG power 

changes. In the voltage rise state,  ∆𝑉௪
௥௘௤  is negative (∆𝑉௪

௥௘௤
= 1.03 − 𝑉௪ ), given that the 

voltage sensitivity coefficients derived from matrices R and X are also negative (see (2-18) and 
(2-19)), the reactive power changes towards the inductive direction and active power 
curtailment (restricted to non-negative range) can satisfy the voltage constraint. The inequality 
constraint (3-3) takes into consideration the ampacity limits of the branches. For the sake of 
simplicity, the ampacity limits are considered in some selected branches given by the set C. The 
inclusion of ampacity limits in the voltage control problem is discussed further in section 3.3.1. 
The bounds on available reactive powers of DGs defined by their capability curves are 
considered in the optimization problem as another inequality constraint. The available active 
power productions of DGs for the generation curtailment are taken into account by (3-5). 

In the above optimization problem, voltage sensitivity coefficients are known parameters 
obtained from the DSA method. The required value of voltage change for solving the voltage 

violation at the bus w is also a defined parameter but ∆𝑄஽ீ௫
௜௡ௗ , ∆𝑄஽ீ௫

௖௔௣  and ∆𝑃஽ீ௫ (x ∈  G, G = 

{1, 2, 3, …, NG }) are decision variables that must be optimally selected. Once the optimization 
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problem of I=1 is solved, needed changes of DG powers in order to solve the voltage violation 
at the bus with the biggest violation is defined. Then, a new LF calculation considering the new 
values of DG powers is run to determine the corrected voltages and to check whether any other 
voltage violation exists or not. If a new voltage violation is found, iteration number two starts. 
A new optimization problem must be formed at I=2 for the voltage violation at this new worst 
bus subject to updated constraints (3-3) to (3-5) representing the remained branch ampacities 
and available capacities of DG powers. After solving this optimization problem, at the end of 
the iteration number two, the LF calculation again determines the iterative procedure must go 
to the next iteration or it can stop. The MSVCA stops when there is no voltage violation in the 
system. The above procedure can be found in figure 2-3.   

It should be noted that in presence of the buses with the voltage drop, ∆𝑉௪
௥௘௤ is determined with 

respect to the lower permitted voltage limit (i.e. 0.97 pu). Also, as generation curtailment is 
only applicable for managing the voltage rise problem, ΔPDGx must be removed from the above 
optimization problem. Consequently, in the voltage drop state, the optimization problem of the 
MSVCA is equal to the one presented in chapter 2 (given in (2-34) to (2-38)).  

3.2.2. Single-step voltage control algorithm 

The SSVCA of this chapter works on the basis of the same procedure as explained in chapter 2 
(section 2.5.2) with only one difference that it is used here to return simultaneously all the 
violated voltages inside the permitted voltage range by managing active and reactive powers of 
DGs. It leads to an optimization problem, which aims at minimizing the total weighted changes 
of DG active and reactive powers subject to the voltage constraints relating to all violated 
voltages, as well as limits on DG powers and restrictions on branch ampacity limits. The 
SSVCA working procedure is described within the following steps. 

       

In the voltage rise state, the optimization problem of the SSVCA is written as follows.    

 

 Step 1: Load system data, run the DLF program. 
 

 Step 2: If there is any voltage violation, go to the next step, otherwise, stop. 
 

 Step 3: Calculate the needed voltage modifications at the buses with voltage 
violations and select the relevant voltage sensitivity coefficients from 
matrices R and X. 
 

 Step 4: Construct the optimization problem of the SSVCA subject to the 
voltage constraints, DG power limitations, and branch ampacity restrictions. 
   

 Step 5: Solve the optimization problem, run a new LF calculation considering 
the new set-points of DGs obtained from step 4, determine the node voltages, 
plot the corrected voltages, and stop. 
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( )   ,  
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Q P

  
           

                        (3-8) 

                                                    max   ,  brs brsI I s s C                                                           (3-9) 

                               
min max   ,  ind cap
DGx DGx DGx DGxQ Q Q Q x x G                                                  (3-10)   

                                   0  ,  DGx DGxP P x x G                                                             (3-11) 

                                        , 0  ,  ind cap
DGx DGxQ Q x x G                                                      (3-12) 

As mentioned before, u is index for the buses with the voltage rise and set U includes all the 
buses with the voltage rise issue. Cardinality of set U gives the number of voltage constraints 
taken from (3-8).  

The active power curtailment of DGs cannot be used in order to manage the voltage constraints 
in presence of the buses with the voltage drop issue. Consequently, ΔPDGx must be removed 
from the above optimization problem. Therefore, in the voltage drop state, the optimization 
problem of the SSVCA is identical to the one presented in chapter 2 given in (2-42) to (2-46).  

3.3. 77-bus test system 

In order to test effectiveness of the proposed VCAs, a 77-bus, 11 kV radial distribution system 
shown in figure 3-1 is considered. It is the so-called ‘‘HVUG’’ test case of the United Kingdom 
Generic Distribution System (UKGDS). In this investigated network, bus number 1 is 
considered as the slack node while all other buses are of PQ (load) type. The substation 
transformer located between nodes 1 and 2 is modelled with a pure reactance equal to 12.5% 
pu in the transformer base power (80 MVA) [64]. The studied network feeds 75 loads, which 
have total active and reactive powers equal to 24.27 MW and 4.85 Mvar, respectively. The line 
and load data are presented in appendix 3 [65]. In the studied network, loads are considered 
with the constant power model and lines are modelled with the series impedances similar to the 
most of the practical cases in the distribution systems [17], [47], [62], [66] and [67]. The average 
R/X ratio of the system lines is equal to 1.743. The UKGDS also hosts 22 DG units, which are 
identical with the rated powers equal to 3.5 MW. The capability curves of DGs are obtained 
from the points given in table 2-1. The DG active power is modelled as a negative load. The 
base voltage and power are equal to 11 kV and 100 MVA, respectively. The permitted upper 
and lower voltage limits are respectively equal to 1.03 pu and 0.97 pu. 
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  Figure 3-1: 77-bus radial distribution system (UKGDS) 

3.3.1. On the consideration of ampacity limits of the branches in the studied test 
system 

In this section, the methodology presented in the previous chapter regarding consideration of 
the branch ampacity limits in the VCAs is adapted for the studied test system of the current 
chapter. In the 77-bus UKGDS, the total powers of DGs are almost 3 times of the load powers. 
Therefore, it can be expected that the branch conductors have been sized according to the full-
generation-and-min-load condition in order to be able to meet the maximum branch currents. 
In this work, it is supposed that the ampacity limits of the branches in the UKGDS are equal to 
the branch currents in the case that the load powers are zero and DG active powers are at 100% 
of their nominal values. Within such a network topology, it can be expected that the branch 
ampacity limits do not reach in the full-load-and-min-generation case. 

In the previous chapter, we divided the 33-bus distribution system into 4 zones and we 
considered the currents in the beginning and ending branches of each zone. The former was 
responsible to keep the zonal branch currents within the predefined ampacity limit of the zone 
in the full-load-and-min-generation condition and the latter was considered to maintain the 
branch ampacity limit of that zone in the full-generation-and-min-load state. Given that in the 
77-bus UKGDS, the full-load-and-min-generation condition does not cause the ampacity 
violation, there is no need to consider the first branch of each zone. As a result, it would be 
sufficient to take into account only the ampacity limit of the ending branch of each zone. In the 
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UKGDS, the branches that are located between two adjacent DGs are supposed to be in the 
same zone. This means that we need to consider the currents of branches which are directly 
connected to DGs in an upward direction (towards the slack bus). The choice is motivated by 
the fact that the branches connected to DGs in an upward direction (i.e. the ones located at the 
end of each zone) have the minimum free ampacities among the branches of their own zone. In 
addition to 22 branches accounted for 22 DG units, the current in the substation transformer is 
also taken into account in the optimization problem of the VCAs. Table 3-1 gives the list of the 
considered branches in the 77-bus UKGDS. 

 

In this chapter, active power curtailment of DGs is added to the VCAs. Given that curtailing 
active powers of DGs decreases the branch currents, it cannot cause current violations in the 
VCAs. Therefore, in the constraints relating to the branch currents in the VCAs, we consider 
only reactive power changes of DGs as a source that can increase the branch currents. The 
maximum reactive power changes of branches while keeping their ampacity limits are 
determined using the formulation presented in chapter 2 (equation (2-27)). The relations 
between DG reactive power changes and reactive power changes in the selected branches are 
obtained through the DGIB matrix.  

                                                           br DGΔQ = DGIB ΔQ                                            (3-13) 

The DGIB matrix is constructed from the BIBC matrix in the DLF approach while the rows 
related to the selected branches and columns associated with the DG-connected buses are only 
kept, and all other rows and columns of the BIBC matrix are deleted. Therefore, the DGIB 
matrix has 23 rows and 22 columns. The following inequality constraint is introduced in the 
VCAs in order to maintain the currents of the selected branches within the predefined limits 
when reactive powers of DGs change for the voltage regulation purpose.   

                             max1 max 2
,

1

( )   ,s C
GN

ind cap
brs b x DGx DGx brs

x

Q DGIB Q Q Q s


                          (3-14) 

TABLE 3-1: CONSIDERED BRANCH LIMITS IN THE UKGDS  

Branch Between nodes Feeder Branch Between nodes Feeder 

1 1-2 - 44 43-45 3 
3 3-4 1 47 47-48 3 

8 7-9 1 50 50-51 4 
14 14-15 1 53 53-54 4 

19 18-20 1 55 54-56 4 

25 25-26 1 58 58-59 4 

28 28-29 2 61 61-62 4 

31 31-32 2 64 64-65 5 

33 32-34 2 67 67-68 6 

36 36-37 2 72 71-73 7 

39 39-40 3 75 75-76 8 

42 42-43 3  
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where s is index for branches with the current limits (s ∈ C, set C can be found in table 3-1) and 
b is an index equal to order of element s in set C. For instance, for s=8 denoting the 8th branch, 
b is equal to 3, as 8 is the third element of set C. Considering (3-14), reactive powers of DGs 

are changed within the roots of (2-27) namely ∆𝑄௕௥௦
௠௔௫ଵ  and ∆𝑄௕௥௦

௠௔௫ଶ  in branch s. As a 
consequence, the current in the branch s is kept within its predefined ampacity limit. The above 
constraint is introduced in the MSVCA and SSVCA, in order to take the current limits of the 
selected branches into account when the reactive powers of DGs are changed.  

3.4. Simulation results 

The proposed MSVCA and SSVCA are coded in the MATLAB environment. The linear 
programming toolbox of MATLAB is used to solve the optimization problem of the VCAs. The 
numerical validation of the proposed VCAs is carried out on the presented 77-bus UKGDS. 
The VCAs manage the voltage violations of the considered working point of the UKGDS 
through optimal control of DG active ad reactive powers while keeping the branch currents 
within their limits.  

According to the literature (e.g. [16], [17], [19]), for a voltage regulation end, reactive power 
changes of DGs are preferred rather than the curtailment of DG active powers given that the 
former is considered to be cheaper than the latter. Thus, the curtailment of DGs is penalized 
and the first priority is given to the reactive power control of DGs. When the available reactive 
powers of DGs are not enough or in the case that active power curtailment of DGs is more 
optimal, generation curtailment of DGs will be carried out in order to regulate the system 
voltages. 

In this work, in order to validate the proposed VCAs for whole range of the DG actions, three 
different cases are considered as mentioned in table 3-2. In case A, the objective is to use only 
reactive power control capability of DGs, therefore, CP (relating to active power changes of 
DGs) is penalized with a coefficient 100 times greater than CQ (belonging to reactive power 
changes of DGs). Case B is an inverse situation of case A, thus, the VCAs employ the active 
power curtailment of DGs. Finally, in case C, the same weighing coefficients are defined for 
active and reactive power controls of DGs, consequently, according to the impacts of each 
control option (known from the DSA) on the violated voltages and considering free ampacities 
of the branches connected to DGs, the optimization procedure determines the contribution of 
DG active and reactive powers. 

 

Performance of the MSVCA and SSVCA in each of the abovementioned studied cases is 
examined when solving the voltage control problem of an identical working point of the 

TABLE 3-2: WEIGHTING COEFFICIENTS OF DG 

POWER CHANGES IN THE STUDIED CASES 

 CQ CP 
Case A 1 100 
Case B 100 1 
Case C 1 1 
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UKGDS. It corresponds to the point that all the loads are at 10% of their nominal values while 
DGs produce active powers equal to 90% of their rated values (3.5×0.9=3.15 MW). The initial 
reactive powers of DGs are set to zero. In this situation, it is expected to deal with the voltage 
rise issue. It is worth noting that the working point regarding the full-load-and-min-generation 
state will not be studied here because the main objective of this chapter is to validate the new 
functionality of the VCAs, which is managing active and reactive powers of DGs. The full-
load-and-min-generation working point creates voltage drop issue, which can be solved with 
capacitive reactive power changes of DGs, similarly to the simulated cases in chapter 2 (cases 
A.1 to A.4). 

3.4.1. With multi-step voltage control algorithm  

3.4.1.1. Case A 

In the first studied case, the MSVCA is employed to manage the voltage violations of the 
considered working point using the reactive power control of DGs while maintaining ampacity 
limits of the branches. After running the initial LF calculation, the biggest voltage violation is 
found at bus 26 located in feeder 1. According to the information provided by the DSA, in a 
descending order, DG5 to DG1 are the most efficient DGs to be used in the voltage regulation 
of bus 26. Given that ampacity limits of the branches are taken into account, the MSVCA uses 
DG5 with its maximum contribution defined by the ampacity limit of the branch 25. In the first 
iteration, the branches 3, 8, 14, 19, 25 in feeder 1 are capable of transferring respectively up to 
6.6077 Mvar, 5.1563 Mvar, 3.7273 Mvar, 2.4246 Mvar and 1.0965 Mvar inductive reactive 
power changes. Therefore, firstly, reactive power of DG5 is changed by 1.0965 Mvar according 
to the limit defined by the branch 25. Then, reactive power of DG4 is modified considering the 
restriction imposed by the branch 19. The initial free capability of branch 19 (=2.4246 Mvar) 
is now reduced due to reactive power changes of DG5. The branch 19 can pass up to 1.3281 
(=2.4246-1.0965) Mvar reactive power changes of DG4. Similarly, contribution of DG3 is 
restricted by the ampacity limit of the branch 14. The remained available capability of branch 
14 to transfer reactive power changes of DG3 is equal to 1.3028 (=3.7273 - ΔQDG5 - ΔQDG4) 
Mvar. Finally, DG2 provides 1.4189 Mvar inductive reactive power changes to remove totally 
the voltage rise of bus 26. Table 3-3 gives the reactive power contributions of DGs in order to 
manage the voltage rise problem in the case A. Note that hereafter, only the DGs with the power 
changes are mentioned in the table and for the rest of DGs (which are not listed), power changes 
are equal to zero.  

 

TABLE 3-3: SIMULATION RESULTS IN CASE A USING THE MSVCA 

 I=1 I=2 
∆V୵

୰ୣ୯ (pu) 
w 

-0.0298 
26 

-0.0134 
62 

ΔQDGx (Mvar) 
x ∈ {1, 2, 3, …, 22} 

DG2=1.4189 
DG3=1.3028 
DG4=1.3281 
DG5=1.0965 

DG17= 1.0612 
DG18= 1.1067 

OF Tot (Mvar) 7.3142 
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In the optimization problem of the MSVCA in I=1, the constraints relating to branches 14, 19 
and 25 are the binding ones. The difference between the corrected current values in these 
branches and their ampacity limits gives us the error arisen from the proposed formulation for 
considering the branch limits. This error for the branches 14, 19 and 25 equals respectively to 
0.003 pu, 0.002 pu and 8.43×10-4 pu which are equal to 16.12 A, 10.51 A and 4.42 A when 
converting into the real values.  

In the second iteration of the MSVCA, a similar procedure is followed to return the voltage rise 
at bus 62 (i.e. the one with the biggest violation) within the permitted voltage limit. DG18 which 
has the highest impact on the voltage at bus 62, is firstly used to this end. Given that branch 61 
is able to pass a reactive power change from DG18 up to 1.1067 Mvar, and this would not be 
sufficient to remove voltage violation of bus 62, DG17 should be used as well. In I=2, the 
constraint relating to branch 61 is the binding one. The error between the ampacity limit of the 
latter and its corrected current is equal to 0.0012 pu or 6.4 A. Within two iterations of the 
MSVCA, all the system voltages are returned into the permitted voltage range, as a 
consequence, the iterative-procedure of the MSVCA stops at the end of I=2. Figure 3-2 shows 
the initial system voltages and the corrected ones obtained by the MSVCA.  

 

As it can be seen in figure 3-2, all the system voltages are returned inside the permitted voltage 
range with a total objective function (OF Tot) equal to 7.3142 Mvar (given in table 3-3).  

3.4.1.2. Case B 
 
In case B, a big weighing coefficient is assigned to reactive power utilization of DGs (i.e. 
CQ=100). The objective is to examine performance of the MSVCA when only active power 
control of DGs is employed. Given that the active power curtailment of DGs will reduce the 
branch currents, the ampacity limits do not restrict the optimization problem of the MSVCA 
and there will be no binding constraint relating to the branch limits in this case. Consequently, 
regardless of the branch limits, the MSVCA can employ the DGs which have the biggest 
impacts on the violated voltages. Table 3-4 presents the curtailed active powers of DGs at each 
iteration of the MSVCA and figure 3-3 shows the initial and corrected node voltages in case B. 

 
Figure 3-2: The initial voltages as well as the corrected ones obtained by the MSVCA in case A 
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As it can be seen in table 3-4, the MSVCA needs 5 iterations in order to bring back the violated 
voltages within the permitted voltage range. In the first iteration, the biggest voltage rise is 
found at bus 26. Active power of DG5, which has the biggest impact on the voltage of node 26, 
is curtailed by 3.15 MW and reaches zero. DG4 is also involved in I=1 to remove the voltage 
rise of node 26. In I=2, voltage rise at bus 62 is the biggest one. In order to bring back the 
voltage rise of node 62, active power of DG18 is curtailed totally, as it is changed by 3.15 MW. 
In addition, DG17 is used to provide the rest of needed power curtailment. In the next iterations, 
DG18 and DG5 have no more active powers to be curtailed, thus, DG17 and DG4 are employed 
to remove the voltage rises of buses 59 and 20, respectively.  

 

Compared to the case A, in the current case, the MSVCA needs more iterations to manage the 
voltage violations. Given that the substation transformer has been modelled as a pure reactance 
(i.e. relatively big) located between the slack bus and every single node of the system, it has a 
direct influence on all the entries of the matrix X. As a consequence, when the DG reactive 
power varies in one feeder, it not only changes the voltages of that feeder, but it has also has a 
big impact on the voltages of other feeders. This is not the case when active power of DGs is 
changed because the matrix R is not affected by the transformer reactance. Referring to the 
simulation results in table 3-4, in the first iteration, active powers of DG4 and DG5 in feeder 1 
are curtailed. These power variations (performed in feeder 1) do not have a considerable impact 
on the voltage at bus 62 (in feeder 4). It is seen in figure 3-3 that the initial voltage at bus 62 is 
1.0511 pu, while in table 3-4 at iteration 2 (after active power changes in feeder 1), it increases 

TABLE 3-4: SIMULATION RESULTS IN CASE B USING THE MSVCA 

 I=1 I=2 I=3 I=4 I=5 
∆V୵

୰ୣ୯ (pu) 
w 

-0.0298 
26 

-0.0219 
62 

-0.0047 
20 

-0.0029 
59 

-6×10-4 

20 

ΔPDGx (MW) 
x ∈ {1, 2, 3, …, 

22}  

DG4=0.3261 
DG5=3.15 

DG17=0.0816 
DG18=3.15 

 
DG4= 0.7167 

 

 
DG17= 0.5526 

 
DG4= 0.091 

 

OF Tot (MW) 8.0686 

 

 
 

Figure 3-3: The initial voltages as well as the corrected ones obtained by the MSVCA in case B 
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to 1.0519 (=1.03+0.0219) pu. It means that the curtailed powers of DG4 and DG5 (i.e. equal to 
0.326+3.15=3.47 MW) in feeder 1 have changed the voltage at bus 62 in feeder 4 by 0.0008 
(=1.0519-1.0511) pu. In case A, however, the difference between the initial voltage at bus 62 
and the corrected one after I=1 is equal to 0.0077 pu (=1.0511-1.0434 where 
1.0434=1.03+0.0134, in table 3-3).   

Considering figure 3-3, it is confirmed that the MSVCA removes all the initial voltage 
violations by employing active power curtailment of DGs such that the corrected voltages are 
placed within the permitted voltage range. 

3.4.1.3. Case C 
 
In the last case study on the MSVCA, the same weighting coefficients are considered for active 
and reactive power changes of DGs. Therefore, active or reactive power control of DGs can be 
employed in the MSVCA according to the impacts that they have on the violated voltages. 
Table 3-5 presents the iterative procedure of returning the system voltages into the permitted 
voltage range using the MSVCA. Also, figure 3-4 shows the initial and corrected node voltages 
in case C. 

  

 

TABLE 3-5: SIMULATION RESULTS IN CASE C USING THE MSVCA 

 I=1 I=2 I=3 I=4 
∆V୵

୰ୣ୯ (pu) 
w 

-0.0298 
26 

-0.0215 
62 

-0.0050 
20 

-0.0029 
59 

ΔPDGx (MW) 
x ∈ {1, 2, 3, …, 22} DG5=3.15 DG18=3.1476 

 
DG4= 0.751 

 
NA 

ΔQDGx (Mvar) 
x ∈ {1, 2, 3, …, 22} DG5=0.26 NA NA DG17=0.5163 

OF Tot 7.8249 

 

 
Figure 3-4: The initial voltages as well as the corrected ones obtained by the MSVCA in case C 
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In table 3-5 and hereafter, NA is used to indicate that a specific control action is not applied. It 
is known from the DSA that active power of DG5 has a bigger effect on the voltage at bus 26 
compared to its reactive power, therefore, in I=1, the former is changed by 3.15 MW and the 
latter by 0.26 Mvar to remove the voltage violation at bus 26. In the second and third iterations, 
active powers of DG18 and DG4 are curtailed to manage the voltage violations of buses 62 and 
20, respectively. Finally, in the last iteration, the reactive power change of DG17 solves the 
voltage rise of bus 59. It is worth noting that since the MSVCA has mostly used the active 
power curtailment of DGs, the branch currents do not reach their own ampacity limits and there 
is no binding constraint relating to the ampacity limits in any of 4 iterations of the MSVCA. 
Moreover, from figure 3-4, it can be noticed that the initial voltage violations are efficiently 
removed using the MSVCA and all the corrected voltages are within the permitted voltage 
range.  

3.4.2. With single-step voltage control algorithm  

In the second part of simulations, the SSVCA is used to manage the voltage violations of the 
considered working point of the UKGDS while keeping the ampacity limits of the branches. As 
discussed before, in the SSVCA, all the violated voltages are considered simultaneously, and 
the main aim is to return the violated voltages inside the permitted voltage range at once. 
Performance of the SSVCA is tested on three cases A, B and C introduced in table 3-2. 

3.4.2.1. Case A 

In the first case of study on the SSVCA, the reactive power control of DGs is used to solve the 
voltage control problem while the active power curtailment of DGs has been penalized with a 
big CP. Table 3-6 presents the reactive power changes of DGs in order to manage the voltage 
rise problem of the considered working point. Figure 3-5 shows the system voltages along the 
feeders.  

 

In the considered working point, the biggest voltage rises happened in the end of feeders 1 and 
4 as it can be seen in figure 3-5. The binding voltage constraints in the optimization problem of 
the SSVCA relate to the buses 26 and 62. In a descending order, DG5 to DG1 have the biggest 
impacts on the voltage at bus 26 and, DG18 to DG14 have the highest effects on the voltage of 
node 62. Therefore, within the above orders, DGs are used to remove the voltage violations of 
buses 26 and 62 considering the restrictions imposed by the ampacity limits of the branches in 
feeders 1 and 4. The branches 14, 19, and 25 in feeder 1 restrict the reactive power changes of 

TABLE 3-6: SIMULATION RESULTS IN CASE A USING THE SSVCA 

ΔQDGx (Mvar) 
x ∈ {1, 2, 3, …, 22} 

DG2=0.4097 
DG3=1.3028  
DG4=1.3281 
DG5=1.0965 

DG16=0.0385 
DG17=1.2418 
DG18=1.1523 

OF (Mvar) 6.5697 
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DG3, DG4, and DG5. Similarly, branches 58 and 61 in feeder 4 limit contributions of DG17 
and DG18. The abovementioned branches are associated with the binding constraints of the 
SSVCA optimization problem. On the contrary, needed reactive power changes of DG2 and 
DG16 can transfer from the branches 8 and 55, respectively, without reaching their ampacity 
limits. The errors arisen from the proposed formulation (regarding the ampacity limits) in 
branches 14, 19 and 25 are almost identical to the ones mentioned in case A using the MSVCA 
as the reactive power changes of DG3, DG4 and DG5 are the same in these two cases and the 
corrected node voltages are nearly similar in both cases A using the MSVCA and SSVCA. The 
errors between the currents in branches 58 and 61 (which are also the binding constraints) and 
their own ampacity limits are equal to 0.0023 pu and 0.0011 pu (i.e. 12 A and 5.7 A in the real 
values), respectively. 

 

Figure 3-5 confirms that the SSVCA employing reactive power control of DGs effectively 
removes the initial voltage violations of the studied working point such that the corrected 
voltages are placed within the permitted voltage range.   

3.4.2.2. Case B 

In this case, the SSVCA manages the voltage constraints of the considered working point 
through curtailment of DG active powers while the reactive power changes of DGs are 
penalized with a big weighing coefficient. Table 3-7 presents the curtailed active powers of 
DGs demanded by the SSVCA in order to remove the voltage violations. Also, figure 3-6 
depicts the initial voltages as well as the ones obtained after the voltage regulation.  

 

 
Figure 3-5: The initial voltages as well as the corrected ones obtained by the SSVCA in case A 

TABLE 3-7: SIMULATION RESULTS IN CASE B USING THE SSVCA 

ΔPDGx (MW) 
x ∈ {1, 2, 3, …, 22} 

DG4= 0.4973 
DG5= 3.0833  
DG17= 0.2307 
DG18= 2.917 

OF (MW) 6.7281 
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As it can be noticed from figure 3-6, the initial voltage violations are not completely returned 
inside the permitted voltage range and some voltage rises are remained when the SSVCA action 
is completed. The voltage violations from the 1.03 pu voltage limit at the buses belonging to 
the binding constraints (i.e. buses 20 and 59) are equal to 0.0041 pu and 0.0033 pu. These errors 
are arisen from the DSA method, as the latter could not accurately linearize the relations 
between the violated voltages and DG active powers.  

3.4.2.3. Case C 
 
In the last case study of this chapter, active and reactive power changes of DGs are weighted 
equally. Therefore, the SSVCA employs the active or reactive power control of DGs that has 
the biggest impacts on the violated voltages while considering the ampacity limits of the 
branches. Table 3-8 gives the DG power changes in case C and figure 3-7 shows the initial 
voltages as well as the ones obtained after the SSVCA action.  

 

In case C, buses 20, 26 and 62 correspond to the binding voltage constraints. Reactive powers 
of DG5 and DG18 are changed according to the limits defined by the branches 25 and 61, 
respectively. In addition, reactive power of DG4 and active powers of DG5 and DG18 are 
modified in order to manage the voltage violations. However, as it can be seen in figure 3-7, 
after the voltage regulation by the SSVCA, the system voltages are not completely returned into 
the permitted voltage range and similar to the previous case, some voltage violations are 
remained. It is worth observing that in the current case, the remained voltage violations are 

 
Figure 3-6: The initial voltages as well as the corrected ones obtained by the SSVCA in case B 

TABLE 3-8: SIMULATION RESULTS IN CASE C USING THE SSVCA 

ΔQDGx (Mvar) 
x ∈ {1, 2, 3, …, 22} 

DG4=0.233 
DG5=1.0965  
DG18=1.1523 

ΔPDGx (MW) 
x ∈ {1, 2, 3, …, 22} 

DG5=1.9924  
DG18=1.6591 

OF 6.1334 
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smaller than the ones of case B since a smaller value of active power curtailment is applied here 
(due to the reactive power contribution of DGs). The mismatches between the corrected 
voltages obtained by the SSVCA at the buses 20, 26, and 62 (relating to the binding constraints) 
and the targeted 1.03 pu voltage limit are equal to 0.0027 pu, 0.0033 pu, and 0.0022 pu, 
respectively.   

 

3.5. Discussion on the results 

On the basis of the simulation results, it is concluded that the MSVCA can effectively bring 
back the violated voltages within the permitted voltage range in the three studied cases. It is 
also found that the SSVCA employing the reactive power changes of DGs is capable of 
managing the voltage violations. However, when the SSVCA uses the generation curtailment 
of DGs in case B or C, some voltage violations are remained after the voltage regulation 
procedure. The voltage violations are arisen due to the error in the DSA method. The SSVCA 
works as an open-loop control system and it has no feedback on the corrected voltages. As a 
result, in case of error in the sensitivity analysis, it would not be possible anymore to return the 
system voltages within the permitted voltage limits. 

In the simulated cases, it is seen that the error arisen from the proposed formulation regarding 
the branch limit inclusion increases when moving from end of the feeders towards the slack 
node. For instance, in case A using the MSVCA, the biggest error has been found in branch 14, 
while a smaller one is seen in branch 19, and branch 25 has the smallest error. This is explained 
by the fact that the error in branch 14 includes also errors linked to branches 19 and 25 since 
the power flows in these two branches pass through the branch 14. Given that bigger reactive 
power changes are needed for voltage regulation of the 77-bus UKGDS in this chapter, the 
errors arisen from the proposed formulation are increased compared to the ones found in chapter 
2 (related to the 33-bus test system).   

Moreover, based on the simulation results, it can be concluded that the substation transformer 
has very important impact on the performance of the VCAs. Given that the substation 
transformer is located in the starting point of the network in series with all the system branches, 

 
Figure 3-7: The initial voltages as well as the corrected ones obtained by the SSVCA in case C 
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it has an effect on all entries of the matrix X. Consequently, it affects the contribution of DG 
reactive powers in the voltage regulation procedure. Furthermore, the transformer reactance is 
considerably bigger than the line reactances. Therefore, in figures 3-2 to 3-7, it is seen that there 
are always big voltage variations between nodes 1 and 2 which belong to the voltage drop on 
the transformer reactance. 

Comparing the multi-step and single-step voltage control algorithms in case A (when only 
reactive power control of DGs is used), it is observed that the SSVCA solves the same voltage 
control problem with a smaller objective function (see tables 3-3 and 3-6). The studied UKGDS 
consists of 8 feeders. Due to presence of the transformer reactance, reactive power changes in 
one feeder have considerable impacts on the node voltages of other feeders. Therefore, the 
SSVCA which considers voltage violations of all feeders can manage the voltage control 
problem in a more optimal manner than the MSVCA which takes into consideration the worst 
voltage violation of the system in each iteration. The latter point can be further verified 
considering the voltage results of the abovementioned cases. As it can be seen, in figure 3-5 
corresponding to the SSVCA results, the voltages in feeder 1 are closer to 1.03 pu than the ones 
in figure 3-2 (obtained from the MSVCA). This means that smaller reactive power changes are 
demanded by the SSVCA.  

3.6. Conclusion 

In this chapter, functionality of the VCAs presented in chapter 2 is evolved by adding the 
possibility of curtailing the active powers of DGs beside the reactive power control of DGs. 
The sensitivity-based VCAs adopting the open-loop and closed-loop forms are designed to 
manage DG active and reactive powers in order to maintain the node voltages and branch 
currents with their own permitted limits. Based on the simulation results, it can be concluded 
that using the MSVCA, even in presence of an inaccurate sensitivity data, the node voltages are 
returned inside the permitted voltage range thanks to its closed-loop framework. This is not the 
case in the SSVCA relying on an open-loop control system (e.g. cases B and C with the 
SSVCA). On the other hand, when the voltage violations are found in different feeders of the 
studied system, if an accurate sensitivity analysis is in our disposal, the SSVCA can solve the 
same voltage control problem in a more optimal way than the MSVCA given that the former 
has a global view of all the violated voltages. 

Furthermore, it has been found that the substation transformer has very important impact on the 
performance of the VCAs. Considering the substation transformer, all entries of the voltage 
sensitivity matrix with respect to node reactive powers (i.e. matrix X) will be increased by a 
value equal to the reactance of transformer. The latter is considerably bigger than the line 
reactances. As a consequence, despite the high R/X ratio of the distribution system lines, the 
reactive power control of DGs becomes an efficient method for the voltage regulation of the 
distribution systems. For instance, in studied UKGDS having an average R/X of lines equal to 
1.743, when comparing cases A and B using the MSVCA, it is seen that the same voltage 
control problem has been solved with smaller objective function when reactive power control 
of DGs is employed.  
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In the next chapter, it is attempted to cover the drawback of the DSA method in voltage 
estimation subject to active power variation. To this end, a new VSA method will be proposed 
that incorporates power losses in the system branches and their eventual impacts on the node 
voltages. A comprehensive analysis is carried out in order to test the effectiveness of the 
proposed VSA method in the voltage estimation subject to active and reactive power changes. 
Performance of the proposed method is evaluated in comparison with other VSA methods.   

3.7. Chapter publication  

This chapter has led to the following publication: 

 B. Bakhshideh Zad, J. Lobry and F. Vallée, "A centralized approach for voltage control 
of MV distribution systems using DGs power control and a direct sensitivity analysis 
method," in 2016 IEEE International Energy Conference (ENERGYCON), Belgium, 
2016. 
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Chapter 4: Introducing a new voltage sensitivity analysis 

method incorporating power losses  

 

4.1. Abstract 

In this chapter, a novel VSA method is developed which presents a complementary formulation 
of the DSA approach introduced in chapter 2. The proposed method named Improved Direct 
Sensitivity Analysis (IDSA) incorporates variations of power losses in the system branches due 
to the nodal power changes and their eventual impacts on the node voltages. Effectiveness of 
the IDSA in the voltage estimation is investigated and compared with the voltage results 
obtained by the DSA, JBSA, and Perturb-and-Observe Sensitivity Analysis (POSA) methods. 
To this end, firstly, the introduced VSA methods are tested when active or reactive power is 
changed at the selected nodes of the studied test system. Accuracy of voltage responses obtained 
by each of the considered VSA methods is evaluated with respect to the exact voltage value 
obtained from the LF study. Then, performance of the studied VSA methods is examined when 
they are separately embedded in the MSVCA and SSVCA. The main aim of this chapter is to 
demonstrate importance of incorporating the power losses in the VSA formulation by proposing 
the IDSA method and through comparative studies of the IDSA with the DSA, POSA and JBSA 
approaches, which are conducted on different working points of the studied test system. 

4.2. Voltage variation in a simple 2-bus distribution system considering the 
branch power losses 

Let consider the simple 2-bus distribution system shown in figure 4-1. When there is only power 
consumption at node 2, active and reactive powers that flow between nodes 1 and 2 (i.e. Pbr1 
and Qbr1) are equal to the sum of load consumption (PL+jQL) at bus 2 and the power losses 
associated with the line between nodes 1 and 2 (i.e. PLoss1+jQLoss1). 
 

 
Figure 4-1: A simple 2-bus distribution system 

 
As shown in section 1-3, voltage variation vector between nodes 1 and 2 is given by                   

                                           1 1 1 1 1 1 12 1
12 * *

1 1

br br br brrP x Q x P r Q
V j

V V

 
                                        (4-1) 

PDG + jQDG  

V2 

PL + jQL 

   DG 

r1 + jx1 

Ploss1 + jQloss1 

Pbr1 + jQbr1 
V1 
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where r1 and x1 denote resistance and reactance of the line between nodes 1 and 2. In the 
distribution systems, as the voltage angles are small, the imaginary part of the voltage variation 
vector in (4-1) is negligible. Also, considering bus 1 as slack bus with the voltage magnitude 
equal to 1 pu and phase angle equal to zero, the above equation is simplified as 

                                                          12 1 1 1 1br brV r P x Q                                                        (4-2) 

Substituting for branch power flows from the load and DG powers at node 2 as well as the 
power losses of the branch, (4-2) is rewritten as                         

                                     12 1 1 1 1L Loss DG L Loss DGV r P P P x Q Q Q                                    (4-3) 

In contrast with (1-5), it is seen that according to (4-3), the voltage variation at bus 2 not only 
is in function of DG active and reactive powers, load demand and the line impedance, but also 
it depends on the power losses associated with the line impedance. Therefore, in order to have 
a more accurate VSA, the line power losses should be incorporated in the formulation of the 
developed VSA method. 

4.3. The improved direct voltage sensitivity analysis 

As discussed in chapter 2, the DSA method defines the dependencies between the system 
voltages and the nodal powers directly on the basis of the topological structure of the network. 
This has an advantage in the sense that the voltage sensitivity coefficients are constant and 
independent of the network working point. On the other hand, the simple formulation of the 
DSA may lead to inaccurate voltage estimation as found in chapter 3 when modifying DG active 
powers. In this chapter, an attempt is made in order to cover this drawback of the DSA method 
by proposing a more accurate VSA approach. 

It is known basically that by supposing the system loads and generations independent of the 
voltage, the power losses make the voltage-power relationships non-linear. Therefore, in order 
to have a more accurate VSA, the power losses should be taken into account, especially, in the 
case that the initial working point of the network is needed to be greatly moved. The IDSA 
presents a complementary formulation of the DSA method. Compared to the DSA and other 
existing approaches in the literature presented in section 2.3.1, the IDSA considers the 
variations in power losses of the system lines as a result of nodal power changes and their 
eventual impacts on the system voltages. 

The IDSA method is developed based on the expression (4-3) that gives the voltage variation 
of the 2-bus system shown in figure 4-1 between node 1 (i.e. slack bus) and node 2. From (4-
3), it can be observed that the active power that flows in the line is coupled with the resistance 
of the line and the reactive power that flows in the line is coupled with the reactance of the line. 
Supposing that node voltages are close to 1 pu and the imaginary parts of voltage variation 
vectors can be neglected, (4-3) can be applied recursively to all the adjacent nodes of the system. 
Let us refer again to the 5-bus radial system shown in figure 2-1. Voltage variations between 
bus 1 and other buses of the considered system are obtained as follows according to (4-3). 
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                   (4-4) 

Given that sensitivity of system voltages with respect to nodal active and reactive powers is of 
interest, the branch power flows in (4-4) must be replaced by the nodal powers. In the DLF 
approach, relations between nodal powers and power losses in the branches with the power 
flows in the branches are given through the BIBC matrix as below.   
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 (4-5)                                                                                                                            

where Ploss1, Ploss2, Ploss3 and Ploss4 stand for the active power losses in the branches 1, 2, 3 and 
4, respectively. As it can be seen in the above equation, the BIBC matrix contains 1 or 0 
elements to show whether the nodal powers and branch power losses are linked to the branch 
power flows, or not, respectively. Similarly to (4-5), relations between branch reactive power 
flows with nodal reactive powers and line reactive power losses are obtained through the BIBC 
matrix. Substituting for branch active power flows from (4-5) and doing the same for their 
reactive counterparts, (4-4) is rewritten as
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                    (4-6) 

In a matrix form, (4-6) can be written as 

                                                 1 k loss lossV ]-[V = R P + P + X Q + Q                                         (4-7)       

Considering bus 1 as slack bus, the sensitivity of voltage at bus k with respect to active or 
reactive power at bus n (n ∈ NL) is obtained by the following rules.  
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 (4-9)                

where J is index for the branch numbers (J ∈ B, B = {1, 2, 3, …, nbr}) and nbr is total number 
of the system branches equal to cardinality of set B. In the IDSA method, in (4-8) and (4-9), the 
first term is a constant value that comes from the topology of the network (entry k-1,n-1 of the 
R or X matrix) similarly to the DSA method. On the contrary, the second and third terms 
representing the power loss variations in the system branches as a function of nodal power 
changes and their eventual impacts on the system voltages are in function of the network 
working point and they consequently change with it.  

In [66], problem of the optimal placement and sizing of DG is addressed. An analytical method 
has been presented in order to obtain the sensitivity of total power losses with respect to the 
active power injection at a system bus. The partial derivatives of active and reactive power 
losses in the branch J with respect to active and reactive powers at node n needed in (4-8) and 
(4-9) are obtained according to [66] as follows. 

Active and reactive power losses in the Jth branch of the system as a function of the real and 
imaginary parts of the nodal currents can be obtained using the BIBC matrix in the DLF method 
as below. 
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where IbrJ is the absolute value of the Jth branch current. 𝑟௃  and 𝑥௃  are the resistance and 

reactance of the Jth branch, respectively. In above equations, the terms in the first and second 
parentheses give the real and imaginary parts of the current in the branch J, respectively, where 
Re(Ik) and Im(Ik) are the real and imaginary parts of the current in node k given by  
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where Vk, Pk and Qk are voltage angle, active and reactive powers at bus k, respectively. 
Substituting for real and imaginary parts of nodal currents from (4-12) and (4-13), sensitivity 
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of active power loss in the branch J with respect to active or reactive power at node n is obtained 
from (4-10) as below.    
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When the power at bus n passes through the branch J, the term BIBCJ,n-1 in the above equations 
is equal to 1, otherwise, it is zero. Consequently, if the power at node n does not pass through 
the branch J, sensitivity of power loss in branch J with respect to power at node n will be null. 
Similarly, derivatives of reactive power loss of branch J with respect to active and reactive 
powers of node n are obtained through (4-11) as  
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Finally, using (4-14) to (4-17) and having the matrices R and X, we can obtain the voltage 
sensitivity coefficients of the IDSA method with respect to nodal active and reactive powers 
according to (4-8) and (4-9). 

4.4. The studied voltage sensitivity analysis methods  

In this chapter, the IDSA method is validated through the numerical simulations by changing 
active and reactive powers at the selected buses of the studied system. Moreover, performance 
of the IDSA is tested when it is embedded in the MSVCA and SSVCA. The IDSA results are 
compared with the responses obtained from the DSA, JBSA and POSA methods. The DSA, 
JBSA and POSA are briefly described in the following sections. 
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4.4.1. Direct sensitivity analysis   

The DSA approach has been introduced in chapter 2. It is directly developed on the basis of the 
network topology, consequently, it remains independent of the network operating points. The 
DSA is a simplified version of the IDSA method neglecting the impacts of power losses in the 
system branches on the node voltages. Therefore, in the DSA method, the sensitivity 
coefficients are obtained from (2-18) and (2-19) which are equal to (4-8) and (4-9) relating to 
the IDSA method when disregarding their second and third terms.  

4.4.2. Perturb-and-observe sensitivity analysis 

Sensitivity of system voltages with respect to the nodal power changes can be obtained based 
on the perturb-and-observe concept. In this technique, two LF calculations are performed, once 
considering the initial network operating point and once more taking into account a small power 
variation at the perturbation point. The voltage variation at the observed point (ΔVobs) due to 
the power change applied to the perturbation point (ΔPpert) is calculated in order to derive the 
sensitivity of voltage at the observed node with respect to the power at the perturbation node 
using the following equation. 

                                                              

obs obs

pert pert

V V

P P

 


 
                                                       (4-18) 

In case of applying reactive power change, ΔPpert and Ppert in above equation are replaced by 
ΔQpert and Qpert, respectively. In this chapter, the initial network operating point is perturbed by 
1 kW (or 1 kvar) active (or reactive) power variation in order to calculate the voltage sensitivity 
coefficients. As it can be noticed, the drawback of this method is that the perturb-and-observe 
procedure should be repeated for each single node of the system. 

4.4.3. Jacobian-based sensitivity analysis  

Sensitivity of bus voltages with respect to nodal active and reactive powers is conventionally 
obtained from the inverse of the Jacobian matrix in the Newton-Raphson LF study. The 
Jacobian matrix is basically composed through expanding the equations of nodal active and 
reactive powers by the Taylor series while neglecting all the terms higher than the first order. 
The inverted Jacobian matrix gives us the linearized relationships between the small changes 
in nodal voltage angles and magnitudes with the small changes in the real and reactive powers 
as below. 

                                                             
   
   

  
V -1Δθ ΔP

= J
ΔQΔV

                                                   (4-19)    

where J-1 is the inverted Jacobian matrix. Also, ΔV, ΔV, ΔP and ΔQ denote vectors of small 
variations in voltage angles, voltage magnitudes, active and reactive powers at the PQ buses, 
respectively. Based on the Taylor series theorem, an analytical function can be represented as 
an infinite sum of terms that are calculated from the values of the function's derivatives at a 
single point. Therefore, the linearized relationships extracted from the Taylor series are valid 
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for a single point. As a result, the voltage sensitivity analysis obtained from the Jacobian matrix 
is also valid for a single point and the sensitivity coefficients need to be updated for other 
network operating points.  

In this work, the JBSA is obtained based on the generic formulation of the Jacobian matrix that 
can be found in [68] according to which, elements of the Jacobian matrix are partial derivatives 
of nodal active and reactive powers with respect to node voltage amplitudes and angles. Once 
the NRLF algorithm is converged, the lower half-part of the square matrix J-1 is used to derive 
the so-called Jacobian-based voltage sensitivity coefficients with respect to the nodal active and 
reactive powers. 

4.5. Numerical validation of the introduced voltage sensitivity analysis 
methods through gradual variations of nodal powers   

In this section, accuracy of the introduced VSA methods which are the DSA, IDSA, JBSA, and 
POSA in voltage estimation is examined. To this end, active or reactive power at a unique bus 
of the system is gradually changed while all other parameters are kept constant. For each point 
of power variation, voltage at bus k subject to power change at bus n is calculated using each 
of the studied VSA methods as follows.  

                                                        init k
k k n

n

V
V V P

P


  


                                                     (4-20) 

where 𝑉௞
௜௡௜௧

 is the initial voltage value at bus k in the starting point of variation (with power 
change equal to zero). In case of reactive power changes, Pn and ΔPn are replaced by Qn and 

ΔQn in the above equation. In the starting point with power change at bus n equal to zero, the 

voltage sensitivity at bus k with respect to power at bus n (
డ௏ೖ

డ௉೙
) is calculated using each of the 

four abovementioned VSA methods. The voltage sensitivity coefficient corresponding to the 
starting point is kept constant and used to calculate the voltage at bus k when active or reactive 
power at bus n is changed. Moreover, LF calculation is carried out for each single point of 
power variations. Consequently, the latter gives the exact voltage values while using the voltage 
sensitivity coefficient according to (4-20) (or its reactive power counterpart), the estimated 
voltage values are obtained. The LF calculation is done using the DLF approach.   

The numerical validation of the studied VSA methods is performed on the 77-bus UKGDS 
shown in figure 3-1. In the starting point of power variation, it is considered that all DGs 
produce active powers equal to 3.5 MW while their initial reactive powers are zero and the load 
powers are equal to 10% of their nominal values. The investigation is carried out on the active 
and reactive power changes (applied separately) at buses 26, 62 and 9. Buses 26 and 62 are 
selected as they are known to be influenced by the power losses given that they are located at 
the end of the feeders 1 and 4. Compared to buses 26 and 62, bus 9 is much less affected by the 
power losses as it is located closer to the slack bus. The simulation results regarding each of the 
studied buses are presented in the following sections.  
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4.5.1. On bus 26 

The first analysis of this section is done on the active and reactive power changes of bus 26 
which is located at the end of feeder 1. To this end, firstly, active power at bus 26 (where DG5 
is located) is changed from 0 to 3500 kW by step changes of 1 kW. It corresponds to reducing 
the active power production of DG5 from its maximum value (3.5 MW) to zero. Figure 4-2 
shows the voltage characteristics as a function of active power variations at bus 26 obtained by 
the studied VSA methods as well as the LF calculations. 

 

As it can be seen in figure 4-2, the DSA method produces high mismatches with regard to the 
exact value obtained from the LF study. Its error noticeably increases when the active power of 
bus 26 is largely moved from the starting point. Regarding the JBSA and POSA results, it is 
seen that they have both accurate voltage estimations at the beginning of power variations while 
for the active power variations greater than 2000 kW, errors appeared in their estimated voltages 
with respect to the reference values obtained from the LF. As mentioned before, the JBSA is 
valid for a single working point considering small changes of active and reactive powers. When 
the system working point is largely moved by the active or reactive power change, its accuracy 
is reduced. Similarly, the POSA derives the voltage sensitivity with respect to node power 
through extracting the slope of the voltage-power characteristic. Given that the latter is obtained 
by applying a step change equal to 1 kW (or 1 kvar), when the working point is largely moved, 
the accuracy of linearized relation based on the POSA method is reduced. From figure 4-2, it is 
noticed that the IDSA has led to the most accurate voltage estimations at bus 26 as the 
characteristic obtained according to the IDSA is the closest one to the LF-based characteristic. 

In the second test, the reactive power at bus 26 is changed from 0 to 3500 kvar by step changes 
of 1 kvar. The same range of variation is applied to node active and reactive powers for ease of 
comparison of the voltage results. Given that the initial reactive power of DG5 is 0, the reactive 
power variations at bus 26 correspond to increasing the reactive power of DG5 towards the 
inductive direction. The voltage at bus 26 subject to reactive power variation applied at the 
same bus is calculated using the studied VSA methods and LF calculation similarly to the 

 
Figure 4-2: Voltage at bus 26 as a function of active power variations at bus 26 
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previous example. The voltage characteristics of bus 26 as a function of reactive power 
variations are depicted in figure 4-3. 

 

Taking the results depicted in figure 4-3 into consideration, it is seen that the DSA and IDSA 
methods have similar performances in response to reactive power changes. The voltage values 
obtained using these two methods are close to each other though the ones obtained by the IDSA 
are slightly closer to the points obtained by the LF. It can be concluded that for the studied 
network working point, the power loss variations (due to reactive power changes at bus 26) do 
not have a big impact on the voltage-reactive power relationships at bus 26 given that the 
performance of the IDSA is almost identical to the DSA one.  

Moreover, from figure 4-3, it is observed that the JBSA and POSA work well for the reactive 
power changes smaller than 1500 kvar. Then, when reactive power increases more, the error in 
voltage estimation raises further such that at the ending point of variation (with reactive power 
changes equal to 3500 kvar), the mismatch between voltage obtained by the JBSA (or POSA) 
and LF clearly becomes bigger than the one obtained by the IDSA (or DSA) and LF.  

Furthermore, taking figures 4-2 and 4-3 into account, it is noticed that the reactive power 
variation has slightly greater impact than active power change on the voltage of bus 26 given 
that the former finally reduces voltage to 1.0357 pu and the latter to 1.0359 pu according to the 
LF-based results.  

4.5.2. On bus 62 

The same investigation as performed on the bus 26 is repeated here on the active and reactive 
power variations at bus 62 (where DG18 is located) to examine the performance of the 
introduced VSA methods in the voltage estimation of a bus located in another feeder (i.e. feeder 
4) of the UKGDS. Figures 4-4 and 4-5 present respectively the voltage at bus 62 subject to the 
active and reactive power changes (each one applied separately) at that bus.   

 
Figure 4-3: Voltage at bus 26 as a function of reactive power variations at bus 26 
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Considering the voltage characteristics shown in figure 4-4, the same conclusion as the one 
relating to study on bus 26 subject to active power variation can be made. The IDSA method 
has very good performance in case of active power changes while the DSA method shows big 
mismatches. In comparison with the the JBSA and POSA, the IDSA has led to slightly more 
accurate voltage estimations at the ending points of power variations as it can be seen in figure 
4-4. Regarding reactive power changes, both IDSA and DSA methods show similar results (see 
figure 4-5). Also, small mismatches are found between voltages obtained by the JBSA (or 
POSA) and the LF-based ones when power variations are not relatively big. In the second half 
of power variation range, however, errors between the voltages obtained by the JBSA and 
POSA increase gradually with respect to the LF results.  

4.5.3. On bus 9 

Finally, the last analysis of this section is carried out on bus 9 (where DG2 is connected) in 
order to derive the voltage-active (or reactive) power characteristics of this node which is 

 
Figure 4-4: Voltage at bus 62 as a function of active power variation at bus 62 

 
Figure 4-5: Voltage at bus 62 as a function of reactive power variation at bus 62 
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located closer to the slack bus and as a consequence, it is less affected by the power loss factor. 
In this regard, firstly, the active power at bus 9 is changed from 0 to 3500 kW. The voltage 
response at bus 9 as a function of the active power change at the same bus is depicted in figure 
4-6.  

 

In figure 4-6, it is seen that unlike the two previous cases (on buses 26 and 62), for the analysis 
of bus 9, the JBSA and POSA methods have shown more accurate voltages compred to the ones 
obtained by the IDSA. Bus 9 is located close to the slack bus while bus 26 is placed at the end 
of feeder 1. The branch resistance between the transformer to bus 26 is almost 3.5 times bigger 
than the one from transformer to bus 9. Therefore, it can be expected that the voltage-power 
relationship at bus 9 is more linear than that of the bus 26 as the branch losses make this 
relationship non-linear. Consequently, it can be concluded that the JBSA or POSA can present 
more accurate voltage estimation at bus 9 compared to the case of bus 26. On the other hand, 
there is an approximation in formulation of the IDSA that neglects the imaginary part of the 
voltage variation vector since the voltage angles are expected to be small in the distribution 
systems. This assumption reduces the accuracy of the voltage estimation by the IDSA. 
Consequently, due to the introduced approximation of the IDSA and because of nearly linear 
nature of the voltage-power relationship at bus 9, the JBSA or POSA may show more accurate 
voltage estimation at this bus. 

Figure 4-7 shows the voltage at bus 9 subject to the reactive power variations at the same bus. 
From this figure, it is noticed that all the VSA methods have led to almost accurate voltage 
estimations, while for reactive power changes greater than 3000 kvar, both DSA and IDSA 
methods show more accurate results than the JBSA and POSA ones. The IDSA results however 
are slightly closer to the LF-based values than the DSA ones.  

 
Figure 4-6: Voltage at bus 9 as a function of active power variation at bus 9 
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4.6. Numerical validation of the introduced voltage sensitivity analysis 
methods using the area between curves index 

In this part, a new index is defined in order to evaluate and compare voltage responses obtained 
by the introduced VSA methods subject to the nodal active and reactive power changes. As it 
can be seen in figures 4-2 to 4-7, the characteristics of voltage-active (or reactive) power are 
sometimes very close to each other and it is not easy to distinguish them. In addition, we aim 
to validate the introduced VSA methods for some other working points of the system. This 
means that we need to deal with several figures, which cannot be easily interpreted. 
Consequently, a new index based on the concept of the Area Between Curves (ABC) is defined 
here. As known, the area between two curves shown in figure 4-8 with the given functions 
y1=f(x) and y2=g(x) between the points a and b is obtained by  

                                                   ( ) ( )
b

a

ABC f x g x dx                                                 (4-21) 

 
Figure 4-8: Area between the curves of y1 and y2 

In our application, the error between the estimated voltages obtained according to the VSA and 
the exact voltages calculated by the LF study is of interest. In this regard, if one of the curves 

 
 

Figure 4-7: Voltage at bus 9 as a function of reactive power variation at bus 9 
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is considered to be obtained by the consecutive LF calculations and another one to be related to 
estimated points by the VSA, the area between two curves gives us an indicator of the overall 
accuracy of the VSA method between the studied points a and b. Thus, if the ABC of the LF 
and the VSA is small, it is concluded that the estimated voltages obtained by the VSA were 
close to the exact ones found from the LF study. 

In order to implement this technique, the same procedure is followed as the previous section 
relating to gradual variations of nodal powers. Firstly, gradual changes of active or reactive 
power at one of the system nodes are applied. The voltage response subject to node power 
variations is calculated using the VSA method according to (4-20) or its reactive power 
counterpart. Also, for each point of the node power variations, LF is performed to calculate the 
exact voltage value. The voltage-active (or reactive) power characteristics obtained by the VSA 
and LF are now in our disposal. The mathematical function representing the characteristic 

related to the VSA is known, as it is a linear function with a constant slope equal to 
ப୚ౡ

ப୔౤
 in (4-

20). On the contrary, the mathematical function corresponding to the characteristic obtained by 
the consecutive LF calculations is unknown and its slope is not constant. Therefore, we cannot 
calculate the area between these two functions according to (4-21). The trapezoidal numerical 
integration method in MATLAB is utilized to obtain the area between two characteristics 
relating to LF and VSA results. The trapezoidal method determines the definite integral of f(x) 
over an interval by approximating the area under the curve of the function as trapezoids with 
more easily computable areas. Given that the gradual power changes are applied with the small 
steps of 1 kW (or 1 kvar), it is expected that the approximation in trapezoidal method will have 
negligible effect on the ABC result. Moreover, for all studied VSA methods, the above 
procedure is repeated separately, each time for the characteristic obtained by one of the studied 
VSA methods and the LF. Therefore, approximation of the trapezoidal method exists in all 
analyses of this section. It should be noted that if there are cross points between two 
characteristics (obtained by the LF and VSA), the total ABC is equal to the sum of the absolute 
values of the ABC in the subintervals during which one function is above another.  

Four cases as presented in below are considered in order to evaluate performance of the studied 
VSA methods using the ABC factor. The investigation is done on the 77-bus UKGDS shown 
in figure 3-1. The gradual changes of active (or reactive) power are applied separately to the 
buses 9, 26 and 62 by step changes of 1 kW (or kvar). The voltage responses with respect to the 
power changes are calculated at the same bus where power changes are applied using the LF 
calculations as well as each of the introduced VSA methods.  

4.6.1. Case 1 

In the first case, it is assumed that DG active and reactive powers are equal to zero while the 
load powers are at 100% of their respective rated values. The reactive power variations from 0 
to 3500 kvar towards the capacitive direction are applied at the selected buses. It simulates the 
case in which the capacitive reactive power compensation of DGs manages the existing voltage 
drop problem of the network. Table 4-1 presents the results of calculating the ABC obtained by 
each of the introduced VSA methods and the LF study at the selected buses. 
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In table 4-1, it is clearly seen that at all selected buses, the IDSA method outperforms the DSA 
approach in terms of the accuracy of the performed voltage estimations. It is explained by the 
fact that the IDSA method presents a complementary formulation of the DSA by taking into 
account the power loss variation impacts on the node voltages. Similarly, for the study at buses 
26 and 62, the IDSA leads to more accurate voltage results compared to the ones obtained by 
the JBSA and POSA. As known, by getting distance from the slack bus, the series impedance 
between the slack bus and each single point of the system is increased. Therefore, it can be 
expected that the voltage-power relationship at bus 26 (or 62) will be more influenced by the 
power losses than the one at bus 9. Due to the fact that the IDSA incorporates power loss 
variation impacts on node voltages, it shows a better performance for the study on buses 26 and 
62 compared to the JBSA and POSA approaches. On the other hand, there is an approximation 
in formulation of the IDSA method, which neglects the imaginary part of the voltage variation 
vector. This approximation reduces the accuracy of the voltage estimation by the IDSA. 
Consequently, due to the introduced approximation of the IDSA, for the study on bus 9 where 
power loss impacts on the nodal voltages are not significant, the JBSA or POSA can show more 
accurate voltage results in comparison with the IDSA. In table 4-1, it is seen that the JBSA and 
POSA result in identical or very close ABC values.    

4.6.2. Case 2 

In the second studied case, DG active and reactive powers are equal to 0 and load powers are 
at 100% of their respective rated values similar to case 1. However, the active power (injection) 
is changed here from 0 to 3500 kW. It corresponds to the case of solving voltage drop problem 
by injecting the active power (for instance, from an energy storage device). Table 4-2 gives the 
ABC results corresponding to the investigation on the selected buses. 

 

In table 4-2, it is again seen that the IDSA clearly outperforms the DSA method at the selected 
buses of the studied network. Furthermore, the IDSA method shows more accurate voltage 
results in comparison with the JBSA and POSA ones too; even at the bus 9 that is known to be 
less affected by the power losses. From table 4-2, it can be also noticed that the JBSA and POSA 
have led to very close voltage results like the previous studied case.   

TABLE 4-1: SIMULATION RESULTS IN CASE 1  

 At bus 26 At bus 62 At bus 9 
ABC of LF and DSA 1.7816 0.6541 0.7311 
ABC of LF and IDSA 1.0359 0.3298 0.4105 
ABC of LF and JBSA 1.7648 1.0635 0.2685 
ABC of LF and POSA 1.7648 1.0638 0.2684 

 

TABLE 4-2: SIMULATION RESULTS IN CASE 2  

 At bus 26 At bus 62 At bus 9 
ABC of LF and DSA 4.4956 1.9261 1.496 
ABC of LF and IDSA 0.7235 0.3717 0.1087 
ABC of LF and JBSA 1.9789 1.1189 0.241 
ABC of LF and POSA 1.9662 1.1181 0.2407 
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4.6.3. Case 3 

In case 3, DG active powers are considered to be at their maximum values and DG reactive 
powers are equal to 0.5 Mvar (inductive). The system loads are also at 10% of their respective 
rated values. The reactive power changes are done from 0 to 3500 kvar towards the inductive 
direction at the selected buses of the studied network. It corresponds to the case of solving 
voltage rise problem by absorbing the reactive power. Table 4-3 gives the ABC results 
corresponding to voltages obtained by the LF calculations and ones found through each of the 
VSA methods. 

   

In table 4-3, the IDSA method leads to more accurate voltage results compared to the DSA ones 
at the selected buses. In comparison with the JBSA and POSA, the IDSA shows superior results 
for the study as buses 26 and 62, and almost similar results at bus 9. The POSA performance 
remains in very close agreement with the JBSA one. 

4.6.4. Case 4 
 

The same working point as the one of the case 3 is considered here. However, in the current 
test case, the active power injection is changed from 3500 kW to 0 in order to simulate the 
situation in which the voltage rise problem is managed by the generation curtailment of DGs. 
Table 4-4 presents the same type of results for the study on case 4. 

 

Regarding the results reported in table 4-4, it is seen that the IDSA clearly outperforms the DSA 
like all the previous cases. For the analyses of buses 26 and 62, the IDSA exhibits better 
performance compared to the JBSA and POSA ones too. Concerning the investigation on bus 
9, however, the JBSA and POSA provide more accurate results compared to the IDSA one. 
Therefore, it can be noticed that the JBSA and POSA methods with an acceptable accuracy 
estimate the voltage-power relationships at the buses, which are close to the slack node. On the 
other hand, by getting distance from the slack bus, nodal voltage-power relationships will be 
more influenced by power loss variations (caused by the node power changes). As a 
consequence, the IDSA method can lead to more accurate voltage estimation for analysis of the 
buses which are relatively far from the slack node. The latter points can be verified considering 
the results reported in tables 4-1 to 4-4. It is worth noting that for a voltage regulation purpose, 

TABLE 4-3: SIMULATION RESULTS IN CASE 3  

 At bus 26 At bus 62 At bus 9 
ABC of LF and DSA 0.9750 0.802 0.8755 
ABC of LF and IDSA 0.4503 0.2904 0.260 
ABC of LF and JBSA 1.4726 0.9570 0.256 
ABC of LF and POSA 1.4679 0.9544 0.255 

 

TABLE 4-4: SIMULATION RESULTS IN CASE 4  

 At bus 26 At bus 62 At bus 9 
ABC of LF and DSA 7.0716 5.2413 2.3752 
ABC of LF and IDSA 1.0843 1.334 1.4159 
ABC of LF and JBSA 1.1933 1.7668 0.1673 
ABC of LF and POSA 1.1895 1.7645 0.1667 
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power variation at the buses, which are located far from the slack node (like buses 26 and 62) 
will be mostly demanded as the voltage violations usually occur at the end of the system feeders.    

4.7. Comparative study of the introduced voltage sensitivity analysis 
methods embedded in the multi-step voltage control algorithm 

In this section, the MSVCA presented in chapter 3 is used in order to evaluate performance of 
the studied VSA methods in a centralized closed-loop voltage control application. To this end, 
the studied VSA methods are embedded separately in the MSVCA. When the DSA, IDSA and 
POSA methods are tested, the DLF approach is used in the MSVCA. For the JBSA method, the 
NRLF method is employed. It should be noted that the voltage sensitivity coefficients obtained 
from the JBSA, POSA and IDSA methods are updated at the end of each iteration of the 
MSVCA (according to procedure shown in figure 2-3) by the new LF study while their 
counterparts in the DSA method are kept constant since they are independent of the network 
working point. The MSVCA including the studied VSA methods is coded in the MATLAB 
environment. It is applied to the 77-bus UKGDS shown in figure 3-1. Effectiveness of the 
studied VSA methods is examined in response to separate changes of DG active and reactive 
powers as well as the case that both active and reactive powers of DGs can be controlled by the 
MSVCA. In this regard, three cases with different values for weighting coefficients of DG 
active and reactive powers (i.e. CP and CQ) are taken into account as presented in table 4-5. 

 

An identical initial working point is considered in the abovementioned cases. It is supposed that 
the system loads are at 10% of their respective nominal values, DG active powers are equal to 
90% of their rated values (0.9×3.5=3.15 MW) while the initial reactive powers of DGs are set 
to zero. In this situation, it is expected to deal with the voltage rise problem at the DG-connected 
buses. 

Performance of the four introduced VSA methods embedded in the MSVCA is evaluated and 
compared in terms of the errors associated with each method. In order to determine the accuracy 
of the VSA methods, two new parameters are defined by the following equations. 

                                                         1.03 cor
wMM V                                                          (4-22) 
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where 𝑉௪
௖௢௥ is the corrected voltage of the bus with the biggest voltage violation (i.e. bus w). It 

is obtained by the LF calculation, which is done at the end of each iteration of the MSVCA (see 

TABLE 4-5: WEIGHTING COEFFICIENTS OF 

DG POWER CHANGES IN THE STUDIED CASES 

 CQ CP 
Case A 1 100 
Case B 100 1 
Case C 1 1 
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figure 2-3). Given that voltage violation at bus w in each iteration of the MSVCA constructs 
the binding voltage constraint of the optimization problem, the mismatch between the targeted 
voltage point (i.e. the 1.03 pu voltage limit) and the corrected voltage at bus w gives us the error 
arisen from the VSA at each iteration of the MSVCA according to (4-22). Also, the relative 

error with regard to the required voltage modification (∆𝑉௪
௥௘௤) at the bus with the biggest 

voltage violation at each iteration of the MSVCA is obtained using (4-23). These two 
parameters give us the error arisen from the VSA inside the MSVCA iterations. Therefore, there 
is no need to depict the node voltages obtained by the MSVCA.      

It should be noted that the ampacity limits of the system branches are disregarded in the 
MSVCA given that we aim at evaluating accuracy of the introduced VSA methods. It is known 
that considering the ampacity limits, some errors are added to the voltage control problem due 
to simplification of the proposed formulation for considering the current limits. In this regard, 
the ampacity limits are neglected here to have the VSA as the only source of the error in the 
MSVCA.       

4.7.1. Case A 

In case A, the objective is to study performance of the presented VSA methods in response to 
only reactive power changes of DGs. To do so, active power curtailment of DGs is penalized 
with a big weighing coefficient which is 100 times bigger than CQ as it can be seen in table 4-
5. Table 4-6 presents the iterative procedure of returning all the violated voltages inside the 
permitted voltage range using the MSVCA employing DSA and IDSA methods. Table 4-7 gives 
the MSVCA results when using the JBSA and POSA approaches.  

 

TABLE 4-6: SIMULATION RESULTS IN CASE A USING THE MSVCA INCORPORATING THE 

DSA AND IDSA METHODS 

 
DSA IDSA 

I=1 I=2 I=1 I=2 
∆V୵

୰ୣ୯ (pu) 
w 

-0.0298 
26 

-0.0152 
62 

-0.0298 
26 

-0.0152 
62 

ΔQDGx (Mvar) 
x ∈ {1, 2, 3, …, 22} 

DG4=1.6336 
DG5=2.31 

DG18=2.2491 
DG4=1.6346 
DG5=2.31 

DG18= 2.2442 

MM (pu) -3.03×10-4 -2.44×10-4 -2.97×10-4 -2.12×10-4 
Err (%) 1.019 1.6 0.998 1.4 

OF Tot (Mvar) 6.1927 6.1888 
Ct (s) 0.19 0.5 
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As it can be seen in tables 4-6 and 4-7, in the first iteration (I=1), the biggest voltage rise is 
found at bus 26. Then, when the voltage rise at this bus is removed, in the second iteration, 
voltage at bus 62 has the biggest value of voltage violation. Using all four studied VSA 
methods, within 2 iterations of the MSVCA, the system voltages are returned to the permitted 
voltage range. Table 4-6 reveals that the DSA and IDSA methods have both very small errors 
and they exhibit better performances compared to the JBSA and POSA ones given in table 4-7. 
It is worth noting that the positive value of MM means that the estimated voltage using the VSA 
has passed the permitted upper limit and entered inside the permitted voltage range while its 
negative value corresponds to a voltage greater than 1.03 pu.  

In I=1 and I=2, the IDSA has estimated the new voltage of bus w with the minimum errors 
while the maximum errors are found in the POSA and JBSA methods. Therefore, it can be 
concluded that the VSA with respect to reactive power changes in the IDSA (or DSA) method 
is more accurate than the JBSA and POSA ones for the studied network operating point. 
Consequently, in case A, the IDSA method solves the voltage control problem with the smallest 
value of reactive power changes (OF Tot = 6.1888 Mvar). It is also observed that the DSA 
embedded in the MSVCA has led to the shortest calculation time (Ct=0.19 s) given that the 
latter has a simple formulation.   

4.7.2. Case B 

In the second case, the MSVCA is used for testing accuracy of the studied VSA methods in 
response to active power curtailment of DGs. In this regard, CP is set to 1 and CQ (relating to 
DG reactive power variations) is assigned to 100. Table 4-8 shows the performance of the 
MSVCA employing the DSA method and table 4-9 gives the MSVCA results when 
incorporating IDSA, JBSA and POSA methods. 
 

TABLE 4-7: SIMULATION RESULTS IN CASE A USING THE MSVCA INCORPORATING THE 

JBSA AND POSA METHODS 

 
JBSA POSA 

I=1 I=2 I=1 I=2 
∆V୵

୰ୣ୯ (pu) 
w 

-0.0298 
26 

-0.0148 
62 

-0.0298 
26 

-0.0148 
62 

ΔQDGx (Mvar) 
x ∈ {1, 2, 3, …, 22} 

DG4=1.8632 
DG5=2.31 

DG18=2.2736 
DG4=1.8645 
DG5=2.31 

DG18=2.2736 

MM (pu) 12.632×10-4 3.2×10-4 12.633×10-4 3.19×10-4 
Err (%) 4.239 2.160 4.242 2.157 

OF Tot (Mvar) 6.4468 6.4486 
Ct (s) 0.35 0.26 
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Based on the results of table 4-8, it can be concluded that the DSA method cannot estimate 
accurately the voltage response when active power of DGs is changed. The relative error in all 
iterations is high and reaches 12.42%. Regarding the results given in table 4-9, it is seen that 
the IDSA, JBSA and POSA methods show more accurate voltage estimations compared to those 
of the DSA. In the IDSA method, the maximum relative error is 2.068% while in the JBSA and 
POSA, it increases to 4.241% and 4.233% which confirms that the IDSA has led to the most 
accurate voltage estimations in case B. 

Considering the total objective function of the MSVCA, the DSA method solves the voltage 
control problem with the smallest value since in each iteration, the voltage of the bus w (i.e. the 
one with the biggest violation) does not enter inside the permitted voltage range due to its 
inaccuracy (see M.M in table 4-8 which is always negative). Using the JBSA and POSA 
methods, the system voltages go more inside the permitted voltage range compared to the ones 
obtained by the IDSA, consequently, the JBSA and POSA solve the voltage control problem 
with bigger values of total objective function. 

4.7.3. Case C 

In case C, performance of the MSVCA employing each of the introduced VSA methods is 
examined when active and reactive power changes of DGs are weighted equally. Consequently, 
the voltage sensitivity coefficients define which control action should be taken. Table 4-10 

TABLE 4-8: SIMULATION RESULTS IN CASE B USING THE MSVCA INCORPORATING THE DSA METHOD 

 
DSA 

I=1 I=2 I=3 I=4 I=5 
∆V୵

୰ୣ୯ (pu) 
w 

-0.0298 
26 

-0.0219 
62 

-0.0047 
20 

-0.0029 
59 

-6×10-4 
20 

ΔPDGx (MW) 
x ∈ {1, 2, 3, …, 22} 

DG4= 0.321 
DG5=3.15 

DG17= 0.0816 
DG18=3.15  

DG4=0.7167 DG17=0.5526 DG4=0.0916 

MM (pu) -0.0037    -0.0026 -4.92×10-4 -3.2×10-4 -0.6×10-4 
Err (%) 12.4275    12.032 10.4244 10.9274 9.775 

OF Tot (MW) 8.0686 
Ct (s) 0.202 

 

TABLE 4-9: SIMULATION RESULTS IN CASE B USING THE MSVCA INCORPORATING THE IDSA, JBSA AND 

POSA METHODS 

 
IDSA JBSA POSA 

I=1 I=2 I=1 I=2 I=1 I=2 
∆V୵

୰ୣ୯ (pu) 
w 

-0.0298 
26 

-0.0221 
62 

-0.0298 
26 

-0.0221 
62 

-0.0298 
26 

-0.0221 
62 

ΔPDGx (MW) 
x ∈ {1, 2, 3, 

…, 22} 

DG4=1.0278 
DG5=3.15 

DG17=0.766 
DG18=3.15 

DG4=1.166 
DG5=3.15 

DG17=0.8284 
DG18=3.15 

DG4=1.1661 
DG5=3.15 

DG17=0.8285 
DG18=3.15 

MM (pu) 4.4×10-4 4.56×10-4 12.65×10-4 7.27×10-4 12.63×10-4 7.26×10-4 
Err (%) 1.479 2.068 4.241 3.292 4.233 3.287 
OF Tot 
(MW) 

8.0938 8.2944 8.2946 

Ct (s) 0.5 0.385 0.25 
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presents the MSVCA results when the DSA method is used. Also, table 4-11 gives the results 
relating to the IDSA, JBSA, and POSA methods.  

 

4  

Considering the results of table 4-10, it is noticed that the DSA method shows high errors in 
I=1, I=2 and I=3 when mostly active powers of DGs are curtailed by the MSVCA. At I=4, as 
the reactive power changes are applied, the voltage estimation is more accurate. Moreover, from 
table 4-11, it is noticed that the IDSA, JBSA and POSA methods show better performances 
than the DSA one. It is also seen that the MSVCA employing the IDSA has resulted in the 
smallest errors. Consequently, the MSVCA with the IDSA solves the voltage control problem 
with the lowest control effort. 

4.8. Comparative study of the introduced voltage sensitivity analysis 
methods embedded in the single-step voltage control algorithm  

In the last part of this chapter, performance of the introduced VSA methods is tested when they 
are separately embedded in the SSVCA. Similar to the analysis carried out on the MSVCA, 
three cases having different weighting coefficients for active and reactive power changes of 

TABLE 4-10: SIMULATION RESULTS IN CASE C USING THE MSVCA INCORPORATING THE 

DSA METHOD 

 
DSA 

I=1 I=2 I=3 I=4 
∆V୵

୰ୣ୯ (pu) 
At bus 

-0.0298 
26 

-0.0215    
62 

-0.0050    
20 

-0.0029 
59 

ΔPDGx (MW) 
x ∈ {1, 2, 3, …, 22} DG5=3.15 DG18=3.147    DG4=0.751 NA 

ΔQDGx (Mvar) 
x ∈ {1, 2, 3, …, 22} DG5=0.26 NA NA 

DG4=0.1515 
DG5=0.3648 

MM (pu) -0.0035    -0.0026 -5.34×10-4 -0.63×10-5 
Err (%) 11.8062    12.0261    10.7817     2.185 
OF Tot 7.8249 
Ct (s) 0.209 

 

TABLE 4-11: SIMULATION RESULTS IN CASE C USING THE MSVCA INCORPORATING THE IDSA, JBSA 

AND POSA METHODS 

 
IDSA JBSA POSA 

I=1 I=2 I=1 I=2 I=1 I=2 
∆V୵

୰ୣ୯ (pu) 
w 

-0.0298 
26 

-0.0180 
62 

-0.0298 
26 

-0.0181 
62 

-0.0298 
26 

-0.0181 
62 

ΔPDGx (MW) 
x ∈ {1, 2, 3, 

…, 22}  

DG5= 
1.406 

    DG18= 
0.41 

DG5= 
1.57 

DG18= 
0.5228 

DG5= 
1.5706 

DG18= 
0.5236 

ΔQDGx (Mvar) 
x ∈ {1, 2, 3, 

…, 22} 
DG5=2.31 DG18=2.31 DG5=2.31 DG18=2.31 DG5=2.31 DG18=2.31 

MM (pu) -4×10-4 -2.6×10-4 8.83×10-4 3.81×10-4 8.83×10-4 3.8×10-4 
Err (%) 1.3449     1.4454 2.9645 2.1101 2.963 2.108 
OF Tot 6.4355 6.7127 6.7143 
Ct (s) 0.5 0.37 0.26 

 



   

87 
  

DGs are considered here according to table 4-5. Also, an identical initial working point is taken 
into account in the three cases which is equal to the one presented in the study on the MSVCA 
(section 4.7). It should be noted that the branch ampacity limits are not taken into account in 
the SSVCA (similar to the previous section using the MSVCA) as the main aim is to investigate 
the accuracy of the introduced VSA methods. The simulation results relating to the three studied 
cases are presented in the following sections. 

4.8.1. Case A 

As discussed before, the SSVCA is designed to return simultaneously all the violated voltages 
within the permitted voltage range. In the case A, performance of the studied VSA methods in 
voltage regulation of the considered working point is tested when reactive power control of 
DGs is employed by the SSVCA. Table 4-12 presents the SSVCA results when each of the 
studied VSA methods is utilized. Figure 4-9 shows the initial and corrected voltages obtained 
by the SSVCA considering each of the studied VSA methods.  

 

From the results given in table 4-12, it is noticed that the DSA and IDSA methods show very 
close results when reactive power control of DGs is used, similarly to case A using the MSVCA. 
This point can be verified by the corrected voltages shown in figure 4-9. As it is seen in that 
figure, the system voltages obtained by these two methods are very close such that it is difficult 
to distinguish them. In the considered working point, the initial reactive powers of DGs are 
zero, which indicate that the reactive power variations do not have considerable effects on 
branch active and reactive power losses. According to (4-13), assuming that voltage angle at 
bus k is small, the imaginary part of current in node k is produced by the reactive power of that 
node. Therefore, when node reactive powers are zero, (4-15) and (4-17) representing sensitivity 
of active and reactive power losses with respect to reactive power change are small. As a result, 
the second and third terms in formulation of the IDSA with respect to reactive power (equation 
(4-9)) are small too that result in eventually having almost similar sensitivity coefficients from 
the DSA and IDSA methods.  

Moreover, from table 4-12, it is observed that using the JBSA and POSA methods, the voltage 
control problem is solved with bigger objective functions compared to the DSA and IDSA ones. 
As a consequence, the system voltages obtained by the JBSA and POSA methods are entered 
into the permitted voltage range as it can be seen in figure 4-9. This indicates that an error is 
arisen in the voltage regulation procedure due to inaccuracy of the JBSA and POSA. The 

TABLE 4-12: SIMULATION RESULTS IN CASE A USING THE SSVCA  

 
 

DSA IDSA JBSA POSA 

ΔQDGx (Mvar) 
x ∈ {1, 2, 3, …, 22} 

DG4=1.0908 
DG5=2.31 

DG17=0.0705 
DG18=2.31 

DG4=1.0923  
DG5=2.31 

DG17=0.0749 
DG18=2.31 

DG4=1.291  
DG5=2.31 

DG17=0.1627 
DG18=2.31 

DG4=1.292  
DG5=2.31 

DG17=0.1636 
DG18=2.31 

OF (Mvar) 5.7812 5.7872 6.0738 6.0757 
Ct (s) 0.155 0.355 0.36 0.35 
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maximum errors arisen from the DSA, IDSA, POSA and JBSA methods respectively equal to 
3.45×10-4

 pu, 3.28×10-4 pu, 11.56×10-4 pu and 11.54×10-4 pu, which are the biggest mismatch 
between the corrected voltages relating to the binding constraints of the SSVCA optimization 
problem and the 1.03 pu voltage limit in each case.   

 

4.8.2. Case B 

In case B, effectiveness of the studied VSA methods in response to active power curtailment of 
DGs is tested by the SSVCA. Table 4-13 presents the needed active power curtailment of DGs 
defined by the SSVCA according to information provided by each of the VSA methods. The 
initial system voltages as well as the corrected ones obtained by the SSVCA using the studied 
VSA methods are depicted in figure 4-10.  

 

Taking figure 4-10 into consideration, it is seen that using the DSA, the violated voltages are 
not completely returned into the permitted voltage range (similarly to the case B using the 
SSVCA in chapter 3). Therefore, the solution obtained by the SSVCA according to the DSA is 
not sufficient to remove all the voltage violations. On the contrary, using the IDSA, JBSA and 
POSA methods, the system voltages are returned into the permitted voltage range. However, as 
it can be seen in figure 4-10, the corrected voltages are taken back more than the needed values 
into the permitted voltage range which indicates that these obtained solutions do not correspond 

 
Figure 4-9: The initial and corrected voltages using the SSVCA in case A 

TABLE 4-13: SIMULATION RESULTS IN CASE B USING THE SSVCA 

 DSA IDSA JBSA POSA 

ΔPDGx (MW) 
x ∈ {1, 2, 3, …, 22} 

DG4=0.5674  
DG5=3.0131 

DG17=0.0793 
DG18=3.0684 

DG4=1.7165  
DG5=2.8708 

DG17=1.2926 
DG18=2.9272 

DG4=1.4116 
DG5=3.102 

DG17=0.9177 
DG18=3.1145 

DG4=1.4114 
DG5=3.1018 

DG17=0.9176 
DG18=3.1144 

OF (MW) 6.7281 8.8071 8.5458 8.5452 
Ct (s) 0.155 0.38 0.365 0.34 
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to the most optimal one and as a result, an unnecessary amount of active power has been 
curtailed due to inaccuracy of the IDSA, JBSA and POSA methods. The maximum errors arisen 
from the DSA, IDSA, POSA and JBSA are respectively equal to 0.0041 pu, 0.0017 pu, 0.0014 
pu and 0.0015 pu. 

 

4.8.3. Case C 

In the last case, considering similar weighting coefficients for active and reactive power 
changes of DGs, performance of the VSA methods is tested by the SSVCA. The simulation 
results are reported in table 4-14 and node voltages are depicted in figure 4-11.  

 

Considering the voltages shown in figure 4-11, it is seen that after voltage regulation by the 
SSVCA using the DSA, there are small voltage violations remained at the buses located in the 
end of feeders 1 and 4. It occurs due to inaccuracy of the DSA method with respect to active 
power changes (relating to ΔPDG5 and ΔPDG18). Taking into account the SSVCA results 
employing other VSA methods, it is found that the corrected voltages are within the permitted 
voltage range while with the POSA and JBSA, the corrected voltages entered into the permitted 
voltage range. It indicates that an error exists in the VSA that does not let the SSVCA to find 
the most optimal solution. The maximum errors arisen form the DSA, IDSA, JBSA and POSA 

 
Figure 4-10: The initial and corrected voltages using the SSVCA in case B 

TABLE 4-14: SIMULATION RESULTS IN CASE C USING THE SSVCA 

 DSA IDSA JBSA POSA 

ΔQDGx (MW) 
x ∈ {1, 2, 3, …, 22} 

DG5=2.31 
DG18=2.31 

DG4=1.0923 
DG5=2.31 

DG17=0.0749 
DG18=2.31 

DG4=1.291 
DG5=2.31 

DG17=0.1627 
DG18=2.31 

DG4=1.292 
DG5=2.31 

DG17=0.1636 
DG18=2.31 

ΔPDGx (Mvar) 
x ∈ {1, 2, 3, …, 22} 

DG5=0.8279 
DG18=0.2976 

NA NA NA 

OF 5.7455 5.7872 6.0738 6.0757 
Ct (s) 0.15 0.35 0.36 0.35 
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are respectively equal to 0.0015 pu, 0.0003 pu, 0.0012 pu and 0.0012 pu. Given that a smaller 
error exists in the IDSA, the latter solves the voltage control problem with the lowest objective 
function (excluding the DSA results as the voltage violations are not completely removed in 
this case).  

 

4.9. Discussion on the results 

4.9.1. Regarding the numerical validation of the voltage sensitivity analysis 
methods through gradual variations of node powers  

The analyses of this section have been carried out on a working point corresponding to the full-
generation-and-min-load state resulting in the voltage rise problem in the studied system. Given 
that the initial reactive powers of DGs are set to zero, node reactive power changes do not have 
considerable effects on branch active and reactive power losses. Consequently, it is seen that 
both DSA and IDSA methods exhibit similar performances in case of reactive power changes, 
although the results obtained by the IDSA are slightly more accurate than the DSA ones. On 
the contrary, in the considered working point, the initial DG active powers are maximal which 
means that active power changes have high impacts on the branch active and reactive power 
losses. Since power loss variations as a function of nodal power changes and their eventual 
impacts on node voltages are taken into account in the IDSA, it shows superior results to those 
of the DSA. The latter leads to big mismatches when active power changes are applied (see 
figures 4-2, 4-4 and 4-6). Therefore, it can be confirmed that the IDSA method is indeed an 
improved version of the DSA. For the same reason, at the buses which are far from the slack 
node (like bus 26 or 62) the IDSA shows more accurate voltage estimations compared to the 
JBSA and POSA ones too. 

The JBSA derives analytically the nodal voltage-power relationships based on the Taylor series 
theorem. Generally, the JBSA has a high accuracy when power variations are small or in the 
case that the node voltage-power relationships are quite linear. The example for the former 
condition is when the JBSA is used in the NRLF study where the vectors of nodal power 

 
Figure 4-11: The initial and corrected voltages using the SSVCA in case C 
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variations (known also as power residuals) are very small. The latter case is similar to the 
analyses performed at bus 9 of the UKGDS. Due to nearly linear voltage-power characteristic  
at bus 9 and because of the introduced approximation of the IDSA, the JBSA may show more 
accurate voltage estimation at this bus compared to the IDSA one (e.g. figure 4-6 corresponding 
to voltage response at bus 9 subject to active power variation). The last statement is also valid 
for the POSA method. The JBSA and POSA rely on the similar concept for extracting the 
voltage sensitivity coefficients; consequently, they lead to almost identical results.  

4.9.2. Regarding the numerical validation of the voltage sensitivity analysis 
methods through the ABC index  

On the basis of the investigation performed using the ABC index, it is verified once more that 
the power losses have direct impacts on the accuracy of the VSA. As it is shown in tables 4-1 
to 4-4, the IDSA formulation incorporating power losses has led to considerably better 
performances compared to the DSA ones. Similarly, at the buses which are far from the slack 
bus (like buses 26 and 62), the IDSA can have more accurate voltage estimations than the JBSA 
and POSA ones too. 

4.9.3. Regarding the multi-step voltage control algorithm  

Performance of the studied VSA methods is tested using the MSVCA when only active or 
reactive power of DGs is used as well as in the case that both DG active and reactive powers 
are controlled for the voltage regulation end. In the three studied cases, the MSVCA 
incorporating the IDSA has led to the most accurate voltage estimations. It is due to the fact 
that the MSVCA has employed DGs located in the end of feeders for the voltage regulation 
purpose given that they have higher impacts on the violated voltages. As it has been shown 
before, the IDSA has a better performance compared to other studied VSA methods at the buses 
located in the end of feeders. In the IDSA formulation, sensitivity of power losses in all lines 
with respect to power changes at the DG-connected buses is needed. As a consequence, the 
calculation time of the MSVCA incorporating the IDSA is increased compared to case of using 
other studied VSA methods.  

Furthermore, it is confirmed again that thanks to the closed-loop functioning mode of the 
MSVCA, it is capable of solving the voltage control problem even in presence of an inaccurate 
VSA data. For instance, in case B using the MSVCA, the DSA has led to wrong voltage 
estimations with the relative errors as big as 12.4%. The voltage violations however have been 
eventually removed using the DSA with some extra iterations compared to the MSVCA results 
using other VSA methods.  

4.9.4. Regarding the single-step voltage control algorithm  

In the SSVCA, when reactive power changes are applied (case A), using all introduced VSA 
methods, the system voltages are returned into the permitted voltage range while the IDSA 
leads to the most accurate voltage estimations. In case B when only active powers of DGs are 
curtailed, the SSVCA incorporating the DSA does not completely solve the voltage control 
problem and some voltage violations are remained after the voltage regulation. The inaccuracy 
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of the DSA with respect to active power changes is covered in the IDSA. As it can be seen in 
figure 4-10, the corrected voltages obtained by the SSVCA employing IDSA are within the 
permitted voltage range. Similarly, using the POSA and JBSA, the voltage violations are 
removed in case B. However, the corrected voltages obtained according to the IDSA, POSA, 
and JBSA in case B are entered into the permitted voltage range as it can be seen in figure 4-
10. This indicates that the solutions of the SSVCA obtained by these VSA methods do not 
belong to the most optimal one. From the figures 4-2, 4-4, and 4-6, it can be noticed that the 
IDSA, POSA and JBSA methods can estimate properly the node voltages subject to active 
power changes. However, those voltage-active power characteristics are obtained when active 
power varies only in a single bus of the system and all other parameters are assumed to remain 
unchanged. In the SSVCA, since the voltage violations at all buses should be removed 
simultaneously, this last assumption does not hold necessarily. For instance, regarding the 
considered working point, 27 buses of the UKGDS located in feeders 1 and 4 have different 
amounts of voltage violations. In order to manage this voltage control problem, contribution of 
more than one DG is needed. Consequently, because of the mutual impacts of the selected DGs 
on each other, the accuracy of the VSA is reduced such that the SSVCA cannot find the most 
optimal solution. It should be noted that the results of case B correspond to the studied working 
point where all DGs produce active powers equal to 90% of their rated values and load powers 
are at 10% of their respective nominal values. In the less extreme voltage violation situation, a 
smaller sum of the DG active power curtailment is needed for the voltage regulation, therefore, 
the mutual impacts of DG active powers are reduced.  

4.9.5. Regarding the management cost of the system   

In the proposed VCAs, the CP and CQ coefficients can be associated with the real operating 
costs of DG active and reactive powers. In this way, objective function of the VCA gives us the 
voltage management cost of the system. The costs of active power curtailment and reactive 
power control of DGs are equal to 100 €/MWh and 25 €/Mvarh, respectively, according to [19]. 
Supposing that the control command defined by the VCA will be kept constant for 60 minutes, 
the voltage management cost of the system can be calculated considering the sum of demanded 
power changes and its corresponding cost over a 60-minute horizon. For instance, regarding the 
results given in tables 4-6 and 4-7 (belonging to case A using the MSVCA), the voltage 
management costs related to the reactive power contribution of the selected DGs are 9289 €, 
9283 €, 9670 € and 9673 € when the DSA, IDSA, JBSA and POSA methods have been used 
respectively. Therefore, it is noticed that having a more accurate VSA can lead to reduction of 
the system management costs.   

4.10. Conclusion   

In this chapter, the IDSA method is developed which presents a complementary formulation of 
the DSA by incorporating variations of power losses in the system branches arisen from the 
nodal power changes and their eventual impacts on the node voltages. Effectiveness of the 
IDSA in the voltage estimation is investigated and compared with the voltage results obtained 
by the DSA, JBSA, and POSA methods. On the basis of the simulation results, it is found 
basically that the power losses have direct impacts on the accuracy of the VSA methods. When 
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the working point is slightly changed or the power variations are applied at the buses close to 
the slack node, the power loss impact is small, as a result, the VSA can estimate voltage-power 
relationship with little error. Conversely, when power at the buses located at the end of feeders 
is changed, the power loss impacts become considerable. Consequently, it is observed that the 
DSA, JBSA and POSA cannot accurately estimate the voltage response subject to power 
variation. In this case, the IDSA method shows a better performance in comparison with other 
studied VSA methods. In a centralized voltage control application, given that the voltage 
violations occur mostly at the end of the system feeders, the power changes at the buses located 
at the end of feeders are demanded. Consequently, it is seen that the VCA employing the IDSA 
has led to the most accurate voltage estimation.  

In the next chapter, the MSVCA and SSVCA are equipped with a complementary 
functionality to control the voltage level at the secondary side of the substation transformer 
through the transformer OLTC. The proposed VCAs in the single-step and multi-step forms are 
utilized in order to manage the voltage control problem of the UKGDS through controlling the 
DG powers and OLTC set-point.  

4.11. Chapter publication  

This chapter has led to the following publication: 

 B. Bakhshideh Zad, J. Lobry and F. Vallée, "A new voltage sensitivity analysis method 
incorporating power losses impact," Electric Power Components and Systems (Under 
review: initial submission on August 2017, revised paper has been submitted on 
February 2018). 
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Chapter 5: Optimal control of the transformer tap changer and 

DG powers for managing the voltage constraints 

  

5.1. Abstract  

Functionality of the proposed VCAs in the multi-step and single-step forms presented in chapter 
3 is evolved here by adding the possibility of controlling the voltage level at the secondary side 
of the substation transformer through the OLTC. The proposed VCAs of this chapter will have 
the OLTC action, reactive power control of DGs and active power curtailment of DGs as 
available measures in order to manage the voltage constraints and will eventually use the most 
optimal combination of these control options to this end. A straightforward approach is 
proposed here in order to derive sensitivity of node voltages with respect to the OLTC action. 
Thanks to the use of the sensitivity data, the voltage control problem is formulated as a linear 
optimization problem like before. However, due to introduction of the transformer tap changer 
with a discrete model, the optimization problem is converted into the Mixed-Integer Linear 
Programing (MILP) having the DG active and reactive powers as the continuous variables and 
the OLTC set-point as the discrete one. The numerical validation of the proposed centralized 
sensitivity-based VCAs is carried out on the 77-bus UKGDS in the voltage rise and drop 
conditions as well as in the case that simultaneous voltage drop and rise violations occur in the 
system feeders. The accuracy of the voltage estimation obtained by the sensitivity analysis 
regarding the effect of the OLTC action on the node voltages is investigated.  

5.2. On-load tap changer inclusion in the proposed sensitivity-based 
voltage control approach 

On-load tap changer modifies the turn ratio of the transformer winding to provide the voltage 
regulation possibility at the secondary side of the transformer. The OLTC utilization for 
managing the voltage constraints has small effect on the branch currents since it directly 
controls the node voltages. Consequently, it will not cause congestion problem in the system 
branches and will not affect considerably the power losses. This is the important advantage of 
the OLTC utilization over the reactive power control of DGs. 

Tap changing operation is done with a time delay due to the slow dynamics of the OLTC 
mechanism. Also, if more than one tap change is needed, each tap movement operation is 
performed with that specified delay. Dynamic behaviour of the OLTC will not be taken into 
consideration in this work and OLTC action is modelled by adjustment of the voltage set-point 
at the bus next to the slack bus (i.e. secondary side of the transformer substation).  

The OLTC action is incorporated in the proposed voltage control approach through the 
sensitivity analysis. Supposing that sensitivity of nodal voltages with respect to transformer tap 
changes is available, the linearized optimization problems of the MSVCA and SSVCA 
(presented in chapter 3) will be extended here in order to include the OLTC action.     
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5.2.1. Sensitivity of node voltages with respect to transformer tap changes  

Sensitivity of node voltages with respect to tap changes can be obtained based on the ‘‘perturb-
and-observe’’ concept. Similarly to the POSA method giving the linearized relations between 
nodal voltages and powers (presented in section 4.4.2), in order to determine impacts of 
transformer tap changes on node voltages, two LF calculations are performed while the 
transformer tap is changed (perturbed) by one step. Then, the node voltages subject to this 
perturbation of the tap position are evaluated and effects of one step change of the transformer 
tap on the system voltages are extracted. In addition, an analytical method to derive voltage 
sensitivity coefficients with respect to the transformer tap position has been introduced in [31]. 
In this chapter, a straightforward approach is proposed to obtain the latter as follows.  

Firstly, it is assumed that the load consumptions and DG powers are independent of the voltage 
so that the OLTC action will not change their actual values. Secondly, it is supposed that the 
OLTC will change the voltage of the secondary side of the transformer within the small range, 
which is defined based on the upper and lower permitted voltage limits of the system. When 
the transformer tap changes are limited to a small range and the node powers are constant, it 
can be expected that the tap changes will not affect considerably the node and branch currents. 
As a result, the voltage variations on the system branches arisen from the OLTC action can be 
neglected. Therefore, it can be expected that the voltage modification created by a small tap 
change will be reflected throughout the entire system nodes. In this chapter, impacts of the 
OLTC action on the system voltages are approximated by the idea that the same voltage change 
performed on the OLTC point is followed in all the system nodes. Accuracy of this 
approximation will be tested later through the numerical simulations.  

According to [68], OLTC can provide voltage regulation possibility in the range of ±10% of 
the nominal voltage (i.e. 1 pu) within 40 steps. Therefore, each transformer tap change is equal 
to 0.005 pu voltage modification at bus 2 (secondary side of the substation transformer) of the 
studied network. However, the OLTC cannot use its whole range for the voltage regulation due 
to the limitation of changing the voltage at the tap changer node imposed by the permitted 
voltage limits. Considering the permitted voltage range which has a threshold of 0.06 pu (from 
the 0.97 pu lower voltage limit to the 1.03 pu upper voltage bound), it is concluded that in order 
to have the OLTC voltage within this range, the OLTC action should be limited to 12 steps 
(12×0.005=0.06 pu). Moreover, an extra limitation is defined for the OLTC action since it is 
known that there will be a big voltage variation on the impedance of the transformer. 
Consequently, the OLTC action is limited to 8 (±4) steps that correspond to a voltage regulation 
equal to ±0.02 pu around 1 pu at the secondary side of the substation transformer. Therefore, 
sensitivity of node voltages with respect to one step movement of the transformer tap position 
is equal to 0.005 (0.04/8) pu.  

5.3. Sensitivity-based voltage control approach involving OLTC and DG 
powers 

The proposed VCAs of this chapter rely on the linear approximation of the relations between 
system voltages and decision variables namely reactive power changes of DGs, active power 
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curtailment of DGs and the OLTC set-point. While the first two control variables are continuous, 
the last one has a discrete or integer nature. In order to include the OLTC in the VCA 
formulation, it is possible to treat it as a continuous variable and then round the solution of the 
VCA to the nearest integer value similar to [17]. However, this approach will cause an error in 
the VCA since what has been demanded by the VCA and what is applied as the control decision 
is not the same. To avoid such an issue, the voltage control problem should be formulated as a 
MILP from. 

5.3.1. Generic mixed-integer linear programming formulation  

In the MILP formulation, the vector of decision variables x consists of the continuous and integer 
variables. The generic MILP formulation is written as 

                                                                  Minimize: TC x                                                                         (5-1) 

                                                                            Ax b                                                                       (5-2) 

                                                                          eq eqA x = b                                                                  (5-3) 

                                                                           b bl x u                                                                  (5-4) 

where CT is the transpose vector of coefficients of linear objective function, A is the matrix of 
the linear inequality constraints and Aeq is the matrix of the linear equality constraints. The 
upper and lower bounds on the control variables are defined by ub and lb, respectively. The 
linear equality and inequality constraints are limited to beq and b, respectively.  

5.3.2. Multi-step voltage control algorithm  

As mentioned before in chapters 2 and 3, in the MSVCA, the priority of the voltage regulation 
is given to the bus with the biggest voltage violation so that at each iteration of the MSVCA, the 
voltage at the bus with the biggest violation will be returned inside the permitted voltage limits. 
The MSVCA starts with running an initial LF calculation. If the voltage violations are found in 
the system, the main iterative-based procedure of the MSVCA starts with I=1. In the first 
iteration (I=1), the voltage at the bus with the biggest violation is selected and the value of 
voltage violation from the permitted voltage limit is determined at that bus. It gives us the 
required value of voltage change in order to return the voltage of that bus inside the permitted 
voltage range. The voltage regulation at I=1 is formulated as an optimization problem which 
aims at minimizing the total weighted changes of control variables subject to the voltage 
constraint relating to the worst voltage violation as well as the bounds on the control variables. 
The MILP optimization toolbox of MATLAB is used to solve the optimization problem of the 
MSVCA. Once the optimization problem is solved, the new set-points of DGs as well as the 
transformer tap position are defined in order to manage the biggest voltage violation in I=1. 
Then, a new LF calculation is done at the end of the iteration one (including the new set-points 
of control variables) in order to define whether the MSVCA must go to the next iteration or it 
can stop. If a new voltage violation is found, the iteration 2 starts, and a new optimization 
problem is composed to bring back the biggest voltage violation of the second iteration within 
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the permitted voltage limits. By solving this new optimization problem, the control commands 
that return the biggest voltage violation of the second iteration within the permitted voltage 
range are defined. Again at the end of I=2, a new LF calculation is performed to decide if the 
next iteration of the MSVCA is needed or not. The iterative procedure of the MSVCA continues 
as long as a voltage violation exists.  

In the voltage rise case, the required value of voltage change (∆𝑉௪
௥௘௤,௥௜) at the bus with the biggest 

voltage violation (i.e. bus w) is calculated with regard to the permitted upper voltage limit (i.e. 
the 1.03 pu limit) using the following equation.  

                                                                   , 1.03req ri ri
w wV V                                                            (5-5)     

where 𝑉௪
௥௜ is the voltage value at the bus w which has the biggest voltage rise. In order to remove 

voltage violation of bus w relating to the first iteration of the MSVCA, the following 
optimization problem is formulated.    

                                      
1

GN

Q DGx P DGx TR TR
x

OF C Q C P C Tap


     Minimize:                           (5-6) 

                            
,

1

GN ri ri ri
req riw w w

DGx DGx TR w
x DGx DGx Tap

V V V
Q P Tap V

Q P V

   
          


                      

(5-7) 

                                                    0   ,  DGx DGxP P x x G                                                      (5-8) 

                                            
min max   ,  DGx DGx DGxQ Q Q x x G                                                      (5-9) 

                                                 min max
TR TR TRTap Tap Tap                                                      (5-10) 

where NG is the total number of DGs that contribute in the voltage control problem. ΔPDGx and 
ΔQDGx are the active and reactive power changes of the DG number x. Also, CP and CQ are the 
weighting coefficients for the active and reactive power changes of DGs. ΔTapTR and CTR 
denote the transformer tap changes, and its corresponding weighting coefficient, respectively. 
The upper and lower bounds on the control variables are taken into account using (5-8) to (5-
10). 

In the presented optimization problem, the reactive power changes of DGs and the transformer 
tap position movements are restricted in the ranges from the negative to positive values while 
the active power curtailment of DGs is limited to the non-negative bound. In presence of control 
variables unrestricted in sign, when there is no constraint to limit them, the solution of the linear 
optimization problem would be the lower or upper bound of those control variables. This is not 
definitely a proper solution for the voltage control problem. Therefore, similarly to chapter 2, 
the control variables with the non-positive bounds should be modified such that the linear 
optimization problem only includes the control variables with the non-negative bounds. To this 
end, the reactive power changes of DGs will be presented with two auxiliary variables 
introduced in chapter 2 as 
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                                                    ind cap
DGx DGx DGxQ Q Q                                                  (5-11) 

where ∆𝑄஽ீ௫
௜௡ௗ  represents the reactive power changes of DGs towards the inductive direction and 

∆𝑄஽ீ௫
௖௔௣  takes into account the capacitive reactive power changes of DGs. Both of these auxiliary 

variables are restricted in the non-negative ranges. Similarly, the OLTC operation is modelled 
by the use of two new auxiliary variables as below, which have also non-negative bounds.  

                                                        up down
TR TR TRTap Tap Tap                                            (5-12) 

where ∆𝑇𝑎𝑝்ோ
௨௣ and ∆𝑇𝑎𝑝்ோ

ௗ௢௪௡ include respectively the upward and downward transformer tap 

position movements in the optimization problem. Substituting for auxiliary variables from (5-
11) and (5-12), the above optimization problem is rewritten as follows including five sets of the 

control variables namely ∆𝑄஽ீ௫
௜௡ௗ , ∆𝑄஽ீ௫

௖௔௣ , ∆𝑇𝑎𝑝்ோ
ௗ௢௪௡ , ∆𝑇𝑎𝑝்ோ

௨௣  and ∆𝑃஽ீ௫  which are all 

restricted to non-negative bounds.  

         
1

GN
ind cap up down

Q DGx DGx P DGx TR TR TR
x

OF C Q Q C P C Tap Tap


       Minimize:         (5-13) 

, , ,
,

1

( ) ( )
GN req ri req ri req ri

ind cap up down req riw w w
DGx DGx DGx TR TR w

x DGx DGx Tap

V V V
Q Q P Tap Tap V

Q P V

   
              

    (5-14) 

                                                   0  ,  DGx DGxP P x x G                                                       (5-15) 

                                 
min max    ,  ind cap
DGx DGx DGx DGxQ Q Q Q x x G                                              (5-16)                  

                                     min maxup down
TR TR TR TRTap Tap Tap Tap                                              (5-17) 

                           , , , 0   ,  ind cap up down
DGx DGx TR TRQ Q Tap Tap x x G                                      (5-18) 

In order to have always a positive objective function, ΔQDGx and ΔTapTR in (5-6) are replaced 
by the absolute values of their equivalences given in (5-11) and (5-12), respectively. The 
inequality constraint (5-14) represents the fact that the control variable changes must return the 
voltage of the bus with the biggest voltage rise inside the permitted voltage range. The voltage 
sensitivity coefficients in (5-14) are defined parameters. The required value of voltage change 
for solving the voltage violation at the bus w (having the biggest voltage rise) is also a defined 
parameter but the control variables are unknown that must be optimally selected.  

Based on the formulation of the DSA method, it is known that the voltage sensitivity 
coefficients with respect to active and reactive power changes of DGs have negative values (see 
(2-18) and (2-19)). On the contrary, the sensitivity of node voltages with respect to the 

transformer tap movement is positive. Considering the fact that ∆𝑉௪
௥௘௤,௥௜  is negative in the 

voltage rise state, in order to satisfy the constraint (5-14), based on the optimality of each of the 
control decisions, the MSVCA may demand DG reactive power changes towards the inductive 
direction, curtailment of the DG active powers and decrease of the tap position. It is worth 
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mentioning that the capacitive reactive power changes of DGs and the upward transformer tap 
movement will not be used in the voltage rise case because they will worsen the voltage 
violation of the bus w. 

In the voltage drop condition, given that the permitted lower voltage limit (=0.97 pu) is 
considered as the targeted point of the MSVCA, the required value of voltage change at the bus 
with the worst voltage drop is obtained according to  

                                                               , 0.97req dr dr
w wV V                                                          (5-19) 

The inequality constraint that takes into account the needed value of voltage modification at the 
bus with the worst voltage drop violation (i.e. bus w) is given by 

     ,

1

( ) ( )
GN dr dr dr

ind cap up down req drw w w
DGx DGx DGx TR TR w

x DGx DGx Tap

V V V
Q Q P Tap Tap V

Q P V

   
              

       (5-20) 

In the voltage drop state, ∆𝑉௪
௥௘௤,ௗ௥ is positive, 

డ௏ೢ೏ೝ

డ௏೅ೌ೛
 is also positive, but 

డ௏ೢ೏ೝ

డொವಸೣ
 and 

డ௏ೢ೏ೝ

డ௉ವಸೣ
 are 

negative, thus, in order to satisfy the abovementioned voltage constraint, reactive powers of 
DGs must change towards the capacitive direction and the tap position should move upward. It 
is worth noting that in the voltage drop state, active power curtailment of DGs will not be used 
since it will worsen the voltage violation issue. The optimization problem of the MSVCA 
mentioned in (5-13) to (5-18) is generally valid for the voltage regulation in the voltage drop 
state with one exception (difference) that the inequality constraint regarding the required value 
of voltage modification given in (5-14) must be replaced by the one in (5-20).    

5.3.2.1. Multi-step voltage control algorithm adaptation to manage the simultaneous 
voltage rise and drop violations 

So far, it has been supposed that there are homogeneous voltage violations in all the system 
feeders meaning that the voltage violations happen either from the permitted upper or lower 
voltage limit. However, it is possible to have voltage rise problem in one feeder and 
simultaneously voltage drop issue in another one. The MSVCA should be reformulated 
accordingly in order to be able to manage voltage violations of such a situation. First of all, 
when there are both voltage rise and drop issues, the MSVCA must be modified in order to 
consider simultaneously the biggest voltage violation from each of the upper and lower voltage 
limits. In this way, it is guaranteed that the corrective decision made for the voltage regulation 
at the bus with the biggest voltage rise will not exacerbate the voltage violation at the bus with 
the worst voltage drop issue and vice versa.  

Moreover, in each iteration of the MSVCA, in addition to the constraints corresponding to the 
current biggest voltage violations from the upper and lower voltage limits, the ones related to 
the previous iterations should be taken into account in order to ensure that the voltage regulation 
in the current iteration will not create problem for the voltages that have been already corrected. 
The optimization problem of the MSVCA to manage the voltage constraints while having 
simultaneous voltage rise and drop issues is written as follows. 



   

100 
  

         
1

GN
ind cap up down

Q DGx DGx P DGx TR TR TR
x

OF C Q Q C P C Tap Tap


       Minimize:          (5-21) 

     ,

1

( ) ( )
GN dr dr dr

ind cap up down req drw w w
DGx DGx DGx TR TR w

x DGx DGx Tap

V V V
Q Q P Tap Tap V

Q P V

   
              

        (5-22) 

     ,

1

( ) ( )
GN ri ri ri

ind cap up down req riw w w
DGx DGx DGx TR TR w

x DGx DGx Tap

V V V
Q Q P Tap Tap V

Q P V

   
              

        (5-23) 

                                                     0  ,  DGx DGxP P x x G                                                      (5-24) 

                                       
min max    ,  ind cap
DGx DGx DGx DGxQ Q Q Q x x G                                         (5-25)                  

                                          min maxup down
TR TR TR TRTap Tap Tap Tap                                          (5-26) 

                                , , , 0   ,  ind cap up down
DGx DGx TR TRQ Q Tap Tap x x G                                 (5-27) 

The inequality constraint (5-22) represents the needed voltage modification at the bus with the 
worst voltage drop violation while constraint (5-23) gives the required value of voltage change 
to return the biggest voltage rise within the 1.03 pu voltage limit. Constraints (5-24) to (5-27) 
take into account the upper and lower bounds of the control variables.  

5.3.3. Single-step voltage control algorithm 

The SSVCA as introduced before in chapters 2 and 3 is designed to return simultaneously all 
the violated voltages inside the permitted voltage range. It is formulated as an optimization 
problem which aims at minimizing the total weighted changes of the control variables subject 
to the voltage constraints regarding all the violated voltages as well as the limits on the control 
variables. The MILP optimization toolbox of MATLAB is used to solve the optimization 
problem of the SSVCA. Once the optimization problem is solved, the needed contribution of 
each control variable to solve the voltage control problem is defined. Then, a new LF calculation 
is carried out including the new set-points of control variables. At this stage, the corrected 
system voltages obtained by the LF study are plotted and the SSVCA stops.  

The SSVCA starts with running an initial LF calculation. If voltage violations are found in the 
system, all buses with the voltage violations are selected. Set U includes the buses with the 
voltage rise issue. For each bus with the voltage rise, the required value of voltage modification 
to remove the voltage violation is calculated with regard to the 1.03 pu voltage limit using the 
equation given in below.  

                                                         1.03    ,req
u uV V u u U                                                    (5-28) 

where u is index for the buses with the voltage rise violation. Regarding the voltage drop state, 
at each bus with the voltage violation, the needed value of voltage modification is obtained with 
reference to the 0.97 pu voltage limit as  
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                                                          0.97    ,req
l lV V l l L                                                      (5-29) 

where l is index for the buses with the voltage drop and set L contains all buses with the voltage 
drop issue. The optimization problem of the SSVCA is given by 

         
1

GN
ind cap up down

Q DGx DGx P DGx TR TR TR
x

OF C Q Q C P C Tap Tap


       Minimize:           (5-30) 

1

( ) ( )   ,
GN

ind cap up down reql l l
DGx DGx DGx TR TR l

x DGx DGx Tap

V V V
Q Q P Tap Tap V l l L

Q P V

   
                

  

                                                                                                                                             (5-31) 

1

( ) ( )   ,
GN

ind cap up down requ u u
DGx DGx DGx TR TR u

x DGx DGx Tap

V V V
Q Q P Tap Tap V u u U

Q P V

   
                

  

                                                                                                                                             (5-32) 

                                                     0  ,  DGx DGxP P x x G                                                      (5-33) 

                                   
min max    ,  ind cap
DGx DGx DGx DGxQ Q Q Q x x G                                              (5-34)                  

                                      min maxup down
TR TR TR TRTap Tap Tap Tap                                               (5-35) 

                              , , , 0   ,  ind cap up down
DGx DGx TR TRQ Q Tap Tap x x G                                    (5-36) 

The aforementioned optimization problem presents the generic formulation of the SSVCA. In 
the case that there is only voltage drop or rise issue, the corresponding voltage constraint to that 
case which would be either (5-31) or (5-32), respectively, is considered in the optimization 
problem.  

5.4. Simulation results  

The numerical validation of the proposed VCAs in the multi-step and single-step forms will be 
carried out on the 77-bus UKGDS presented in figure 3-1. The VCAs will be used to manage 
the voltage control problem when there is only voltage rise or drop violation as well as in the 
case of having simultaneous voltage drop and rise issues in the system feeders.  

In the studied cases, it is supposed that the OLTC action has the smallest weighing coefficient 
compared to other control variables in order to have a dominant involvement of the OLTC in 
the voltage control problem. In this regard, CTR is set to 1 while the reactive power changes of 
DGs are weighted by the coefficient which is 50% bigger than the OLTC one (CQ=1.5). Also, 
the active power curtailment of DGs is penalized by the coefficient which is 100% bigger than 
the OLTC one (CP=2). It should be noted that since the main focus is to evaluate performance 
of the OLTC in the VCAs and the latter does not cause congestion problem while managing the 
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voltage constraints, ampacity limits of branches are disregarded in the simulated cases of this 
chapter. 

5.4.1. Using the multi-step voltage control algorithm 

In the first part of the simulated cases, the MSVCA is utilized in order to manage the system 
voltages in three considered cases when dealing with only voltage rise and voltage drop issue 
as well as the case where both voltage drop and rise violations exist simultaneously.  

5.4.1.1.  In the voltage rise state 

In order to create voltage rise state, a working point is considered in which the loads are at 10% 
of their respective nominal values and DG active powers are equal to 90% of the rated values 
while the initial reactive powers of DGs are set to zero. Table 5-1 gives the optimal contribution 
of the control variables demanded by the MSVCA in order to solve the voltage control problem. 
As it can be seen, within 2 iterations of the MSVCA, the voltage violations are returned into 
the permitted voltage range. The initial system voltages as well as the corrected ones obtained 
by the MSVCA are depicted in figure 5-1. 

 

 

In the studied working point, the biggest initial voltage violation is found at bus 26. In the first 
iteration of the MSVCA, DG5 has been used with its maximum available reactive power (=2.31 

TABLE 5-1: MSVCA RESULTS IN THE VOLTAGE 

RISE CONDITION 

 I=1 I=2 

∆V୵
୰ୣ୯,୰୧

 (pu) 

w 

-0.0298 
26 

-0.008 
62 

ΔQDGx (Mvar) DG5=2.31 DG18= 0.4396 
ΔPDGx (MW) DG5=0.0848 NA 

ΔTapTR -2 -1 
OF Tot 7.293 

 

 
Figure 5-1: System voltages obtained by the MSVCA in the voltage rise condition  
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Mvar) as it has the biggest influence on the voltage at bus 26. The rest of needed voltage 
correction is provided by decreasing the OLTC position to two lower steps and curtailing the 
active power of DG5 equal to 0.0848 MW. At I=2, the inductive reactive power changes of 
DG18 and one step decrease of the tap position manage the voltage violation at bus 62. In the 
end of I=2, the voltage at bus 62 reaches the 1.03 pu voltage limit and since there is no other 
voltage violation, the MSVCA stops at this point.   

5.4.1.2. In the voltage drop state 

In the working point regarding the voltage drop state, all loads are considered to be at their 
maximum values while DG active and reactive powers are equal to zero. It leads to voltage 
violations, which are found in the feeder 1 from buses 9 to 27 and in the end of feeder 4 at the 
buses 61, 62, and 63. Table 5-2 presents the MSVCA results to return theses violated voltages 
within the permitted voltage range. The initial system voltages and the ones obtained after the 
voltage regulation by the MSVCA are shown in figure 5-2. 

    

 

In the studied working point for the voltage drop condition, active power productions of all 
DGs are equal to zero, therefore, the available reactive power capacities of DGs are increased 
to 3.325 (=0.95×3.5) Mvar according to table 2-1 presenting the capability curve of DGs. 
Consequently, the MSVCA will only use reactive power changes of DG5 in the iterations one 
and two to solve the voltage drop of the buses 27 and 21 located in feeder 1. The initial voltage 

TABLE 5-2: MSVCA RESULTS IN THE VOLTAGE 

DROP CONDITION 

 I=1 I=2 

∆V୵
୰ୣ୯,ୢ୰ (pu) 

w 

0.0217 
27 

0.008 
21 

ΔQDGx (Mvar) DG5=-2.621 DG5=-0.113 
ΔTapTR NA NA 

OF Tot 4.102 

 

 
Figure 5-2: System voltages obtained by the MSVCA in the voltage drop condition  
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drop of the buses located at the end of the feeder 4 is managed while solving the voltage 
violations at the buses 27 and 21 in the feeder 1.   

5.4.1.3. In the simultaneous voltage drop and rise problems 

In order to create simultaneous voltage rise and drop violations, it is supposed that in the feeder 
1, all the loads are at their maximal values and active power productions of DGs are equal to 
zero while in all other feeders, loads are equal to 10% of the nominal values and active powers 
of DGs are equal to 90% of their rated powers. The considered working point creates violations 
of lower permitted voltage limit in the feeder 1 while, in the feeder 4, voltage violations from 
the 1.03 pu limit are found at the buses 54 to 63. Table 5-3 summarizes the MSVCA 
performance for managing the voltage constraints. Also, figure 5-3 depicts the node voltages of 
the studied case.  

 

 

As it can be seen in table 5-3, in I=1, the biggest voltage rise and drop violations happen at 
buses 62 and 26, respectively. In order to manage the voltage violations at I=1, the active power 
production of DG18 located at bus 62 is curtailed by 1.591 MW and its reactive power is 
changed by 2.31 Mvar (inductive utilization). Also, DG5 located at bus 26 is asked to provide 

TABLE 5-3: MSVCA RESULTS HAVING SIMULTANEOUS VOLTAGE RISE AND 

DROP VIOLATIONS  

 I=1 I=2 

Vw (pu) 

w 

0.9507 
26 

1.0523 
62 

0.9708 
26 

1.0315 
62 

1.032 
59 

0.9691 
20 

ΔQDGx (Mvar) 
x ∈ {1, 2, 3, …, 22} 

DG5= -2.8 
DG18=2.31 

DG4= -0.24 
DG17= 0.425 

ΔPDGx (MW) 
x ∈ {1, 2, 3, …, 22} DG18=1.591 NA 

ΔTapTR NA NA 
OF Tot 11.844 

 

 
Figure 5-3: System voltages obtained by the MSVCA when having simultaneous voltage 

rise and drop violations 
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2.8 Mvar capacitive reactive power (to increase the voltages of feeder 1). In I=2, the biggest 
voltage rise and drop violations occur at buses 59 and 20, respectively. In addition to the voltage 
constraints regarding buses 59 and 20, the previous corrected voltages at buses 26 and 62 should 
be also taken into account. In I=2, DG4 is used to increase the voltage values in the end of the 
feeder 1 by providing 0.24 Mvar capacitive reactive power and DG17 is asked to increase its 
reactive power to 0.425 Mvar to reduce the voltages in the feeder 4. Figure 5-3 confirms that 
the corrected voltages obtained at the end of I=2 have been effectively placed within the 
permitted voltage range.   

It is worth mentioning that the OLTC has not been employed in the voltage regulation procedure 
because when both voltage rise and drop issues exist, the OLTC action solves the voltage 
violations of one direction but it simultaneously worsens the voltage violations of another 
direction.  

5.4.2. Using the single-step voltage control algorithm 

In the second part of the simulations, the SSVCA is used to manage the voltage violations of 
the same working points as mentioned in the previous section corresponding to the voltage rise 
case, voltage drop state, and simultaneous violations of the upper and lower voltage limits.  

5.4.2.1. In the voltage rise state 

As known, the SSVCA manages all the voltage violations at once. In the voltage rise state, there 
will be number of [U] inequality constraints taken from (5-32) where [U] is cardinality of set 
U that includes all buses with the voltage rise. Table 5-4 presents the SSVCA results in the 
voltage rise case. Given that the transformer tap changer has a high impact on all violated 
voltages and its impact is identical on all nodes, the tap changer position is decreased by 4 steps 
which is its maximum possible movement. The reactive power of DG5 is also changed by 1.191 
Mvar (inductive) to provide the rest of the needed voltage change for satisfying the voltage 
constraints. The initial voltages and the ones obtained after the voltage regulation by the 
SSVCA are depicted in figure 5-4.  

 

TABLE 5-4: SSVCA RESULTS IN THE VOLTAGE 

RISE CONDITION 

ΔQDGx (Mvar) 
x ∈ {1, 2, 3, …, 22} DG5=1.191 

ΔPDGx (MW) 
x ∈ {1, 2, 3, …, 22} NA 

ΔTapTR -4 

OF 5.786 
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In figure 5-4, it is seen that after voltage regulation, the voltage at bus 2 (secondary side of the 
substation transformer) reaches 0.97 pu while the OLTC position has been decreased by 4 steps. 
It verifies the necessity of the extra limit that was defined for the OLTC action to restrict it 
within 8 steps (±4 step changes from 1 pu). As stated before, there is a big voltage variation on 
the transformer impedance that should be taken into account when defining the OLTC bounds. 

Furthermore, when the voltage regulation using the SSVCA has been completed, it is observed 
from figure 5-4 that small voltage violations remain at the buses located in the end of feeder 1. 
This is due to the inaccuracy of the sensitivity data used inside the SSVCA to linearize impacts 
of the control variables on the node voltages.  

5.4.2.2. In the voltage drop state 

In the voltage drop case, the main voltage violations happen in feeder 1. Reactive power change 
of DG5 which has the biggest impact on the voltages at the end of the feeder 1 together with 
the transformer tap movement are employed by the SSVCA in order to remove the voltage 
violations. Table 5-5 presents the SSVCA results in the voltage drop case. The initial and 
corrected voltages are depicted in figure 5-5.  

   

 
Figure 5-4: System voltages obtained by the SSVCA in the voltage rise condition 

TABLE 5-5: SSVCA RESULTS IN THE VOLTAGE 

DROP CONDITION 

ΔQDGx (Mvar) 
x ∈ {1, 2, 3, …, 22} DG5=-1.44 

ΔTapTR 2 

OF 4.16 
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In the voltage drop case, the initial voltage violation at bus 24 constructs the only binding 
voltage constraint of the SSVCA. Therefore, the error arisen from the VSAs (relating to reactive 
power change of DG5 and OLTC action) can be found from the corrected voltage of bus 24 in 
figure 5-5. The latter is equal to 0.9709 pu which indicates that an error equal to 0.0009 pu is 
arisen in the SSVCA due to the VSA inaccuracies.  

5.4.2.3. In the simultaneous voltage drop and rise problems 

In the considered working point for simultaneous voltage rise and drop violations, the lower 
voltage limit violations are found in feeder 1 while the upper voltage limit violations happen in 
feeder 4. Table 5-6 presents the optimal values of the control variable changes to manage the 
voltage constraints and the corrected voltages are shown in figure 5-6. 

   

As it can be seen in table 5-6, the transformer tap changer has not been employed by the SSVCA 
since using OLTC to solve the voltage rise problem in feeder 4 will worsen the voltage drop 
issue of the feeder 1 and vice versa. Moreover, reactive power changes of DGs in one feeder 
have impacts on voltages of other feeders due to presence of the transformer reactance which 
is like a common point among all feeders. Therefore, in presence of both voltage rise and drop 
problems, an efficient control option should have big impacts on the violated voltages of its 
own feeder while having less undesired effects on the voltages of the other feeders. Considering 

 
Figure 5-5: System voltages obtained by the SSVCA in the voltage drop condition 

TABLE 5-6: SSVCA RESULTS HAVING 

SIMULTANEOUS VOLTAGE RISE AND DROP VIOLATIONS 

ΔQDGx (Mvar) 
x ∈ {1, 2, 3, …, 22} 

DG5=-3.189 
DG17=0.686 
DG18=2.31 

ΔPDGx (MW) 
x ∈ {1, 2, 3, …, 22} DG18=1.116 

ΔTapTR NA 

OF 11.509 
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the impacts of the control variables on the violated voltages, the SSVCA asked capacitive 
reactive changes of DG5 in order to increase the voltages in feeder 1. It also employed active 
power curtailment of DG18 and inductive reactive power changes of DG17 and DG18 to 
decrease the voltages in feeder 4. 

 

5.5. Evaluating accuracy of the sensitivity analysis regarding effects of 
OLTC action on node voltages 

In the sensitivity analysis regarding effects of transformer tap changer on node voltages, it was 
supposed that for a small range of the transformer tap movement, the voltage modification 
created by the OLTC action will be reflected exactly throughout all the system nodes. This 
approximation can lead to errors in the voltage control procedure. Moreover, because of the 
transformer tap movement, the turn ratio of transformer varies. This has an effect on the internal 
impedance of the transformer. The tap changing transformer with the nominal turn ratio is 
modelled with a series impedance ZT or its equivalent admittance YT (=1/ZT). When the 
transformer turn ratio is off-nominal, the transformer impedance (or admittance) should be 
modified accordingly. References [68] and [69] have suggested a formulation for the exact 
modelling of the transformer impedance incorporating impact of the off-nominal turn ratio. 
According to [68] and [69], a transformer with a per-unit admittance YT in series with an ideal 
transformer representing the off-nominal turn ratio is considered as shown in figure 5-7.              

 

 
Figure 5-6: System voltages obtained by the SSVCA when having simultaneous voltage 

rise and drop violations   
 

 
 

Figure 5-7: Equivalent model of the tap changing transformer  
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where a is per-unit off-nominal tap position varying in a small range. Bus x is fictitious one 
located between nodes i and j. Bus i is the non-tap side and bus j is the tap side one. Voltage at 
bus x is obtained by 

                                                                          1
x jV V

a
                                                                   (5-37) 

Given that the complex powers on both sides of the ideal transformer are equal, we have 

                                                                         i
j

I
I

a
                                                                    (5-38) 

The current Ii is expressed by 

                                                                     ( )i T i xI Y V V                                                             (5-39) 

Substituting for Vx from (5-37), (5-39) is rewritten as 

                                                                    t
i T i j

Y
I Y V V

a
                                                            (5-40) 

Substituting for Ii from (5-40) gives the Ij according to (5-38) as  

                                                                
2

T T
j i j

Y Y
I V V

a a


                                                          (5-41) 

In the admittance matrix form, the currents Ii and Ij given in (5-40) and (5-41) are written as 

                                                          

2

T
T

i i

j jT T

Y
YI Va

I VY Y

a a

     
     
      

                                                   (5-42) 

Consequently, in case of having an off-nominal turn ratio equal to a, the admittance matrix 
between nodes i and j should be modified according to (5-42). Figure 5-8 presents the equivalent 
π-model of the tap changing transformer located between nodes i and j. 

 

 

Figure 5-8: Equivalent π-model of the tap changing transformer  
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5.5.1. Numerical tests 

The accuracy of the proposed sensitivity analysis approach regarding effects of transformer tap 
changes on node voltages is investigated here through the numerical simulations carried out on 
the introduced working point relating to the voltage rise case. To this end, the transformer tap 
is changed within the wide range of ± 20 steps around its initial point corresponding to the 
nominal transformer turn ratio. For each single movement of the tap position, the LF calculation 
including the exact formulation according to (5-42) is carried out in order to evaluate impacts 
of the tap changing operations on the node voltages. In the end, characteristics of node voltages 
in function of tap position changes are obtained which give us the exact relations between node 
voltages and transformer tap changes. In addition, node voltages subject to tap changes are 
obtained using the proposed sensitivity analysis method of this chapter (assuming that the nodal 
voltage modifications are the same as the voltage changes applied by the OLTC action). The 
obtained characteristics through the exact method (based on the consecutive LF calculations) 
as well as the approximated one (using the proposed sensitivity analysis method) are compared 
in figure 5-9. It is basically known that the relation between the transformer tap movement and 
the node voltage becomes more non-linear by getting distance from the slack node. Therefore, 
the voltage characteristic subject to the transformer tap changes at bus 26 located at the end of 
the feeder 1 has been chosen for the illustration in figure 5-9.  

 

According to figure 5-9, when the transformer tap position is moved within the defined range 
of this chapter (i.e. ±4 steps around the nominal turn ratio), a close agreement is observed 
between the voltage values approximated by the proposed sensitivity analysis approach and the 
exact voltages obtained using the LF calculations.   

Furthermore, the error arisen from the sensitivity analysis in the VCA is evaluated here by the 
numerical tests performed in the voltage rise and drop conditions. The SSVCA is used in this 
regard since in the MSVCA, the errors will be covered in the end of the voltage regulation 
procedure due to its closed-loop model. In the SSVCA, it is supposed that the weighing 

 
Figure 5-9: Voltage characteristics at bus 26 as function of the tap position movements 

obtained by the proposed sensitivity analysis method and the exact LF calculations  
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coefficients related to the active and reactive power changes of DGs are 100 times bigger than 
that of the transformer OLTC in order to have eventually maximum contribution of the OLTC 
in the voltage regulation. The obtained set-point from the SSVCA will be verified once with 
the simple LF calculation (neglecting impact of tap changes on transformer impedance) and 
once more using the so-called exact LF study that takes the off-nominal turn ratio into account 
according to (5-42). The voltage results obtained through these two LF study methods are 
analysed and discussed.  

In the studied voltage rise condition as presented before, the SSVCA will ask to decrease the 
transformer tap position by 4 steps and to change the reactive power of DG5 equal to 1.191 
Mvar (inductive). The system voltages obtained by the simple LF calculation as well as the 
exact approach are shown in figure 5-10. Also, the absolute value of errors between the voltages 
obtained by these two LF methods is presented in figure 5-10. 

 

As it can be seen in figure 5-10, due to the error in the sensitivity analysis, small voltage 
violations are found after the voltage regulation at the buses located at the end of feeder 1. Bus 
26 creates the binding constraint of the SSVCA optimization problem. The error between the 
corrected voltage of bus 26 and the targeted 1.03 pu voltage limit is equal to 0.0013 pu. 
Considering the initial voltage violation at bus 26 which was equal to 0.0298 pu, the relative 
error arisen from the sensitivity analysis will be equal to (0.0013/0.0298)×100=4.3%. Also, in 
figure 5-10, it is seen that the voltage values obtained by both of the LF methods are very close. 
The biggest error between the values obtained by the simple LF method and the exact one is 
equal to 3.98×10-4 at bus 2.  

In the voltage drop state, in order to manage the voltage violations, the tap changer position is 
increased by 4 steps to its highest possible position and DG5 is asked to provide 0.185 Mvar 
capacitive reactive power. The system voltages obtained by the two methods of LF calculations 
are presented in figure 5-11.  
 

 
Figure 5-10: System voltages obtained by the simple and exact LF calculations in the 

voltage rise case 
 



   

112 
  

 

In the voltage drop condition, the initial voltage violation at bus 27 constructs the binding 
constraint of the SSVCA optimization problem. The mismatch between the corrected voltage 
of bus 27 (=0.9715 pu) and the 0.97 pu voltage limit gives us the error due to the sensitivity 
analysis. Considering the initial voltage drop at bus 27, which was equal to 0.0223 pu, the 
relative error arisen from the sensitivity analysis is equal to (0.0015/0.0223)×100=6.7%. Since 
a small amount of reactive power change is asked by the SSVCA, it can be stated that the 
mentioned error is mostly arisen from the voltage sensitivity analysis with respect to the OLTC 
action. Like the voltage rise case, in figure 5-11, it is seen that errors between two methods of 
LF are small with a maximum of 4.3×10-4 at bus 27.  

It is worth mentioning that the case of having simultaneous voltage rise and drop violations has 
not been studied here because the OLTC action will not be used for the voltage regulation in 
such a situation.  

5.6. Adaptation of the proposed sensitivity-based voltage control approach 
with the practical context of the MV distributions systems 

The proposed sensitivity-based voltage control approach relies on the LF results to determine 
the network state. In order to perform the LF study, the branch parameters (i.e. resistance and 
reactance of the lines) and bus parameters (i.e. load and DG powers) are needed. In the practical 
MV distribution systems, the branch parameters coming from the network model are known 
but the node powers which are in function of the network working point are not  fully available 
due to lack of the sufficient measurement. Consequently, we do not have access to all the needed 
parameters for carrying out the LF study. In order to adapt the proposed voltage control 
approach with the realistic cases, we can replace the LF program with some limited voltage 
measurements on the selected buses. As known, the objective of using the LF program is to find 
the voltage violations of the system and to validate the VCA results after applying the corrective 
actions. Thus, the limited measurements can provide us these data instead of doing the LF study. 

 
Figure 5-11: System voltages obtained by the simple and exact LF calculations in the 

voltage drop case  
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In the studied UKGDS, it has been shown that the voltage violations happen in the end of the 
feeders 1 and 4. Therefore, we need to monitor the voltages at buses 20 and 26 in feeder 1 as 
well as buses 59 and 62 in feeder 4 where mostly voltage violations occur. The DG powers 
should be also provided by the measurement, as we need to know the available DG powers for 
the voltage regulation end. From the voltage and power measurements, we have finally the 
voltage violations as well as the bounds on the control variables; therefore, we can construct 
the optimization problem of the presented VCAs in the single-step and multi-step forms using 
the proposed voltage sensitivity analysis methods (which are independent of network working 
point). In this way, the proposed sensitivity-based voltage control approach is adapted with the 
realistic cases of the voltage management in the MV distribution systems. It should be noted 
that if the branch ampacity limits are needed to be taken into account in the voltage control 
procedure, the current phasors in the selected branches (as presented in section 3.3.1) must be 
provided by the measurement as well. Also, in the MSVCA, if the OLTC movement is required, 
the dynamic response (delay) of the OLTC is considered inside the MSVCA, and its next 
iteration starts when the corrective control actions regarding the previous iteration have been 
completed.      

5.7. Conclusion  

In this chapter, application of the transformer on-load tap changer in a centralized sensitivity-
based voltage control scheme is investigated. The voltage control algorithms presented in the 
chapter 3 are adapted in order to include the OLTC action beside the control of DG active and 
reactive powers. The OLTC impacts on the node voltages are linearized through the sensitivity 
analysis. A straightforward technique is introduced to obtain the sensitivity of node voltages 
with respect to the OLTC action. It is supposed that, if the transformer tap changes are limited 
to a small range and the node powers are constant, the voltage modification at the OLTC node 
will be reflected to all nodes. Thanks to the use of the sensitivity analysis, the voltage control 
problem formulation remains linear as before. However, due to introduction of the OLTC 
action, it is formulated as a mixed-integer linear programming aiming at minimizing the total 
weighted changes of the control variables subject to the voltage constraints. The numerical 
simulations are carried out to validate the performance of the VCAs in the multi-step and single-
step forms. Moreover, the numerical tests are performed to evaluate the accuracy of the 
proposed sensitivity analysis approach regarding effects of the transformer tap changes on the 
node voltages. The impacts of the off-nominal transformer turn ratio on the system voltages are 
also studied in this chapter. 

Based on the simulation results, it is concluded that the proposed sensitivity-based VCAs can 
optimally manage the OLTC set-point and DG active and reactive powers in order to remove 
the voltage violations happened in the voltage rise, voltage drop, and simultaneous voltage drop 
and rise conditions. In all the studied cases, the corrective control decisions have been made 
within a very short time, which does not exceed 0.35 s. This confirms that the proposed 
sensitivity-based voltage control approach can comply with the framework of the on-line 
voltage constraints management. Moreover, the numerical simulations verify that the proposed 
approach to extract the node voltage sensitivity with respect to tap changes has an acceptable 
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accuracy. In addition, it is found that impact of the off-nominal transformer turn ratio on the 
node voltages is negligible.  

In the next chapter, we consider that the network model is not constant and deterministic 
anymore (as it was in chapters 2 to 5) and it changes within the predefined bounds due to 
uncertainties associated with the network components. The main idea is to analyse when we 
have a VCA solution determined on the basis of the deterministic simplified network model, 
how the model uncertainty can affect the corrected voltages obtained by the VCA. Our 
investigation focuses on the model uncertainty associated with the voltage dependency of loads, 
power factor of loads, thermal dependency of lines, shunt admittances of lines and internal 
resistance of substation transformer. 
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Chapter 6: Model uncertainty impacts on the voltage control 

algorithm results 

 

6.1. Abstract 

Given that the accurate and up-to-date models of the system components are not available, the 
calculations and analyses of the previous chapters have been performed by relying on their 
simplified models. This may lead to erroneous analyses and eventually wrong control decisions 
by the voltage control algorithm. In this chapter, a framework is proposed in order to evaluate 
impacts of the uncertain models of the system components on the voltage control problem of 
the MV distribution systems. The investigation focuses on the model uncertainties associated 
with the voltage dependency of loads, power factor of loads, thermal dependency of lines, shunt 
admittances of lines and internal resistance of substation transformer. To this end, firstly, the 
voltage constraints are managed using the SSVCA relying on the simplified deterministic 
models of the system components (as before). The system loads and lines as well as the 
substation transformer are then modelled with the uncertain variables, which are bounded in 
the predefined ranges. Monte Carlo (MC) simulations are used to create series of scenarios that 
cover the possible values that the parameters of the system components can take due to their 
uncertain nature. The model uncertainty impacts on the voltage control problem are finally 
evaluated by the LF calculations considering the scenarios created by the MC simulations and 
the set-point obtained by the SSVCA. The proposed framework of this chapter brings useful 
information regarding the possible deviations that the node voltages can have due to uncertain 
models of the studied components. 

6.2. Introduction  

Voltage control problem is known as one of the main challenges in the MV distribution systems 
integrating high level of DGs. Different voltage control schemes have been proposed in the 
literature in order to remove the voltage violations and to keep the system voltages within the 
predefined voltage limits. Despite the differences of the existing VCAs, they have been 
developed relying on the similar assumptions that the system loads are of the voltage-
independent type (e.g.: [4], [13], [16], [19], [20], [29], [31], [46], [70], [71]), system lines are 
equivalent to the series impedances which have constant values over the time (e.g.: [4], [13], 
[16], [17], [19], [20], [29], [31], [46], [70], [71]) and the substation transformer is a pure 
reactance (e.g.: [4], [17], [72]) that can be even negligible (e.g.: [29], [31], [70]). In reality, 
however, these assumptions do not hold since the load powers are in function of the voltage, 
shunt admittances of the lines cannot be neglected, branch resistances vary with respect to the 
conductor temperatures, and internal resistance of the substation transformer is needed to be 
taken into account. Therefore, the models based on which the VCAs were developed in the 
abovementioned works and in the chapters 2 to 5 do not represent the real characteristics of the 
network. Consequently, corrective control decisions of these VCAs obtained by relying on the 



   

116 
  

simplified network models may be insufficient to solve a specific voltage violation problem of 
the real case.    

In this chapter, a framework is proposed in order to evaluate impacts of the uncertainties 
associated with the voltage dependency of loads, power factor of loads, thermal dependency of 
lines, shunt admittances of lines and internal resistance of substation transformer on the output 
results of the studied VCA. The voltage control problem is firstly solved by relying on the 
simplified models of the system components. Due to the fact that the exact and up-to-date 
models of the network components are not available, the studied components are considered 
with the uncertain variables which are bounded in the predefined ranges. The MC simulations 
are used to create series of scenarios that characterize the uncertain models of the studied 
components. The uncertainty impacts associated with models of the studied components on the 
voltage constraints of the VCA are evaluated by the LF calculations. The NRLF study is 
reformulated in this regard in order to incorporate the effect of the voltage dependency of loads. 
Evaluating the cumulative uncertainty effects of the studied components brings us useful 
information regarding the maximum deviations that the node voltages can have from the values 
obtained by the VCA. This can be utilized in order to reset the targeted bounds of the VCA such 
that it makes the VCA solutions robust against uncertainty of the system component models.  

6.3. The proposed framework in order to evaluate impacts of the model 
uncertainty on the voltage constraints 

The SSVCA presented in chapter 5 is used here to provide the basic set of the voltage results. 
Assuming that the errors arisen from the voltage sensitivity analyses are negligible, it can be 
expected that in the output point of the SSVCA, the voltage constraints are managed and the 
system voltages are returned into the permitted voltage range. However, in the studied VCA, 
loads are considered to be of the voltage-independent type, exact power factor of loads is 
supposed to be known, lines are modelled with the series impedances, which are supposed to 
remain unchanged with respect to the loading conditions, and the substation transformer is 
considered as a pure reactance. Therefore, the corrected voltages obtained by the SSVCA are 
subject to the variations due to utilization of these simplified models. The main objective of this 
chapter is to evaluate impacts of the uncertain models of the network components on the 
performance of the studied VCA. In this regard, a 3-stage method as shown in figure 6-1 is 
proposed. It consists of the SSVCA, MC simulations, and LF calculations. 

 

 
 

Figure 6-1: The proposed approach to evaluate the model uncertainty impact on the voltage control 
algorithm results 
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The first part of the proposed method is the SSVCA. It receives the network data (according to 
the simplified models of the system components) and initial values of DG powers. If the voltage 
violations are found in the system, it defines the new set-points of DGs as well as the tap changer 
position in order to remove those voltage violations. The SSVCA results are kept constant for 
the further analyses. The second part is the scenarios creation by the MC simulations. Given 
that the exact models of the studied components are not available, MC simulations are used to 
generate N scenarios within the predefined ranges for the parameters of the models under study 
in order to cover the possible values that those parameters can take in reality. The final stage is 
the LF calculations considering the set-points obtained by the SSVCA, N scenarios for the 
uncertain models of the network components and rest of the network data. The LF calculations 
are repeated for each of the N scenarios created by the MC technique. Therefore, finally, N sets 
of node voltages will be available that will be transformed into the Cumulative Distribution 
Function (CDF) form. The CDFs of nodal voltages give possible ranges of the voltage 
variations at the system buses in the generated scenarios. They show also the probability of 
having a specific voltage value within the obtained ranges. If the CDFs of the system voltages 
are found to be within the permitted voltage range, it can be concluded that the uncertain models 
of the studied components will not create voltage violation problem in the VCA. The three parts 
of the proposed method are described in the following sections. 

6.3.1. Voltage control algorithm 

The single-step voltage control algorithm is used here for the voltage regulation purpose. Being 
based on the open-loop control system, the corrective commands defined by the SSVCA can 
be analysed in order to evaluate impacts of the uncertainties associated with the network 
component models. It should be noted that when the MSVCA receives the updated state of the 
network (in each iteration) through the measurement channels, errors related to the simplified 
network component models will be eventually covered in the voltage control procedure due to 
its closed-loop functionality. Therefore, the MSVCA could not be used for the investigation of 
this chapter. The SSVCA as presented in chapter 5 manages the active and reactive powers of 
DGs as well as the transformer tap position in order to return simultaneously all the violated 
voltages inside the permitted voltage range. The branch ampacity limits are not considered in 
the SSVCA as the main objective is to evaluate impacts of the model uncertainty on the voltage 
constraints of the MV distribution systems. In the SSVCA, the DSA is used to determine the 
dependencies between nodal voltages and powers. Also, the proposed VSA method presented 
in chapter 5 is employed for taking into account tap position impacts on the node voltages. It 
should be noted that the error arisen in the VCA from inaccuracy of the VSA methods is out of 
scope of this chapter given that the latter has been studied in the previous chapters.     

6.3.2. Monte Carlo simulations 

In the literature, the MC technique has been utilized in order to analyse the uncertain and 
unobservable nature of the distribution systems. In [73] and [74] using MC simulations, 
uncertainty impacts associated with the nodal generations and consumptions have been 
investigated. Application of the sensitivity analysis in a probabilistic context based on the MC 
simulations for characterizing the LV distribution systems has been studied in [75] . Also, a 
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state estimation technique has been developed in [76] where MC simulations are employed to 
validate it.  

The MC technique in the proposed framework of this chapter adopts the procedure presented 
in [73], which is introduced as follows. Firstly, the possible variation range of the random 
(uncertain) variable is defined (for instance ± x). Then, proper number of points is created 
between the lower and upper bounds of the defined range according to the desired accuracy. It 
is assumed that the probability of having a point within this range is normally distributed. 
Therefore, it can be assigned to a normal distribution function like [73] and [74]. Afterwards, 
the probability density function corresponding to those points is obtained by calculating their 
standard deviation and mean value. Also, by definition, a probability density function can be 
transformed into a CDF by 

                                                           ( ) ( )CDF x P X x                                                      (6-1) 

where X is the random variable associated with the uncertain parameter of the model under 
study and x is the upper bound on the variation range of the uncertain parameter. In order to 
create N scenarios for the parameter of the model under study, a sampling procedure is applied 
to the obtained CDF as follows [73]. A uniformly distributed random value between 0 and 1 is 
chosen. It is assigned to the CDF on the vertical axis and its corresponding value on the 
horizontal axis gives the variation that the uncertain parameter of the model under study can 
have in one scenario. The sampling procedure is repeated N times in order to create N scenarios. 
In the end, a vector with N elements is built that covers possible variations that the uncertain 
parameter of the model under study can have. Considering the created scenarios and the basic 
(simplified) model, the uncertain nature of the studied component is taken into account.   

6.3.3. Newton-Raphson load flow study 

The NRLF study is used in the proposed framework in order to evaluate the system voltages in 
the scenarios created by the MC simulations. In the NRLF, the non-linear algebraic equations 
of the nodal powers are linearized by expanding them through the Taylor series. It constitutes 
the so-called Jacobian matrix, which gives the linearized relationships between small changes 
in real and reactive powers with respect to small changes in nodal voltage angles and 
magnitudes as below. 

                                                                    
    

    
1 2

3 4

J JΔP Δθ
=

J JΔQ ΔV
                                                            (6-2) 

where Δ and ΔV denote the vectors of small variations in the voltage angles and magnitudes 
at the PQ buses, respectively. Also, ΔP and ΔQ are the vectors of errors between the scheduled 
and calculated powers at the PQ buses. The mathematical relations to obtain the elements of 
the Jacobian matrix have been given in [68]. Once the Jacobian matrix is composed, using ΔP 
and ΔQ that are known parameters and inverted Jacobian matrix according to (6-2), system 
voltages are updated. Then, the new voltages are employed to update ΔP and ΔQ vectors as 
well. In the next iteration of the NRLF, the Jacobian matrix elements will be updated in order 
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to obtain the new voltages and eventually new ΔP and ΔQ. The NRLF in this iterative-based 
procedure tries to minimize the errors (i.e. ΔP and ΔQ). The iterative procedure stops when a 
predefined error is met. 

6.4. Studied sources of the model uncertainty  

As stated before, the model based on which the proposed voltage control approach of the 
previous chapters has been developed does not represent the real characteristics of the studied 
network. There are different factors that have been neglected due to the uncertainty, 
unobservability and complexity of the network model. An accurate and up-to-date network 
model should incorporate factors such as the working point, loading condition, ambient 
temperature, voltage, frequency, ageing of the equipment etc. Given that it is not possible to 
take all these factors into account, in this chapter, the most dominant ones in the MV distribution 
systems are considered. The current investigation focuses on the impacts of the uncertainties 
associated with the voltage dependency of loads, power factor of loads, thermal dependency of 
lines, shunt admittances of lines and internal resistance of substation transformer. The above 
sources of the model uncertainty are described in the following sections. The numerical 
simulations will be carried out on the 77-bus UKGDS in order to determine effects of the 
studied uncertainties on the output results of the considered VCA (i.e. the SSVCA) in section 
6.5. 

6.4.1. Voltage dependency of loads  

The load demand in an electric device is rated at the nominal voltage, but regarding the nature 
of the load, it can vary when the system voltage is not equal to the nominal value. In order to 
represent the dependency degree of the load to the voltage, polynomial and exponential models 
have been widely used in the literature [32], [77], [78], [79], [80]. In the polynomial (known 
also as ZIP) model, a typical load is considered to be a combination of the power constant, 
current constant and impedance constant loads. The power constant load type is supposed to be 
independent of the voltage, while the current constant model is a linear function of the voltage, 
and the impedance constant type is proportional to the square voltage. The polynomial load 
model is expressed by the following equations for active and reactive powers. 

                                               * 2
L L P P PP P a V b V c                                                  (6-3) 

                                              * 2
L L Q Q QQ Q a V b V c                                                 (6-4) 

where PL and QL stand for the rated active and reactive powers of the load at the nominal voltage 
equal to 1 pu. Also, 𝑃௅

∗ and 𝑄௅
∗ denote the actual consumed active and reactive power values of 

the load at the voltage equal to V. The coefficients aP, bP, cP, aQ, bQ and cQ of the polynomial 
model determine the voltage dependency characteristic of the load. In the exponential model, 
actual consumed active and reactive powers of load (𝑃௅

∗ and 𝑄௅
∗) are obtained by 

                                                          *
L LP P V                                                            (6-5) 
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                                                          *
L LQ Q V                                                           (6-6) 

In the exponential model, voltage dependency of the load for active and reactive powers is 
defined by the exponents α and β, respectively. 

In this work, in order to study the uncertainty of the load-voltage dependency, the exponential 
load model is used because of the following reasons. Firstly, in the exponential model, the 
uncertain variables for active and reactive powers of load are exponents α and β while in the 
polynomial model, there will be three uncertain variables (i.e. aP, bP and cP) for active power 
and three other variables (i.e. aQ, bQ and cQ) for reactive power of load. Therefore, in the 
polynomial model, there will be three times more uncertain variables for each of the load buses 
compared to the case of the exponential model. Secondly, in the polynomial model, sum of the 
coefficients in (6-3) and (6-4) must be always equal to one (aP+bP+cP=aQ+bQ+cQ=1). It means 
that the scenarios for the polynomial coefficients of active and reactive powers cannot be 
created independently and one of these three coefficients in (6-3) and (6-4) must be always used 
to make the summation of each three coefficients equal to one. Consequently, it is concluded 
that the exponential model can be implemented in a more efficient and straightforward manner 
than the polynomial approach. It is worth noting that the polynomial and exponential models 
generally lead to quite similar results such that they can be used interchangeably for 
representing the voltage dependency of load in the MV and LV levels, according to [78] and 
[79], respectively. 

Furthermore, possible values that the exponents α and β can take for different types of loads 
have been fully investigated in the literature. It is known that for instance, α and β related to 
industrial motors, fans, pumps as well as incandescent and compact fluorescent lamps are 
between 0 and 2 while the exponents can have relatively bigger values (up to 2.6 for α and 4 
for β) in some other groups of loads such as conventional fluorescent lamps, room air 
conditioner, and battery charger [32], [80]. On the contrary, possible ranges of values for the 
polynomial coefficients in (6-3) and (6-4) are not clear. The polynomial coefficients of 
residential loads such as motors, incandescent and compact fluorescent lamps are found to be 
within a narrow range from negative to positive values (approximately from -1.5 to 2) [79]. 
However, wider bounds have been reported for the polynomial coefficients in [78] ranging from 
-19 to 11. In the end, it should be noted that the parameters of exponential load model give us 
a clearer idea regarding the level of the load-voltage dependency compared to the ones of the 
polynomial model.  

Given that the exact dependency degree of load powers to the voltage is unknown, MC 
simulations are employed to create scenarios that can cover the uncertain nature of the loads in 
a probabilistic way. Two approaches as described in the following sections will be developed 
in order to take the voltage dependency of loads into consideration. 

6.4.1.1. Approach based on the maximum values 

In the first approach, the MC simulations are used to create the scenarios that cover the possible 
variations that the load powers can have due to the voltage dependency. According to (6-5) and 
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(6-6), the maximum variations of load powers with respect to the voltage are determined by 
having the maximum values of α and β as well as the maximum voltage magnitude. In the 
literature, it is found that based on the load nature, the voltage dependency exponents can be as 
big as 2.6 and 4 for α and β, respectively [32], [80]. Taking into account the worst case scenarios 
for the voltage rise and drop conditions, the biggest voltage variations in the studied UKGDS 
(presented in figure 3-1) would be approximately in the range of ±0.06 pu (around 1 pu). 
Considering the biggest possible α and β equal to 2.6 and 4, the maximum variations of load 
active and reactive powers with respect to the voltage in the voltage rise case are equal to +16% 
and +26% of their nominal values, respectively, according to (6-5) and (6-6). Similarly, in the 
voltage drop state, the variations of load active and reactive powers in function of voltage reach 
-15% and -22% of their nominal values, respectively, according to (6-5) and (6-6). In the 
voltage rise case, the lower bounds of load power variations are set to 0 to represent no load-
voltage dependency while in the voltage drop case, the upper bounds of load power variations 
are equal to 0 that correspond to zero load-voltage dependency condition. The MC simulations 
will be used here to create scenarios within the predefined ranges for the load active and reactive 
power variations with respect to the voltage. It is expected that by having the rated load powers 
(PL and QL) and their variations created by the MC, the uncertain nature of the load-voltage 
dependency can be properly taken into account.    

6.4.1.2. Approach based on the adapted NRLF study 

In the second approach for the investigation on the load-voltage uncertainty, the MC 
simulations are used to create scenarios for the levels of the voltage dependency of loads namely 
α and β. Therefore, based on the defined ranges for α and β, N scenarios are created for these 
coefficients. Then, the NRLF study is adapted in order to be able to recognize the load-voltage 
dependency such that the created α and β in each scenario are treated to determine the system 
state in that scenario. Similarly, by evaluating all scenarios, N sets of system voltages are 
obtained that will be transformed into the CDF form. The NRLF study is modified as follows 
in order to be capable of distinguishing the load-voltage dependency. 

Assuming that the system loads are voltage dependent, the mathematical relations for 
calculating the elements of sub-Jacobian matrices (J1, J2, J3 and J4) in (6-2) should be modified 
accordingly. The voltage dependency of loads affects all elements of the sub-Jacobian matrices. 
Considering (6-5) and (6-6), the diagonal elements of J2 and J4 will be obtained by 

                                                     
*
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where k is index for the load buses (𝑘 ∈ 𝑁𝐿). Also, the off-diagonal elements of J2 and J4 are 
given by 
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Similarly, n is index for the load buses (𝑛 ∈ 𝑁𝐿). The diagonal and off-diagonal elements of J1 
are written as 
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And, finally, the diagonal and off-diagonal elements of J3 are obtained by 
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Apart from the modified formulations regarding the elements of the sub-Jacobian matrices, the 
NRLF principles as explained in section 6.3.3 remain unchanged for the LF study incorporating 
the load-voltage dependency. It should be noted that the entries of the Jacobian matrix relating 
to the DG-connected buses are obtained using the generic equations of the NRLF study 
(neglecting the voltage dependency). In other words, modified formulations of the NRLF 
according to (6-7) to (6-14) do not apply to the DG-connected buses and there is no voltage-
power dependency at those nodes. 

In the study based on the adapted NRLF approach, the MC simulations are used to create 
scenarios for α within the range of 0 to 2.6 and β in range of 0 to 4. Therefore, it is observed 
that the predefined bounds for α and β are identical to the ones selected in the approach based 
on the maximum values so that the obtained results of these two approaches can be equally 
compared later. 

6.4.2. Power factor of loads  

In the electric distribution systems, due to lack of the sufficient measurements, load power 
factors cannot be obtained accurately. As a result, an uncertainty is added to the load model 
regarding the power factor. Assuming that the active power of load is known, the power factor 
uncertainty affects the reactive power consumption of the load. In this work, in order to study 
impact of the uncertainty associated with the load power factor, it is supposed that the latter can 
vary within a specific range. Then, MC simulations are utilized to create N scenarios for the 
load power factor within that predefined range. The reactive power corresponding to the 
generated power factor in each scenario is calculated using (6-15). This procedure is followed 
for all the load buses independently. In the end, vectors of nodal reactive powers are built that 
can be used to evaluate impacts of load power factor uncertainties using the NRLF calculations. 



   

123 
  

                                                         -1tan(cos ( ))L LQ P PF                                                 (6-15) 

where PF stands for the load power factor. It should be noted that for the analysis of this part, 
the voltage dependency of load is neglected and power constant load model is taken into 
consideration. The variation range of the load power factor is supposed to be from 0.9 (lagging) 
to 1. Within this range, considering the initial average power factors of loads in the UKGDS 
given in appendix 3 (= 0.98 lagging), the reactive powers of loads can increase by 138% of 
their respective initial values when PF is equal to 0.9 or decrease to 0 in the case of the unity 
power factor (PF=1). 

6.4.3. Thermal dependency of the line resistances 

The electrical resistance of the line increases with the conductor temperature rise. Therefore, 
the line resistance depends not only on the conductor size and type, but also on the temperature 
at which the line conductor is operating [81]. The temperature of the line conductor is in 
function of the current that passes through the line and the conductor ambient temperature. It 
means that, according to the actual level of the line loading and the conductor ambient 
temperature, the line electrical resistance should be recalculated. The overhead lines are more 
subject to the ambient temperature variations than the underground cable lines. In this work, 
the under study network (i.e. the 77-bus UKGDS) consists in underground cables. Thus, it is 
assumed that the cable loading has a dominant effect on the conductor temperature compared 
to the impact of the ambient temperature. Given that in the studied network, the actual (up-to-
date) temperatures of the cable conductors are not available, we rely on the experimental results 
reported in [82] to obtain the possible variations that the cable conductor temperatures can have 
due to current intensity changes. 

In [82], a test site has been constructed in order to measure the temperature changes of the 
underground MV power cable with constant and cyclic currents. The experiments have been 
done on a 15 kV underground cable, which has been placed in the duct bank with the soil 
temperature equal to 24°C. The maximum ampacity of the studied cable is 600 A. According 
to the introduced daily load cycle in that work, the cable current is changed from 8% to 83% of 
its nominal current. Within this range of current variation, the conductor temperature changes 
between 48 to 85°C. Also, in another test that was performed on the same cable in [82], it is 
reported that with a constant current equal to 50% of the cable rated ampacity, the conductor 
temperature reaches 62°C.  

In the 77-bus UKGDS, total powers of DGs are almost 3 times bigger than sum of the load 
powers (see appendix 3). Therefore, the temperature variations of cable conductors as a function 
of the cable loadings in the voltage rise case are expected to be bigger than the ones of the 
voltage drop state. In the voltage rise case, the branch loadings are close to the maximal 
ampacities of the cables. As a result, the cable conductor temperatures can increase to 85°C 
based on [82]. Moreover, due to the ambient temperature in more severe conditions (greater 
than 24°C), the cable conductor temperatures can go up to 90°C which is usually considered as 
the maximum permitted temperature of the cable conductor insulation [83]. Assuming that the 
resistances of the lines have been initially adapted for 62°C (based on the temperature that 
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corresponds to a 50% cable loading), maximal temperature variations of the cable conductors 
in the voltage rise case will be equal to 28°C (=90-62). It results in increasing the cable 
resistances up to 11% of their initial values (at 62°C) by the use of the equation (6-16) [84]. In 
addition, it is considered that in ambient temperatures below 24°C, the cable conductor 
temperatures can drop by 10°C which would decrease the line resistances to 4% of their initial 
values (at 62°C) according to (6-16).   

                                                  0(1 )new cR R T                                                    (6-16) 

where R0 is the initial cable resistance at 62°C (the temperature corresponding to a 50% cable 
loading) and Rnew denotes the up-to-date cable resistance value by taking the conductor 
temperature variations (ΔT) around 62°C into account. In addition, αc is the temperature 
coefficient of resistivity equal to 0.00393 for copper conductors. 

In the voltage drop case, the cable loadings hardly exceed 50% of their rated ampacities. In this 
situation, it can be expected that the temperature variations of the cable conductors due to the 
loading condition and ambient temperature changes can fall in a range of ±15°C (around 62°C) 
that create resistance changes equal to ±5.8% of their initial values using (6-16).   

By having the initial resistances of the lines (at 62°C) and their possible variations (ΔR) 
obtained by the MC simulations, the uncertainty in the line models due to the thermal 
dependency effect is taken into account. It is worth mentioning that in this study, the line 
inductance is considered constant as it depends mostly on the installation configuration of the 
cables.   

6.4.4. Shunt admittances of the lines 

Shunt admittances of the lines are usually neglected in the distribution systems while they can 
have important impacts on the system voltages in case of the long cable lines. According to 
[71], values of the charging capacitances of the lines are found to be in the range of 0.2 to 0.25 
µF/km for the cables with sections varying from 95 to 245 mm2. Considering the bigger value 
for the line capacity (0.25 µF/km) and having length of the lines in the studied network, the 
upper bounds of the predefined ranges for the admittances of all lines can be determined. Since 
in the UKGDS, shunt admittances of the lines have been totally neglected, the lower bounds of 
the admittance variations will be equal to 0. The MC simulations are employed here to create 
N scenarios according to the predefined bounds. It should be noted that in each scenario and for 
each line, the obtained admittance value is divided by two (b/2) to be assigned to each side of 
the corresponding line based on the π line model.  

6.4.5. Internal resistance of the substation transformer 

The power transformers are modelled with a series impedance while its resistive part is mostly 
considered negligible. Although internal resistance of the transformer is very small compared 
to its reactance, it can have considerable effects on the system voltages because of two main 
reasons. Firstly, in the distribution systems with the high ratio of resistance to reactance, the 
system voltages highly depend on the branch resistances. Secondly, the substation transformer 
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is located in the starting point of the network in series with all other buses. Therefore, it has an 
impact on all nodal voltages. The typical reactance to resistance ratio of the normal power 
transformers is found to be in the range of 20 to 40 [85]. Furthermore, it is considered that the 
resistance of the transformer can vary based on its loading conditions. In this regard, an 
extension of ±10% with respect to the aforementioned range is adopted. Consequently, in this 
work, it is supposed that the resistance of the transformer (RT) can take values from the range 
starting at 2.25% (1/40×0.9) and ending at 5.5% (1/20×1.1) of the transformer reactance. It 
should be noted that the reactance of the transformer is known and kept constant in all N 
scenarios. 

6.4.6. Cumulative uncertainty effects of the load, line and transformer models 

In the last part of this chapter, the cumulative uncertainty effects of the load, line and 
transformer models on the VCA performance are investigated. In section 6.4.2 studying the 
power factor uncertainty of the loads, the power constant load model has been taken into 
account. However, it is known that the power factor of the voltage dependent load is in function 
of α and β since by changing the voltage dependency exponents, the active and reactive powers 
of load, as well as the load power factor will be changed. This must be taken into consideration 
in (6-15) when creating vectors of nodal reactive powers. Considering the fact that the load is 
of the voltage dependent type, we have 
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                                                                  -1tan(cos ( ))PF V                                          (6-17) 

where PF* and PF stand for the power factor in case of voltage dependent load and power 
constant load models, respectively. Equation (6-15) for the voltage dependent load is rewritten 
as follows. 

                                                       * * -1 *tan(cos ( ))L LQ P PF                                                        

                                                            -1. tan(cos ( ))LP PF V                                              (6-18) 

Therefore, in order to study the power factor uncertainty when load is of the voltage dependent 
type, vectors of nodal reactive powers should be built according to (6-18). It is worth noting 
that the active powers of loads will be obtained using (6-5) considering the generated scenarios 
for α. Apart from this modification, a similar procedure as developed before is followed here to 
evaluate the cumulative uncertainty associated with the load, line, and transformer models. To 
this end, the scenarios for the uncertain variables namely α, β, and PF for all loads, ΔR and b/2 
for all lines and RT for the substation transformer are generated independently using the MC 
simulations according to the defined ranges for each of the variables. The system voltages are 
then evaluated using the adapted NRLF study and the boxplots of obtained voltages will be 
illustrated eventually. 
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6.5. Simulation results 

The proposed framework of this chapter including the SSVCA, MC tool, and NRLF program 
is implemented in the MATLAB environment. The simulations are carried out on the 77-bus 
UKGDS shown in figure 3-1 in the voltage drop and rise states. Two working points as follows 
are defined in order to create the voltage drop and rise conditions. In the first working point for 
the voltage drop case, all loads are considered to be at their maximum values while active 
powers of DGs are equal to zero. In the second working point corresponding to the voltage rise 
state, it is supposed that the load powers are at 10% of their respective nominal values and 
active powers of DGs are equal to 90% of their rated values. The initial reactive powers of DGs 
in both cases are set to zero. It should be noted that the working point relating to simultaneous 
voltage rise and drop violations is not considered here given that it leads to smaller voltage 
violations compared to the ones in the single voltage rise or drop case. Consequently, it can be 
expected that the model uncertainty effects in case of simultaneous voltage rise and drop 
violations are less than those of two considered working points.  

In the proposed method for evaluating effects of the model uncertainty on the voltage 
constraints, in the first stage, the violated voltages will be removed using the VCA by relying 
on simplified models of the system components as shown in figure 6-1. Thus, the 
abovementioned working points are given separately to the VCA for the voltage regulation 
purpose. The initial system voltages as well as the corrected ones obtained by the VCA are 
depicted in figure 6-2. Table 6-1 presents the demanded power changes of DGs and necessary 
transformer tap movements in order to manage the voltage violations in both voltage rise and 
drop cases. In the VCA, it is supposed that the OLTC action has the smallest weighing 
coefficient compared to other control variables which is equal to 1 (CTR=1) while the reactive 
power changes of DGs are weighted by a coefficient which is 50% bigger than the OLTC one 
(CQ=1.5). Also, the active power curtailment of DGs is assigned to a coefficient which is 100% 
bigger than the OLTC one (CP=2).  

In the studied working point for simulating voltage rise case, voltage violations happen in the 
feeders 1 and 4 (at buses 11 to 27 and 54 to 63) as it can be seen in figure 6-2. In order to remove 
these voltage violations, tap changer position has decreased by 4 steps and DG5 which has a 
high impact on the voltages of feeder 1 has been used to provide 1.191 Mvar inductive reactive 
power. In the voltage drop case, the major voltage violations occur in the end of the feeder 1 at 
buses 9 to 27; thus, the VCA employs DG5 for a capacitive reactive power compensation equal 
to 1.44 Mvar at bus 26 beside two steps increase of the transformer tap position. 
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The second step of the proposed method is characterizing the uncertain model of the studied 
components. In order to take the model uncertainty into account, number of 1000 scenarios 
(N=1000) are generated by the MC simulations for the uncertain variables relating to each of 
the studied components according to the predefined ranges. The system voltages are finally 
evaluated by the NRLF calculations considering each of the generated scenarios as well as the 
initial network data and demanded changes of the control variables by the VCA (reported in 
table 6-1). The voltage results will be presented in the CDF form. In the voltage drop state, the 
CDF of the voltage at bus 24 is selected for the illustration because it corresponds to the binding 
constraint of the VCA. Consequently, its corrected voltage will be the closest one to the 
permitted lower limit (see figure 6-2). This indicates that the voltage at bus 24 is more likely to 
be fallen outside of the permitted voltage range in response to the model uncertainty compared 
to other buses. In the voltage rise case, the CDF of the voltage at bus 26 is plotted since the 
latter belongs to the binding constraint and after the voltage regulation, voltage at bus 26 is the 
closest one to the permitted upper voltage limit. The corrected voltage values obtained by the 
VCA are equal to 1.0313 pu for bus 26 in the voltage rise case, and 0.971 pu at bus 24 in the 
voltage drop case. 

 
Figure 6-2: Initial system voltages as well as the corrected ones obtained by the VCA in 

the voltage drop and rise cases 
 

TABLE 6-1: VCA RESULTS IN THE VOLTAGE RISE AND 

DROP CONDITIONS 

 Voltage drop Voltage rise 

ΔQDGx (Mvar) 
x ∈ {1, 2, 3, …, 22} 

DG5= -1.44 DG5= 1.191 

ΔPDGx (MW) 
x ∈ {1, 2, 3, …, 22} 

NA NA 

ΔTapTR 2 -4 

OF 4.16 5.786 
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In what follows, firstly, model uncertainty effects related to each of the studied components are 
investigated individually. In the end, the cumulative uncertainty effects regarding all the studied 
factors will be evaluated and the box plots of the resultant node voltages will be presented.   

6.5.1. On the impact of the voltage dependency of the loads 

The uncertainty effects due to the voltage dependency of loads are investigated here by the 
approaches based on the maximum values and the adapted NRLF study. Figure 6-3 shows the 
CDFs of the voltages at the selected buses corresponding to the study on the voltage drop and 
rise cases.  

 

Considering the results shown in figure 6-3, it is noticed that the uncertainty in the load model 
due to the voltage dependency effect does not create voltage violation problem in the VCA in 
both voltage drop and rise cases. It is explained by the fact that the load changes in function of 
voltage are on the proper direction of the voltage control purpose. According to (6-5) and (6-

 
a 

 
b 

Figure 6-3:  CDFs of the probability of voltages at the selected buses obtained by the 
NRLF study considering the model uncertainty due to the voltage dependency of loads 

(a) in the voltage drop case, (b) in the voltage rise case 
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6), in the voltage drop situation (Vk<1), the actual consumed loads are smaller than the rated 
ones; consequently, the system voltages increase compared to the ones obtained by the rated 
load values. In the voltage rise situation (Vk>1), the actual consumed loads are bigger than the 
rated ones so that the node voltages will reduce compared to the ones obtained by the rated load 
values. It is worth mentioning that the small voltage violation from the 1.03 pu voltage limit 
found in the voltage rise case at bus 26 (figure 6-3(b)) is not happened because of the voltage 
dependency of loads. As mentioned before, the corrected voltage obtained by the VCA is 
1.0313 pu at bus 26. Therefore, in the voltage rise case, the voltage dependency of loads has 
decreased the voltage of bus 26 (see figure 6-3(b)). 

Furthermore, by comparing figures 6-3(a) and 6-3(b), it is noticed that in the voltage drop 
situation, the load-voltage dependency creates a wider range of voltage variations compared to 
the one obtained in the voltage rise case. This is justified by the fact that in the voltage drop 
condition, load powers are maximal while in the voltage rise case, loads are at 10% of their 
nominal values. Consequently, in the former case, they can have bigger impacts on the system 
voltages. 

Moreover, taking into account the voltage results obtained by the approach based on the 
maximum values and the ones based on the adapted NRLF study confirms that the latter leads 
to more moderate results. For instance, in figure 6-3(a), due to the voltage dependency of loads, 
using the approach based on the maximum values, the voltage at bus 24 is found to vary in a 
range between 0.9732 to 0.9751 pu while using the adapted NRLF approach, the voltage 
variation at that bus is limited to the range of 0.9719 to 0.9727 pu. A similar trend is found also 
in the voltage rise case in figure 6-3(b). It indicates that the approach based on the adapted 
NRLF study determines impacts of the voltage dependency of loads in a more realistic way 
than the method based on the maximum values. It is due to the fact that the approach based on 
the maximum values uses the worst voltage violations to define the ranges of load variations 
with respect to the voltage while in another approach, the adapted NRLF study takes into 
consideration the voltages which correspond to that specific studied working point. 

6.5.2. On the impact of the power factor of loads 

The impact analysis of the load power factor uncertainty is carried out in this section. Figure 6-
4 presents CDFs of the voltage results at the selected buses when the power factor of loads 
varies within the predefined bounds.    

Taking figure 6-4(a) corresponding to the voltage drop case into account, it is observed that big 
voltage violations occur from the 0.97 pu voltage limit. As the minimum effect of the load 
power factor uncertainty, the voltage at bus 24 decreases to 0.9671 pu that means the voltage 
violation from the permitted lower limit equals to 0.0029 pu. In the generated scenarios, with a 
probability of 90%, the voltage magnitude at bus 24 will be lower than 0.965 pu. The load 
power factor uncertainty can reduce the voltage at bus 24 to almost 0.96 pu that is nearly equal 
to 0.011 pu voltage drop with respect to the corrected voltage of bus 24 obtained by the VCA 
(=0.971 pu). On the contrary, in the voltage rise case, as it can be seen in figure 6-4(b), voltage 
variations due to the load power factor uncertainties have considerably smaller amplitudes. As 
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the maximum impact of the load power factor uncertainty in the voltage rise state, voltage at 
bus 26 reduces to 1.0299 pu. With respect to the corrected voltage of bus 26 obtained by the 
VCA (=1.0313 pu), a voltage drop of 0.0014 pu is found at that bus. It is worth mentioning that 
the load power factor uncertainty has a great impact on the voltage drop situation since in that 
case, the load powers are maximal. On the other hand, in the voltage rise case, the load powers 
are equal to 10% of their nominal values; consequently, the eventual effects of the load power 
factor uncertainties are small. 

 

6.5.3. On the impact of the thermal dependency of the line resistances 

The effect of the temperature dependency of the branch resistances is studied in this part. 
According to the defined ranges for resistance variations of the cables given in section 6-4-3, 
the MC simulations generate N scenarios and the LF calculations are performed in order to 

 
  a 

 
b 

Figure 6-4: CDFs of the probability of voltages at the selected buses obtained by the 
NRLF study considering the model uncertainty due to the power factor of loads 

(a) in the voltage drop case, (b) in the voltage rise case 
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evaluate the nodal voltages. Figure 6-5 shows the obtained CDFs of the voltages at the selected 
buses in the voltage drop and rise conditions.  

 

As it can be observed from figure 6-5(a), in the voltage drop case, the voltage variations at bus 
24 due to the thermal dependency of the line resistances are limited to a range between 0.9697 
to 0.9721 pu. Consequently, very small voltage violation from the permitted voltage range (its 
lower bound) is found in the voltage drop case. In addition, voltage variations are found to be 
around the corrected voltage of bus 24 obtained by the VCA (i.e. 0.971 pu). Unlike the voltage 
drop case, in the voltage rise state, big voltage violation from the permitted upper voltage limit 
occurs at bus 26. According to the figure 6-5(b), voltage at bus 26 can increase to 1.0359 pu 
due to impacts of the temperature dependency of the branch resistances. In figure 6-5, it is 
clearly seen that the voltage variations in the voltage rise case have a wider range than the one 
of the voltage drop state. It is due to the fact that the predefined ranges for the resistance 

 
a 

 
b 

Figure 6-5: CDFs of the probability of voltages at the selected buses obtained by the NRLF 
study considering the model uncertainty due to the thermal dependency of the line resistances 

(a) in the voltage drop case, (b) in the voltage rise case 
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variations of cables in the voltage rise state are bigger than the bounds of the resistance 
variations in the voltage drop case.   

6.5.4. On the impact of the shunt admittances of the lines 

In this section, impacts of incorporating shunt admittances of the lines on the system voltages 
are studied. It is expected that adding the shunt admittances of the lines will increase the system 
voltages and it can lead to the voltage rise issue. Figure 6-6 shows the CDF of the voltage at 
bus 26 obtained by the NRLF study in the voltage rise state considering the scenarios created 
by the MC simulations.  

 

Based on the figure 6-6, it is confirmed that adding shunt admittances of the lines creates small 
voltage increase with respect to the corrected voltage obtained by the VCA. In the simulated 
scenarios, as the minimum effect of the shunt admittances, the voltage at bus 26 is increased by 
0.0005 (=1.0318-1.0313) pu. The voltage at that bus can reach 1.03214 pu. Concerning impacts 
of shunt admittances of the lines on the voltage drop case, it is observed that the system voltages 
increase similar to the voltage rise case but with slightly less extents. However, since the 
network is in the voltage drop state, it does not create voltage violation problem.  

6.5.5. On the impact of the internal resistance of the substation transformer 

Similar to the previous sections, the investigation on the transformer model is carried out on 
the voltage drop and rise states. Figure 6-7 depicts the CDFs of the voltages in the corresponding 
cases when the created scenarios are evaluated by the LF calculations. In figure 6-7, it is seen 
that the voltage violations occur from both upper and lower permitted voltage limits due to the 
uncertainty that exists in the transformer internal resistance value. In the voltage drop state, 
voltage at bus 24 decreases to nearly 0.969 pu and in the voltage rise case, voltage at bus 26 
can reach 1.0366 pu. Therefore, it is concluded that the internal resistance of the substation 
transformer has an important influence on the system voltages, especially, in the voltage rise 

 
Figure 6-6:  CDF of the probability of the voltage at bus 26 obtained by the NRLF 

study considering the model uncertainty due to the shunt admittances of the lines in the 
voltage rise case 
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state. A wider range of voltage variation is observed in the voltage rise case since the 
transformer loading is heavier in this case compared to that of the voltage drop state. As 
mentioned before, in the studied UKGDS, the total powers of DGs are almost 3 times bigger 
than the total load consumptions. 

 

It is worth mentioning that in figure 6-7(a), the voltage value corresponding to the starting point 
of the plotted CDF relates to the scenarios in which the resistance of transformer has been equal 
to the upper bound of the considered range for RT. Consequently, it leads to the point with the 
maximum voltage violation. Conversely, the voltage corresponding to the starting point of the 
plotted CDF in figure 6-7(b) belongs to the scenarios in which the resistance of transformer has 
been equal to the lower bound of the predefined range for RT. Therefore, it gives the lower 
bound of the voltage violation. 

 
a 

 
b 

Figure 6-7: CDFs of the probability of voltage at the selected buses obtained by the NRLF 
study considering the model uncertainty due to the resistance of the substation transformer 

  (a) in the voltage drop case, (b) in the voltage rise case 
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6.5.6. On the cumulative uncertainty impacts associated with the models of loads, 
lines and substation transformer 

In the last part of this chapter, the cumulative uncertainty effects of the load, line and 
transformer models on the system voltages are investigated. The MC simulations generate 
scenarios for the studied uncertain variables, which are α, β, and PF for the load buses, ΔR and 
b/2 for all lines and RT for the substation transformer. Given that there are more uncertain 
variables in this case, the total number of scenarios is increased to 5000 in order to be able to 
capture all the possible realizations of the uncertain variables. The system voltages are obtained 
using the adapted NRLF study. Box plots of the node voltages are presented in figure 6-8. The 
corrected voltages obtained by the VCA (relying on the simplified deterministic models of the 
system components) are also plotted in the same figure in order to demonstrate clearly how the 
system voltages can vary as a result of the model uncertainty of the system components. 

 

 
a 

 
b 

Figure 6-8: Box plots of the node voltages subject to the cumulative uncertainty effects of the 
studied components and the corrected voltages obtained by the VCA 

(a) in the voltage drop case, (b) in the voltage rise case 
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In figure 6-8(a) corresponding to the investigation on the voltage drop case, it is seen that box 
plots of the node voltages exceed the permitted lower voltage limit. In the studies carried out 
on impact of each individual uncertain factor in the voltage drop situation, it was found that the 
voltage dependency of the loads and shunt admittances of the lines lead to a voltage increase 
while the internal resistance of the substation transformer and load power factor decrease the 
system voltages. Also, thermal dependency of the lines creates voltage variations around (in 
both directions) the corrected voltages. However, the uncertainty linked to the load power 
factors has the most dominant effect on the voltage results shown in figure 6-8(a) such that it 
can be stated that the voltage violations found in the voltage drop case mainly happen due to 
the power factor uncertainty of the loads. This point can be verified by taking into account the 
results shown in figure 6-4(a) according to which, voltage at bus 24 can decrease to nearly 0.96 
pu due to the load power factor uncertainty. This big voltage drop has changed in figure 6-8(a) 
towards more moderate values due to compensating effects of b/2, α and β. 

In the voltage rise case, cumulative uncertainty effects of the studied components create big 
voltage violations above the 1.03 pu voltage limit as it can be seen in figure 6-8(b). The 
maximum voltage violation occurs at bus 26 where the voltage amplitude can reach 1.041 pu. 
With regard to the voltages obtained by the VCA (relying on the simplified models), it is noticed 
that the node voltages can have violations up to nearly 0.01 (=1.041-1.0313) pu at bus 26 due 
to uncertain nature of the system component models. It is worth mentioning that in the voltage 
rise case, uncertainties related to the internal resistance of the substation transformer and 
thermal dependency of the branch resistances have the most dominant effects on the node 
voltages.      

The obtained results in this section give us the maximum deviation that the node voltages can 
have due to cumulative uncertainty effects of the studied components. This can be utilized in 
order to reset the targeted voltage values of the VCA in such a way that it makes the VCA 
robust against possible deviations due to the inherent uncertainty related to the traditionally 
used (simplified) models of the network components. In this regard, in the studied VCA, in 
order to have the system voltages within the permitted 0.97 pu voltage limit, the targeted lower 
voltage value of the VCA should be changed to 0.9775 (=0.97+0.0075) pu, according to the 
maximum voltage deviation found in the voltage drop case at bus 24 which is equal to 0.0075 
pu (see figure 6-8(a)). Similarly, the targeted upper voltage value of the VCA must be modified 
to 1.019 (=1.03-0.011) pu, based on the results shown in figure 6-8(b) regarding the maximum 
voltage deviation found at bus 26 (=0.011 pu). In this way, the VCA will be immunized against 
all possible realizations due to model uncertainty of the studied components. Figure 6-9 shows 
box plots of the system voltages as well as the corrected voltages obtained by the VCA when 
the targeted lower and upper voltage values of the VCA are modified to 0.9775 pu and 1.019 
pu, respectively, in order to have system voltages within the permitted voltage range and 
consequently be robust against the intrinsic uncertainty in the models of the studied components. 
It should be noted that in adjusting the targeted bounds of the VCA, the errors arisen from the 
inaccuracy of the voltage sensitivity analyses have been considered as well.  
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As it can be seen in figure 6-9, in all created scenarios that take the model uncertainty effects 
into account, the system voltages do not violate the permitted voltage range in both voltage 
drop and rise conditions when applying the control actions undertaken by the VCA relying on 
the simplified models of the network components. On the other hand, as a consequence of 
modifying the targeted voltage bounds of the VCA, a conservative solution will be obtained by 
the VCA. To make it clearer, table 6-2 presents needed contributions of the control variables in 
order to solve the voltage control problem when the targeted voltage values of the VCA have 
been modified.   
  
 
 
 
 

 
a 

 
b 

Figure 6-9: Box plots of the node voltages subject to the cumulative uncertainty effects of the 
studied components and the corrected voltages obtained by the VCA when the targeted voltage 

values of the VCA have been modified 
(a) in the voltage drop case, (b) in the voltage rise case 
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As it can be seen in table 6-2, in the voltage rise state, when the targeted upper voltage value of 
the VCA is set to 1.019 pu, the VCA asks DG5 and DG18 to change their reactive powers by 
2.288 Mvar and 1.282 Mvar, respectively. Also, the transformer tap changer is decreased by 4 
steps. The objective function of the VCA in this case equals to 9.35 which is bigger than the 
one presented in table 6-1 (=5.786) when the targeted upper voltage point was 1.03 pu. The 
difference between the objective functions in these two cases indicates the control effort that 
should be added (or the price that we should pay) in order to make the VCA solutions fully 
robust against the effects of the model uncertainties. A similar trend can also be found 
considering the OF values corresponding to the voltage drop case in tables 6-1 and 6-2. In order 
to avoid such a conservative solution, a lower level of robustness can be eventually adopted 
that may result in some unwanted voltage violations.  

6.6. Conclusion 

In this chapter, impacts of the uncertainties associated with the models of the loads, lines, and 
substation transformer on the voltage constraints of the studied VCA are investigated. On the 
basis of the simulation results, it is concluded that the voltage dependency of loads does not 
cause voltage violation issue in the VCA. On the contrary, the load power factor uncertainty 
creates big voltage violations in the voltage drop case. Moreover, it is found that adding the 
shunt admittances of the lines results in increasing the system voltages and it can lead to voltage 
violation problem in the voltage rise state. Furthermore, it is shown that internal resistance of 
substation transformer and thermal dependency of branch resistances have considerable 
impacts on the system voltages in such a way that by taking them into account, voltage 
violations occur from both upper and lower voltage limits. Finally, through evaluating 
cumulative uncertainty effects of the studied components in the tested system, it has been 
demonstrated that the voltage violations from the permitted voltage range happen in both 
voltage drop and rise states. To avoid voltage violations due to the model uncertainty impacts, 
the targeted values of the VCA should be adjusted according to the results of the study on the 
cumulative uncertainty effects of the studied components.   

The proposed framework of this chapter determines impacts of the model uncertainties on the 
node voltages on the basis of a posteriori analysis. In the next chapter, the studied uncertainties 
will be transferred inside the VCA. The robust optimization will be adopted to account for the 

TABLE 6-2: VCA RESULTS IN THE VOLTAGE RISE AND 

DROP CONDITIONS WHEN THE TARGETED PERMITTED 

BOUNDS OF THE VCA HAVE BEEN MODIFIED  

 Voltage drop Voltage rise 

ΔQDGx (Mvar) 
x ∈ {1, 2, 3, …, 22} 

DG5=-1.11 
DG5= 2.288 
DG18=1.282 

ΔPDGx (MW) 
x ∈ {1, 2, 3, …, 22} 

NA NA 

ΔTapTR 4 -4 
OF 5.665 9.35 
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model uncertainty. Solution of the robust optimization problem defines the control commands 
that remain immunized against all possible realizations of the uncertainties. Therefore, there 
will be no need to modify the targeted bounds of the VCA (as suggested in the current chapter) 
in order to maintain the system voltages within the permitted voltage limits given that the 
uncertainties will be included in the robust VCA formulation.    
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Chapter 7: A robust voltage control algorithm incorporating 

uncertainties related to the network component models 

 

7.1. Abstract 

In the last chapter of this thesis, uncertainties related to the network component models as 
presented in the previous chapter are considered in the VCA when taking corrective decisions 
of the control variables. The Robust Optimization (RO) is adopted to account for the 
uncertainties. The proposed VCA of this chapter determines a solution that remains robust 
against all possible realizations of uncertainties associated with the network component models. 
To this end, prior to formulating the voltage control problem, MC simulations are used to 
characterize uncertain models of the network components and LF calculations are carried out 
to evaluate their impacts. The RO under box uncertainty set is adopted to formulate the voltage 
control problem subject to the model uncertainty. The RO counterpart of the proposed VCA is 
derived based on the results obtained through the MC simulations and LF calculations. Once 
the RO problem is solved, in order to check robustness of the solution, system voltages are 
evaluated using the LF calculations considering the new set-points of control variables and 
uncertainties of the network component models.  

7.2. Introduction  

In many optimization applications, the problem data are assumed to be known with certainty. 
In practice, however, the realistic data are very often subject to uncertainty due to their random 
nature, measurement errors, or other reasons. Since the solution of the optimization problem 
exhibits high sensitivity to data perturbations, ignoring the data uncertainty could lead to 
solutions which are infeasible in practice [86]. Robust optimization presents methodology for 
dealing with the optimization problem subject to data uncertainty. Under this approach, we are 
willing to accept a suboptimal solution for the nominal values of data in order to ensure that 
this solution remains feasible when data change within the predefined ranges. In contrast to the 
stochastic optimization, RO formulates the uncertainty assuming that an uncertain value varies 
within a predefined interval rather than proposing a probability distribution function for it. 
Therefore, in the RO, uncertainty modelling is not stochastic, but rather determinate and set-
based. Consequently, no assumption on the distribution of the uncertainty has to be made which 
is an attractive aspect of RO, especially, in the case of the lack of full information about the 
nature of the uncertainty [87].  

In the electric power systems, data uncertainty can be arisen from the electricity price change, 
load or DG power variation, measurement noise, state estimation error, and the partial 
knowledge of the network model [88] and [89]. In the literature, RO techniques have been 
applied to problems such as volt-var control [90], voltage constraints management [46], optimal 
power flow [91], [92], economic dispatch [93], generation planning [94], [95], and microgrid 
planning [96].   



   

140 
  

7.3. Robust optimization problem  

Consider the generic linear optimization problem presented in below. 

                                                                      Maximize: TC x                                                                    (7-1) 

                                                                         Ax b                                                                        (7-2) 

                                                                        b bl x u                                                                    (7-3) 

without loss of generality, it is assumed that data uncertainty only affects elements of matrix A. 
Consider a particular row i of the matrix A and let Ji be the set of column indices in row i that 
are subject to uncertainty. Each entry 𝑎௜௝ of matrix A, 𝑗 ∈ 𝐽௜  is modelled as a symmetric and 

bounded random variable 𝑎෤௜௝ that takes values from the range ൣ𝑎௜௝ − 𝑎ො௜௝, 𝑎௜௝ + 𝑎ො௜௝൧ where 𝑎௜௝ is 

the nominal value of 𝑎෤௜௝ and 𝑎ො௜௝ denotes its maximum positive perturbation. The uncertain data 

𝑎෤௜௝ is given by  

                                                                      
ij ijij ija a a                                                                (7-4) 

where 𝜉௜௝ is a random variable which is subject to uncertainty and perturbs in the range [-1,1]. 

Under the uncertainty of matrix A, the robust optimization solution is the one that satisfies all 
constraints no matter what value the random variable 𝜉௜௝ takes within the range [-1,1]. In order 

to derive the robust counterpart of the presented generic linear optimization problem, the 
structural constraint (7-2) needs only to be modified as below given that the data uncertainty 
affects elements of matrix A. 

                                                               
i i

ijij j j i
j J j J

a x a x b i
 

                                                     (7-5) 

The above constraint can be reformulated further as 

                                                                
i

ijij j ij j i
j j J

a x a x b i


                                                  (7-6) 

In the robust optimization with a predefined uncertainty set U, the robust solution is the one 
that remains feasible for any 𝜉  in the given uncertainty set. The corresponding structural 
constraint of the RO problem under uncertainty set U is obtained by [86]. 

                                                         max   
i

ijij j ij j i
U

j j J

a x a x b i



 

                                             (7-7) 

The term max
క∈௎

∑ 𝜉௜௝𝑎ො௜௝𝑥௝௝∈௃೔
 provides the necessary protection of the ith constraint by 

maintaining a gap between ∑ 𝑎௜௝𝑥௝௝  and 𝑏௜ . In the following sections, the most prominent 

uncertainty sets are introduced and their corresponding RO problems are presented. 
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7.3.1. Robust optimization under box uncertainty set  

In the box uncertainty set, it is assumed that 𝜉௜௝ is the random variable linked with each uncertain 

entry 𝑎෤௜௝ in row i of matrix A which can vary independently between 0 and 𝛹௜. The interaction 

of perturbations creates a box-shaped space, which represents the box uncertainty set described 
as follows.   

                                                  ,ij ijb ij ij ij iU a a a i                                              (7-8) 

where 𝛹௜  represents perturbation bounds for all uncertain coefficients of matrix A in row i. 
Figure 7-1 depicts the box uncertainty set for entry 𝑎෤௝ of matrix A where two elements of its ith 

row are subject to uncertainty (i.e., j=1,2).  

 

For the bounded uncertainty 𝜉௝ ∈  [−1,1], when 𝛹 is set to 1, the entire uncertain space 𝑎෤௝ is 

covered by the box uncertainty. This is a special case of the box uncertainty set which is known 
as interval uncertainty set. The robust counterpart optimization under box uncertainty is 
formulated as follows [86], [97], [98].    

                                                                        Maximize: TC x                                                                 (7-9) 

                                                          
i

ijij j i j i
j j J

a x a x b i


 
    
 

                                            (7-10) 

                                                                             b bl x u                                                             (7-11) 

Under the box uncertainty set, the solution of the optimization problem is robust for all 
perturbations smaller than 𝛹௜ . If 𝛹௜  is set to 1 (i.e. the interval uncertainty set), the above 
optimization problem results in the most conservative solution.  

7.3.2. Robust optimization under ellipsoidal uncertainty set  

As stated in the previous section, the interval uncertainty set leads to the most conservative 
solution, which has an advantage in the sense that it provides the highest protection against the 
uncertainties. On the other hand, conservatism of the interval uncertainty formulation can 
noticeably change the objective function value in comparison with its nominal one. In order to 

 
 

Figure 7-1: Illustration of the box uncertainty set 
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address this issue, the ellipsoidal uncertainty set has been proposed in [99] according to which, 
the uncertainty space is reduced through deleting a subset of uncertainty using the following set. 

                                                2 2 ,ij ije ij ij ij i
j

U a a a i 
        
  

                                   (7-12) 

where Ωi is an adjustable parameter associated with the ith row of matrix A, thanks to which, we 
can control the size (border) of the uncertainty set. Figure 7-2 illustrates the ellipsoidal 
uncertainty set where two uncertain coefficients (i.e., j=1,2) exist in the ith row of A. 

 

For the bounded uncertainty 𝜉௝ ∈ [−1,1], when 𝛺௜ ≥ ඥ|𝐽௜|, |𝐽௜| is cardinality of the set 𝐽௜, the 

entire uncertain space 𝑎෤௝  is covered by the ellipsoidal uncertainty. Figure 7-3 shows the 

ellipsoidal uncertainty set for different values of Ωi with respect to the interval uncertainty set 
(having 𝛹௜ = 1).  

 

From figure 7-3, it is seen that when Ωi=1, the ellipsoid is inscribed by the box and the whole 
uncertainty set is not covered in the ellipsoid. Consequently, the level of conservatism of the 
solution is reduced with respect to that of the interval set. The resulting RO problem under 
ellipsoidal uncertainty set is formulated as [86], [98]. 

                                                                          Maximize: TC x                                                              (7-13) 

                                                         2
2   

i

ijij j i j i
j j J

a x a x b i


 
    
  

                                          (7-14) 

                                                                            b bl x u                                                               (7-15) 

 
 

Figure 7-2: Illustration of the ellipsoidal uncertainty set  

 
 

Figure 7-3: The ellipsoidal uncertainty set for different values of Ω   

 

𝟎 ≤ 𝛀𝒊 ≤ 𝟏 𝛀𝒊 = 𝟏 𝟏 ≤ 𝛀𝒊 ≤ ඥ|𝐽𝑖 | 𝛀𝒊 = ඥ|𝐽𝑖| 
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In the bounded uncertainty 𝜉௜௝ ∈ [−1,1] , for any 𝛺௜ < ൫ඥ|𝐽௜|൯ , the ellipsoidal robust 

formulation leads to solution which is less conservative than the one obtained by the interval 
uncertainty set since every feasible solution of the former is a feasible solution to the latter. On 
the other hand, the robust model of the interval uncertainty set is a linear optimization problem 
while the ellipsoidal uncertainty set leads to a non-linear second-order cone optimization 
problem which demands more computational burden to solve and it will not be particularly 
attractive for the robust discrete optimization models [86], [98].  

7.3.3. Robust optimization under polyhedral uncertainty set  

In practice, it is needed to make a compromise between the optimization performance and the 
conservatism of the RO solution. In this regard, the robust formulation under polyhedral 
uncertainty set is developed in [98]. The polyhedral uncertainty set is defined as follows. 

                                            ,ij ijp ij ij ij i
j

U a a a i 
          
  

                                   (7-16) 

As defined before, consider Ji to be set of the column indices of the ith row that are subject to 
uncertainty. For every row i, a parameter Γi is introduced, not necessarily integer, that takes value 
in the range [0, |𝐽௜|]. The role of parameter Γi is to adjust the robustness level of the solution. 
This choice is motivated by the fact that it is unlikely that all of the entries 𝑎௜௝, 𝑗 ∈ 𝐽௜ will change 

due to uncertainty. Figure 7-4 shows the uncertainty space under polyhedral set when two entries 
of the ith row of matrix A are subject to uncertainty.  

 

For the bounded uncertainty 𝜉௝ ∈ [−1,1] , when 𝛤௜ ≥ |𝐽௜| , the entire uncertain space 𝑎෤௝  is 

covered by the polyhedral uncertainty. Figure 7-5 shows the polyhedral uncertainty set for 
different values of 𝛤௜ with respect to the interval uncertainty set (having 𝛹௜ = 1).  

 
 

Figure 7-4: Illustration of the polyhedral uncertainty set  
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In figure 7-5, it is seen that when 𝛤௜ = 1, the polyhedron is inscribed by the box of interval 
uncertainty set and the intersection between the polyhedron and the box is the polyhedron. Also, 
when 𝛤௜ = |𝐽௜| , the intersection between the polyhedron and the box is the box. The RO 
formulation under polyhedral uncertainty set is given by [86], [98], [100]: 

                                                                   Maximize: TC x                                                                     (7-17) 
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                                                                             0y                                                                     (7-21) 

The solution of the above optimization problem is protected against all cases in which up to ⌊𝛤௜⌋ 
of coefficients are allowed to change and one coefficient 𝑎௜௧, changes by (𝛤௜ − ⌊𝛤௜⌋𝑎ො௜௧). If 𝛤௜ is 

chosen to be an integer, the ith constraint is protected by max
{ௌ೔|ௌ೔⊆௃೔,|ௌ೔|ୀ୻೔}

൛∑ 𝑎ො௜௝ห𝑥௝ห௝∈ௌ೔
ൟ . 

Moreover, when 𝛤௜ = 0, the ith constraint is equal to that of the nominal problem and 𝛤௜ = |𝐽௜| 
leads to the roust formulation under the interval uncertainty set. Therefore, by varying 𝛤௜ ∈

[0, |𝐽௜|], it is possible to adjust the robustness of the polyhedral model against the level of the 
conservatism of solutions.   

7.4. On the choice of the uncertainty set for the robust voltage control 
algorithm  

The Robust VCA (RVCA) of this chapter adopts the model under box uncertainty set. This 
choice is motivated by the fact that the ellipsoidal robust formulation converts the initial linear 
optimization problem into a non-linear second-order one and results in increasing complexity 
and calculation burden of the RVCA. In addition, the polyhedral uncertainty set leads to a bi-
level nested optimization problem. Although the latter has a linear dual model, due to 
introduction of dual variables, the size of the robust counterpart of the VCA increases in the 
polyhedral model. Consequently, given that under the box uncertainty, the RVCA has the same 
number of variables and constraints as the initial VCA and the RVCA formulation remains 
linear similarly to the initial VCA, the RO under the box uncertainty set is adopted in this 

 
Figure 7-5: The polyhedral uncertainty set for different values of Γ  
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chapter. In order to provide the highest protection against the worst uncertainty case, 𝛹௜ is set 
to 1 that eventually belongs to the interval uncertainty set.  

7.5. The robust voltage control algorithm  

As stated before, the RVCA aims at finding corrective control actions of the decision variables 
such that the obtained solution remains immunized against the uncertainties associated with the 
network component models. Figure 7-6 presents the proposed methodology of this chapter to 
this end, which consists of the pre-processing stage, RO formulation and post-processing stage.  

 
 

Figure 7-6: The proposed approach to develop a robust voltage control algorithm 

As it can be seen in figure 7-6, the pre-processing stage determines impacts of the model 
uncertainties on the voltage control problem using MC simulations and LF calculations. The 
RO formulation is derived then on the basis of information provided by the pre-processing 
stage. The solution of the RO defines needed changes of control variables in order to solve the 
voltage control problem subject to model uncertainty. The obtained solution of the RO is finally 
validated in the post-processing stage and the robustness of the solution is evaluated. The three 
parts of the proposed approach are discussed further in the following sections.    

7.5.1. The pre-processing stage  

Similarly to chapter 6, the network components are considered here with uncertain variables 
which are bounded within the predefined ranges. The first step of the proposed method shown 
in figure 7-6 is to characterize the model uncertainties. To this end, MC simulations are utilized 
to create N1 scenarios for the uncertain variables of the network component models. As a result 
of the model uncertainty, in each scenario, the elements of matrix A (i.e. the voltage sensitivity 
matrix) will be perturbed with respect to their initial values. Given that perturbation bounds of 
elements of matrix A are not known, in the second step, LF calculations are performed for each 
of N1 scenarios created by the MC simulations. Beside the perturbations on elements of matrix 
A which correspond to the LHSs of the structural constraints of the generic RO problem, the 
model uncertainty will change the RHSs of those constraints. In a voltage control context, the 
RHS uncertainties of structural constraints can represent the errors associated with the state 
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estimation interface or noise of the voltage measurement devices. When the RHS of the ith 
structural constraint is subject to uncertainty, we have 

                                                                       0i ii ib b b                                                                (7-22) 

where 𝑏෨௜ and 𝑏෠௜ are the uncertain RHS of the ith structural constraint and its perturbation value, 
respectively. Also, 𝜉௜଴ is the random variable associated with uncertainty of RHS of the ith 
structural constraint. The structural constraint (7-7) of the generic RO problem is needed to be 
rewritten when uncertainties are in both of the RHS and LHS, as follows.   
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Considering the box uncertainty set, the above constraint is equal to [86] 
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When LF calculations for N1 scenarios are carried out, perturbations of voltage sensitivity 
coefficients (i.e. entries of A) as well as variations of node voltages (which define the 
uncertainties related to the RHSs of the structural constraints) are known. Therefore, the RO 
counterpart of the VCA under the interval uncertainty set subject to uncertainties in RHS and 
LHS of the structural constraints can be derived. 

7.5.2. The robust optimization formulation  

The RO counterpart of the sensitivity-based VCA optimization problem presented in chapter 5 
((5-30) to (5-36)) in the voltage rise case is given as follows when uncertainties are in RHS and 
LHS of the structural constraints.  
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As before, u is index for the buses with the voltage rise and set U includes all the buses with 

the voltage rise violations. 
డ௏෪

ೠ

డொವಸೣ
, 

డ௏෪
ೠ

డ௉ವಸೣ
 and 

డ௏෪
ೠ

డ௏೅ೌ೛
 stand for uncertain sensitivity coefficients of 

voltage at bus u with respect to reactive power of DGx, active power of DGx, and transformer 

tap, respectively. The RHS of the structural constraint (7-26) denoted by ∆𝑉෪
௨
௥௘௤  gives the 

uncertain needed voltage modification at bus u in order to return its voltage within the permitted 
voltage range. Assuming that the model uncertainty will affect all elements of the uth row of 
the voltage sensitivity matrix, the structural constraint of the above RVCA optimization 
problem can be rewritten according to (7-24) as follows. 
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(7-31) 

where 
డ௏෢

ೠ

డொವಸೣ
, 

డ௏෢
ೠ

డ௉ವಸೣ
 and 

డ௏෢
ೠ

డ௏೅ೌ೛
 are perturbations of voltage sensitivity coefficients of bus u with 

respect to the control variables. Also, ∆𝑉෢
௨
௥௘௤ is the perturbation of needed voltage modification 

at bus u due to model uncertainty imapct. Note that the perturbations of node voltages and 
voltage sensitivity coefficients are obtained by performing LF calculations in N1 scenarios of 
the pre-processing stage. In the voltage drop case, the corresponding structural constraint of the 
RO problem is given as below where index u is replaced by l referring to buses with voltage 
drop violations found in set L.  
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As before, the 0.97 pu voltage limit is selected as the targeted point for the buses with the 
voltage drop violations. Given that the model uncertainty does not necessarily create 
symmetrical variation around nominal value of each entry of the sensitivity matrix, 
perturbations of sensitivity coefficients in (7-31) or (7-32) must be selected such that the 
maximum protection against the worst uncertainty scenario is guaranteed. In this regard, the 
perturbation that reduces the absolute value of each entry of the sensitivity matrix at most is 
selected because in this way, the biggest value of control variable changes will be demanded. 
Consequently, the highest protection against the model uncertainty is provided. In addition, the 
perturbation that creates the biggest voltage violation at the lth or uth bus of the system (among 
N1 scenarios) will be chosen since it gives the worst voltage violation scenario at bus l or u.   

The voltage sensitivity coefficients with respect to nodal active and reactive powers in each of 
N1 created scenarios are obtained based on the JBSA method as the Jacobian matrix is in our 
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disposition in the NRLF study. The nodal voltage sensitivities with respect to transformer tap 
are calculated using the perturb-and-observe technique. To this end, the voltage variation in the 
observed point is calculated using the NRLF when the transformer tap position (i.e. the 
perturbation point) is moved by one step.  

7.5.3. The post-processing stage  

Once the abovementioned linear RO problem is solved, new set-points of control variables (i.e. 
active and reactive power changes of DGs as well as the transformer tap movement) are 
available. As stated before, the obtained solution of the RVCA must remain immunized against 
all possible realizations of uncertainties associated with the network component models. In 
order to verify the latter, further analyses are carried out on the new set-points of control 
variables. In this regard, MC simulations are used to create N2 scenarios for uncertain 
parameters of the network component models. Then, LF calculations are done on each of the 
N2 scenarios considering the set-points of control variables obtained by the RO and the rest of 
the network data. Finally, node voltages in N2 scenarios will be in our disposition, which will 
present the robustness of the RVCA solution in N2 realizations of uncertainties associated with 
the network component models.  

In the proposed approach shown in figure 7-6, in the pre-processing stage (prior to composing 
the RO problem), when choosing needed number of scenarios (i.e. N1) for characterizing 
uncertainties and defining their impacts, the requirement regarding the execution time of the 
RVCA must be taken into account. Such a limit does not exist when N2 scenarios are created to 
validate the RVCA results since the corrective decisions have been already made. 
Consequently, N2 can be much bigger than N1. In this way, the RVCA results will be tested for 
extra scenarios that are not necessarily included among N1 generated scenarios in the first stage 
of the MC simulations. It is worth noting that the defined variation ranges for uncertain 
variables of network component models are identical when creating scenarios in the pre-
processing and post-processing stages.  

7.6. Studied sources of the model uncertainty   

Like the previous chapter, uncertainties associated with the voltage dependency of loads, power 
factor of loads, thermal dependency of lines, shunt admittances of lines and internal resistance 
of substation transformer are taken into consideration here. The proposed RVCA firstly 
manages the voltage constraints under uncertainty arisen from each of the abovementioned 
sources (individually). Then, all studied sources of uncertainties are considered to be present 
simultaneously and the RVCA solves the voltage control problem under uncertainties of load, 
line and transformer models. The investigations of this chapter are done on the voltage rise and 
drop conditions corresponding to the same working points as presented in the previous chapter. 
It should be noted that the defined ranges for the uncertain variables of the network component 
models are also identical with the ones given in chapter 6. In addition, MC creates scenarios on 
the basis of the procedure described in section 6.3.2.  
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7.7. Simulation results 

The proposed RVCA including the MC simulation, NRLF calculation, and the presented RO 
formulation is implemented in the MATLAB environment. Performance of the RVCA is tested 
on the UKGDS shown in figure 3-1 in the voltage drop and rise states. Two working points as 
follows are defined in order to create the voltage drop and rise conditions. In the first working 
point for the voltage drop case, all loads are considered to be at their maximum values (=100%) 
while active powers of DGs are equal to zero. In the second working point corresponding to the 
voltage rise state, it is supposed that the load powers are at 10% of their respective nominal 
values and active powers of DGs are equal to 90% of their rated values. The initial reactive 
powers of DGs in both cases are set to zero.  

In order to consider the constraint regarding the calculation time of the RVCA, in the pre-
processing stage (prior to forming the RO problem), 500 scenarios (N1=500) are created by the 
MC simulations. However, to validate the RO results, number of scenarios is increased to 2000 
(N2=2000). In the voltage control procedure, it is supposed that the OLTC action has the 
smallest weighting coefficient compared to other control variables which is equal to 1 (CTR=1) 
while the reactive power changes of DGs are weighted by a coefficient which is 50% bigger 
than the OLTC one (CQ=1.5). Also, active power curtailment of DGs is assigned to a coefficient 
which is 100% bigger than the OLTC one (CP=2). The upper and lower permitted nodal voltage 
limits are equal to 1.03 pu and 0.97 pu, respectively.   

Table 7-1 presents the demanded contributions of DGs and necessary transformer tap 
movements in order to manage voltage violations in the voltage rise and drop cases when the 
model uncertainty is neglected. The initial system voltages (with voltage violations) as well as 
the ones obtained after the voltage regulation using the simple VCA corresponding to the 
nominal network model are depicted in figure 7-7.  

 

 

TABLE 7-1: VCA RESULTS IN THE VOLTAGE RISE AND 

DROP CONDITIONS CONSIDERING SIMPLE MODELS OF 

NETWORK COMPONENTS  

 Voltage drop Voltage rise 

ΔQDGx (Mvar) 
x ∈ {1, 2, 3, …, 22} 

DG5=-1.266 DG5=1.363 

ΔPDGx (MW) 
x ∈ {1, 2, 3, …, 22} 

NA NA 

ΔTapTR 2 -4 

OF 3.897 6.044 
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In what follows, the RVCA is utilized to manage the voltage constraints in the voltage rise and 
drop conditions under uncertainty of the network component models. The RVCA results are 
compared with the ones obtained through the simple VCA (which does not consider the model 
uncertainty and relies on the simplified deterministic network model).  

7.7.1. On the uncertainty linked with the voltage dependency of the loads  

In the first studied case, the uncertainty due to the voltage dependency of loads is taken into 
consideration. The RVCA manages the node voltages in the voltage drop and rise conditions 
under uncertainty of the load-voltage dependency. Due to the fact that in the voltage rise 
condition, load powers are equal to 10% of their nominal values, it can be expected that the 
load-voltage dependency will not have important impact on this case. Conversely, in the voltage 
drop condition, load powers are maximal; therefore, study on the RVCA performance 
considering the load-voltage dependency in the voltage drop case will be of interest.  

Table 7-2 presents the control variable changes demanded by the RVCA to manage the voltage 
violations in both voltage rise and drop conditions. For ease of comparison, the results obtained 
using the simple VCA are also given hereafter in the same table. Moreover, figure 7-8 shows 
the boxplots of initial and corrected voltages subject to the studied uncertainty of this section 
as well as the initial and corrected voltages obtained by relying on the simplified deterministic 
component model. The boxplots of initial voltages show the possible perturbations of node 
voltages due to the model uncertainty, which correspond to the uncertainty in RHSs of the 
structural constraints. The boxplots of corrected voltages give the voltage results obtained in N2 
scenarios considering the solution of the RO problem. Hereafter, boxplots of the initial voltages 
are shown in blue while ones related to the corrected voltages are illustrated in black.      

 

 

 
Figure 7-7: Initial nodal voltages as well as the corrected ones obtained by the simple 

VCA relying on simplified models of network components in the voltage drop and rise 
cases 
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TABLE 7-2: ROBUST VCA RESULTS CONSIDERING THE UNCERTAINTY ASSOCIATED 

WITH VOLTAGE DEPENDENCY OF LOADS IN COMPARISON WITH THE SIMPLE VCA 

RESULTS; IN THE VOLTAGE RISE AND DROP CONDITIONS 

 
Voltage drop Voltage rise 

RVCA Simple VCA RVCA Simple VCA 
ΔQDGx (Mvar) 

x ∈ {1, 2, 3, …, 22} DG5=-2.577 DG5=-1.266 DG5=1.364 DG5=1.363 

ΔPDGx (MW) 
x ∈ {1, 2, 3, …, 22} 

NA NA NA NA 

ΔTapTR NA 2 -4 -4 
OF 3.845 3.897 6.046 6.044 

 

 
a 

 
b 

Figure 7-8: The voltages obtained using simplified network component models as well as 
boxplots of initial and corrected voltages considering the uncertainty associated with the 

voltage dependency of load  
(a) in the voltage drop case, (b) in the voltage rise case 
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In the voltage drop condition, the voltage control problem considering the uncertainty has been 
solved with a smaller value of objective function compared to the one obtained by the simple 
VCA using the simplified (power constant) load model as it can be seen in table 7-2. This is 
due to the fact that in the voltage drop condition, node voltages are smaller than 1 pu; therefore, 
the load-voltage dependency reduces the load powers. Consequently, the load-voltage 
uncertainty decreases the severity of the voltage control problem. In other words, perturbations 
caused by the studied uncertainty release (smooth) the structural constraints of the RO problem 
such that less control effort is needed to solve the voltage control problem in the voltage drop 
condition. Similar interpretation can be also done on the basis of the voltage results shown in 
figure 7-8(a) where it is seen that boxplots of initial voltages are placed above the voltages 
obtained by the simplified load model.  

Furthermore, from table 7-2, it can be concluded that the uncertainty impact due to the load-
voltage dependency in the voltage rise condition is negligible since the RVCA and simple VCA 
have led to almost similar results in this case. The latter point can be verified further considering 
the figure 7-8(b) where it is seen that boxplots of initial and corrected voltages have very narrow 
bounds. 

7.7.2. On the uncertainty linked with the power factor of the loads  

Performance of the RVCA under uncertainty of load power factors is investigated here on the 
studied voltage rise and drop conditions. Similar to the previous case, it can be expected that 
the power factor uncertainty impact appears mostly on the voltage drop condition since the load 
powers are maximal in this case. Table 7-3 and figure 7-9 present the RVCA results under 
uncertainty of the load power factors.  

 

 

 

 

TABLE 7-3: ROBUST VCA RESULTS CONSIDERING THE UNCERTAINTY ASSOCIATED 

WITH POWER FACTOR OF LOADS IN COMPARISON WITH THE SIMPLE VCA RESULTS; IN 

THE VOLTAGE RISE AND DROP CONDITIONS  

 
Voltage drop Voltage rise 

RVCA Simple VCA RVCA Simple VCA 
ΔQDGx (Mvar) 

x ∈ {1, 2, 3, …, 22} 
DG5=-1.327  DG5=-1.266  DG5=1.317 DG5=1.363 

ΔPDGx (MW) 
x ∈ {1, 2, 3, …, 22} 

NA NA NA NA 

ΔTapTR 4 2 -4 -4 
OF 5.991 3.897 5.976 6.044 
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As stated before (in section 6.5.2), the average power factor of loads in the studied UKGDS is 
equal to 0.98. Considering the defined range for the power factor variation from 0.9 to 1, the 
load reactive powers will increase because of the power factor uncertainties. Consequently, in 
figure 7-9(a), it is observed that boxplots of the initial node voltages are noticeably lower than 
the initial voltages obtained by neglecting load power factor uncertainties. The difference 
between the former and latter can reach almost 0.01 pu. Therefore, a bigger value of control 
variable changes is needed to manage the voltage control problem under uncertainty of load 
power factors in the voltage drop case as it can be seen in table 7-3.  

In figure 7-9(b) regarding the voltage rise condition, it is seen that as a result of the load power 
factor uncertainty, boxplots of the initial voltages are placed under the voltages obtained by the 
simplified load model. It is due to the fact that power factor uncertainties have increased the 

 
a 

 
b 

Figure 7-9: The voltages obtained using simplified network component models as well as 
boxplots of initial and corrected voltages considering the uncertainty associated with the 

power factor of load  
(a) in the voltage drop case, (b) in the voltage rise case 
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load reactive powers with respect to their initial values. Consequently, in the voltage rise 
condition, the voltage control problem under load power factor uncertainties has been solved 
with a smaller value of objective function in comparison with the one of the simple VCA (see 
table 7-3). From figures 7-9(a) and 7-9(b), it is noticed that the boxplots of the corrected 
voltages in the voltage drop and rise conditions do not violate the permitted voltage range in all 
N2 created scenarios. Therefore, it is verified that the RVCA solution remains immunized 
against all realizations of the studied uncertainty. It is worth observing that the solution of the 
simple VCA is optimal and feasible for the nominal value of the uncertain variable. If the latter 
takes any other value than its nominal one, the solution of the simple VCA would be either 
infeasible or non-optimal. In the current studied case, the solution of the simple VCA is 
infeasible in the voltage drop case and non-optimal in the voltage rise case (for any value of the 
uncertain variable other than the nominal one). In contrast, the solution of the RVCA remains 
feasible for all realizations of uncertainty (within the predefined range) and is optimal with 
respect to the worst uncertainty scenario.  

7.7.3. On the uncertainty linked with the thermal dependency of lines 

In this section, thermal dependency of lines is taken into consideration as the source of the 
uncertainty. The RVCA is utilized to manage the voltage control problem of the studied 
working points under uncertainty of the line resistances due to the thermal dependency effect. 
Table 7-4 and figure 7-10 present the RVCA results corresponding to the voltage rise and drop 
conditions.   

 

In the voltage drop case, as stated in section 6.4.3, it is considered that the line resistances can 
vary within the range of ±5.8% of their nominal values due to the thermal dependency effect. 
This creates voltage variations around the initial voltages (obtained by neglecting thermal 
dependency of branch resistances) as it can be seen in figure 7-10(a). The RVCA solution must 
remain immunized against the worst possible realization of the uncertainty. Therefore, the 
perturbations that create the worst uncertainty scenarios are selected to compose the structural 
constraints of the RO problem. The worst uncertainty scenario in the voltage drop condition 
corresponds to the case in which the initial voltages are equal to their minimum in boxplots 
shown in figure 7-10(a) and the absolute values of voltage sensitivity indexes are reduced at 
most by the thermal dependency impact. Figure 7-10(a) confirms that when the RVCA solution 

TABLE 7-4: ROBUST VCA RESULTS CONSIDERING THE UNCERTAINTY ASSOCIATED 

WITH THERMAL DEPENDENCY OF LINES IN COMPARISON WITH THE SIMPLE VCA 

RESULTS; IN THE VOLTAGE RISE AND DROP CONDITIONS  

 
Voltage drop Voltage rise 

RVCA Simple VCA RVCA Simple VCA 
ΔQDGx (Mvar) 

x ∈ {1, 2, 3, …, 22} 
DG5=-1.403 DG5=-1.266  

DG5=1.876 
DG18=0.544 

DG5=1.363 

ΔPDGx (MW) 
x ∈ {1, 2, 3, …, 22} 

NA NA NA NA 

ΔTapTR 2 2 -4 -4 

OF 4.103 3.897 7.631 6.044 
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is applied to N2 simulated scenarios (that take the model uncertainty impact into account), the 
box plots of the corrected voltages do not violate the permitted voltage range. In order to be 
protected against the uncertainty associated with the thermal dependency of line resistances, 
the reactive power changes of DG5 has changed from -1.266 Mvar (i.e. the simple VCA results) 
to -1.403 Mvar as it can be seen in table 7-4. 

 

In the voltage rise condition, thermal dependency effect creates bigger voltage variations 
compared to the ones in the voltage drop situation as it can be noticed from boxplots of initial 
voltages shown in figures 7-10(a) and 7-10(b). It is explained by the fact that the defined range 
for the resistance variation (due to the thermal dependency effect) is wider in the voltage rise 
condition. In order to have a protected solution against the uncertainty effect in the voltage rise 

 
a 

 
b 

Figure 7-10: The voltages obtained using simplified network component models as well 
as boxplots of initial and corrected voltages considering the uncertainty associated with 

thermal dependency of lines  
(a) in the voltage drop case, (b) in the voltage rise case 
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condition, the reactive powers of DG18 and DG5 are increased by 0.544 and 0.513 Mvar, 
respectively, with respect to the results of the simple VCA (see table 7-4). Figure 7-10(b) 
verifies that the solution of the RVCA is immunized against realization of N2 scenarios in the 
voltage rise condition.  

7.7.4. On the uncertainty linked with the shunt admittances of the lines  

The RVCA performance is tested here when shunt admittances of the lines are considered as 
source of the uncertainty. Given that in the simplified line model, the shunt admittances have 
been totally neglected, it is expected that the consideration of shunt admittances will increase 
the node voltages in both voltage rise and drop conditions. Table 7-5 and figure 7-11 present 
the RVCA results under uncertainty of shunt admittances of the lines.  

                      

In table 7-5 regarding the RVCA results in the voltage drop condition, it is seen that as a result 
of incorporation of shunt admittances, objective function of the RVCA is reduced with respect 
to the one of the simple VCA from 3.897 to 3.81. It is due to the fact that shunt admittances of 
lines increase the initial node voltages with respect to the ones obtained by the simple line 
model as it can be seen in figure 7-11(a). Therefore, the severity of the voltage control problem 
is decreased when shunt admittances are taken into account. Consequently, a smaller value of 
control variable changes is needed for managing the voltage violations in the voltage drop 
condition in presence of uncertainties due to shunt admittances of lines.  

Unlike the voltage drop condition, in the voltage rise situation, in order to have a protected 
solution against the uncertainty of shunt admittances, the objective function of the RVCA 
increases with respect to that of the simple VCA as it can be seen in table 7-5. From figure 7-
11(b), it is noticed that boxplots of initial voltages in N1 scenarios are found to be in above of 
the initial voltages obtained by the simple line model meaning that the studied uncertainty has 
raised the nodal voltages. As a consequence, the robust solution must have a bigger value to 
provide the needed protection against the worst uncertainty case. Figure 7-11(b) confirms that 
the solution of the RVCA remains protected under N2 realizations of shunt admittance values.   

 

 

TABLE 7-5: ROBUST VCA RESULTS CONSIDERING THE UNCERTAINTY 

ASSOCIATED WITH SHUNT ADMITTANCES OF LINES IN COMPARISON WITH THE 

SIMPLE VCA RESULTS; IN THE VOLTAGE RISE AND DROP CONDITIONS  

 
Voltage drop Voltage rise 

RVCA Simple VCA RVCA Simple VCA 
ΔQDGx (Mvar) 
x=1, 2, …, NG 

DG5=-1.207 DG5=-1.266 
DG5=1.485 
DG18=0.062 

DG5=1.363 

ΔPDGx (MW) 
x=1, 2, …, NG 

NA NA NA NA 

ΔTapTR 2 2 -4 -4 
OF 3.81 3.897 6.281 6.044 
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7.7.5. On the uncertainty linked with the internal resistance of substation 
transformer  

The internal resistance of the substation transformer is considered to be an uncertain variable 
in this section. The RVCA is employed to manage the voltage constraints in the voltage rise 
and drop conditions when the internal resistance of the transformer has a random but bounded 
value given in section 6.5.5. Table 7-6 and figure 7-12 present the RVCA results in the studied 
cases under uncertainty of the transformer resistance. 

 

 
a 

 
b 

Figure 7-11: The voltages obtained using simplified network component models as well as 
boxplots of initial and corrected voltages considering the uncertainty associated with shunt 

admittances of the lines 
(a) in the voltage drop case, (b) in the voltage rise case 
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TABLE 7-6: ROBUST VCA RESULTS CONSIDERING THE UNCERTAINTY 

ASSOCIATED WITH INTERNAL RESISTANCE OF TRANSFORMER IN COMPARISON 

WITH THE SIMPLE VCA RESULTS; IN THE VOLTAGE RISE AND DROP CONDITIONS  

 
Voltage drop Voltage rise 

RVCA Simple VCA RVCA Simple VCA 

ΔQDGx (Mvar) 
x=1, 2, …, NG 

DG5=-1.534 DG5=-1.266 
DG5=1.911 
DG18=0.644 

DG5=1.363 

ΔPDGx (MW) 
x=1, 2, …, NG 

NA NA NA NA 

ΔTapTR 2 2 -4 -4 
OF 4.298 3.897 7.864 6.044 

 
a 

 
b 

Figure 7-12: The voltages obtained using simplified network component models as well as 
boxplots of initial and corrected voltages considering the uncertainty associated with the 

internal resistance of transformer 
(a) in the voltage drop case, (b) in the voltage rise case 
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From table 7-6, it can be noticed that in both voltage drop and rise cases, the RVCA solution 
has a bigger objective function value compared to its counterpart obtained by the simple VCA. 
This means that in practice, the solution obtained by the simple VCA will not be sufficient to 
solve the voltage control problem of the considered points due to the uncertainty that exists in 
the value of the transformer internal resistance. Figure 7-12 demonstrates that the solution of 
the RVCA remains immunized against N2 realizations of the transformer resistance uncertainty 
in both voltage rise and drop conditions since boxplots of corrected voltages do not exceed the 
permitted voltage range.  

In order to be protected against the uncertainty of the transformer resistance, the objective 
function of the RVCA has increased by 0.401 in the voltage drop and 1.824 in the voltage rise 
conditions (with respect to the objective function of the simple VCA). Therefore, it can be 
concluded that the studied uncertainty has a more important effect on the voltage rise case 
though the defined range for variation of the transformer resistance is identical in both voltage 
rise and drop cases. It is explained by the fact that in the studied UKGDS, total powers of DGs 
are almost three times bigger than sum of the load powers. Therefore, in the voltage rise case 
where DG powers are maximal, internal resistance of transformer can create bigger impact on 
the node voltages compared to the voltage drop case where the load powers are at their 
maximum values.   

7.7.6. On the cumulative uncertainties linked with the load, line and transformer 
models   

In the last case study, the uncertainties are considered to be arisen from the load, line, and 
transformer models. The RVCA performance under uncertainties of the network component 
models is evaluated on the same working points as before corresponding to the voltage rise and 
drop conditions. Prior to forming the RO formulation, in order to characterize the uncertainties 
and to evaluate their impacts, it is needed to create scenarios for the considered uncertain 
variables, which are α, β and PF for all loads, ΔR and b/2 for all lines and RT for the substation 
transformer. Given that there are more uncertain variables in the current case, number of 500 
scenarios (N1=500) that is used in the previous cases would not be sufficient to capture all the 
important possible realizations of the mentioned uncertainties. On the other hand, due to the 
constraint regarding the execution time of the RVCA, it is not possible to increase N1. In order 
to deal with this issue, in the pre-processing stage of the RVCA, the uncertain variables that 
have bigger impacts on the voltage control problem are only taken into consideration. In the 
voltage rise condition, it was shown that the transformer resistance and thermal dependency of 
line resistances have led to the biggest changes of the RVCA objective function (with respect 
to the one of the simple VCA). In the voltage drop condition, the uncertainties associated with 
the load models and transformer resistance have resulted in the biggest variations of the RVCA 
objective function. Therefore, the RO is constructed considering the selected sources of the 
uncertainty as mentioned in above in each of the voltage rise or drop case. Once the RO problem 
of the RVCA is solved, then, in order to validate the results, the nodal voltages are evaluated 
considering the solution of the RO when all uncertain variables of the network component 
models are taken into account simultaneously. In the post-processing stage, we increase the 
total number of scenarios to 5000 (N2=5000) since the RVCA decision is already made. It 
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should be noted that the total number of scenarios created in the pre-processing stage remains 
unchanged equal to 500. Table 7-7 shows the RVCA results for managing the voltage 
constraints under uncertainties of network component models, and figure 7-13 presents the 
corresponding boxplots of node voltages in the voltage rise and drop conditions.   

                      

As it can be noticed from table 7-7, the objective function of the RVCA has raised in both 
voltage rise and drop conditions (compared to that of the simple VCA) due to presence of the 
model uncertainty. This means that the solution of the simple VCA can be insufficient to solve 
the voltage control problem of the real case. Taking the voltage results shown in figure 7-13 
into account reveals that the considered simplification of the uncertainty sources in the pre-
processing stage of the RVCA does not create voltage violation when all uncertainties are 
included in the result validation (post-processing) stage since the boxplots of the corrected 
voltages are within the permitted voltage limits. Therefore, it can be concluded that within the 
considered variation range of the uncertain variables in this work, uncertainties linked with the 
thermal dependency of lines and internal resistance of transformer have the most important 
effects on the voltage control problem of the studied system in the voltage rise condition. For 
the voltage management in the voltage drop case, load and transformer models are recognized 
as the most important sources of the model uncertainty.    

7.8. Conclusion  

In the proposed voltage control algorithm of this chapter, the uncertainties associated with the 
network model are considered when taking the corrective decision of the control variables. The 
voltage control problem under uncertainty of the network model is formulated as a RO problem. 
Prior to forming the RO counterpart of the voltage control algorithm, MC simulation and LF 
calculation are employed to characterize and evaluate the impact of the model uncertainty. The 
needed time for the pre-processing stage of the RVCA is about 50 s which includes creation of 
N1 (=500) scenarios for the uncertain variables of the network component models and evaluation 
of their impacts by running LF calculations. Due to the fact that sensitivity of transformer tap 
changes to node voltages are obtained by the POSA method, for each scenario, two LF 
calculations must be done before and after the tap movement. Therefore, number of 1000 LF 
calculations is performed in the pre-processing stage.  

TABLE 7-7: ROBUST VCA RESULTS CONSIDERING THE UNCERTAINTIES 

ASSOCIATED WITH MODELS OF LOAD, LINE AND TRANSFORMER IN COMPARISON 

WITH THE SIMPLE VCA RESULTS; IN THE VOLTAGE RISE AND DROP CONDITIONS  

 
Voltage drop Voltage rise 

RVCA Simple VCA RVCA Simple VCA 

ΔQDGx (Mvar) 
x=1, 2, …, NG 

DG5=-2.666 DG5=-1.266 
DG4=0.0702 
DG5=2.31 

DG18=1.194 
DG5=1.363 

ΔPDGx (MW) 
x=1, 2, …, NG 

NA NA NA NA 

ΔTapTR 2 2 -4 -4 

OF 5.993 3.897 9.361 6.044 
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On the basis of the simulation results, it is found that although the model uncertainty in most of 
the studied cases has led to an increase of the objective function of the RVCA with respect to 
that of the simple VCA, in special cases, the severity of the voltage control problem is reduced 
when considering the model uncertainty. For instance, the uncertainty linked with the voltage 
dependency of loads smooths the structural constraints of the RVCA such that the voltage 
control problem considering that source of uncertainty is solved with a smaller value of 
objective function compared to the case of neglecting the load-voltage uncertainty in the simple 
VCA. However, it is observed that when cumulative effects of the studied uncertainties are 
taken into account, in both voltage rise and drop conditions, the objective function of the RVCA 
is raised with respect to the simple VCA one. This indicates that the solution of the simple VCA 
can be insufficient to solve the voltage control problem of the real cases. 

 
a 

 
b 

Figure 7-13: The voltages obtained using simplified network component models as well as 
boxplots of initial and corrected voltages considering the uncertainties associated with the 

load, line, and transformer models 
 (a) in the voltage drop case, (b) in the voltage rise case 
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7.9. Chapter publication  

This chapter has led to the following working paper to be submitted for publication: 

 B. Bakhshideh Zad, J. Lobry and F. Vallée, "A robust voltage control algorithm 
incorporating the model uncertainty impacts," Working paper.  
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Chapter 8: General conclusion 
  

8.1. Contributions  

In this thesis, voltage control problem of the MV distribution systems under deterministic to 
uncertain model has been addressed. In the first part of the thesis, considering the simplified 
deterministic network model, a centralized sensitivity-based voltage control approach has been 
developed which manages the transformer tap position and DG powers in order to maintain the 
node voltages and branch currents within their permitted limits. The main contributions of the 
first part of the thesis which includes chapters 2 to 5 are as follows.  

 A novel voltage sensitivity analysis method has been developed that determines impacts 
of the nodal active and reactive powers on the system voltages directly from the 
topology of the network.  

 A new formulation has been suggested in order to consider the branch ampacity limits 
as a function of DG powers.  

 Two voltage control algorithms relying on the open-loop and closed-loop functioning 
modes have been designed to manage the operational limits of the system. Thanks to 
the information provided by the proposed sensitivity analysis methods, the voltage 
control problem has been simplified to a linear optimization formulation aiming at 
minimizing the control variable changes while maintaining the node voltage constraints 
and branch ampacity limits. 

 The performance of the proposed VCAs has been tested in chapters 2 and 3 in terms of 
the accuracy of the results and the execution time of the VCAs.  

 The importance of incorporating the power losses in the VSA formulation has been 
demonstrated in chapter 4 by proposing the improved direct sensitivity analysis method 
and through comparative studies of the IDSA with the DSA, POSA and JBSA 
approaches. 

 A straightforward approach has been suggested to derive impacts of the transformer tap 
changes on the node voltages. 

 The performance of the sensitivity-based VCAs employing DG active and reactive 
powers as well as the transformer tap changer has been evaluated in chapter 5. Finally, 
in the end of this chapter, it has been explained that how the proposed sensitivity-based 
VCAs should be modified in order to comply with the practical limitations of the 
realistic MV distributions systems and to be used for the voltage constraints 
management of the real cases. 

In the second part of the thesis, it has been considered that the network model is not anymore 
deterministic but it is rather uncertain varying within the predefined bounds. The voltage control 
problem under uncertainty of the network model has been studied in chapters 6 and 7. The 
contributions of this part are given in below.  
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 The uncertainties associated with the voltage dependency of loads, power factor of 
loads, thermal dependency of lines, shunt admittances of lines and internal resistance of 
substation transformer have been investigated using the Monte Carlo simulation 
technique. 

 A probabilistic framework has been developed in chapter 6 in order to determine the 
upper and lower bounds of the voltage variations in the VCA due to uncertainty of the 
network model. 

 The voltage control problem under uncertainty of the network model has been 
formulated as a robust optimization. The proposed robust VCA of the last chapter 
determines a solution that remains immunized against all possible realizations of 
uncertainties associated with the network component models. 

The relevant publications of the current thesis are listed in appendix 4.  

8.2. Conclusions 

To get an overall conclusion regarding the first part of the thesis, we refer to section 1.7 
introducing the motivation for carrying out the current research where it has been stated that:  

‘‘if the accuracy of the results obtained by the sensitivity-based voltage control approach is 
confirmed, then, it can be concluded that the proposed method is more suitable than the VCA 
based on the conventional OPF formulation particularly for the threefold reasons. Firstly, the 
sensitivity-based voltage control approach has a much simpler formulation compared to the 
OPF-based one and can give us a better understanding about the voltage control procedure. 
Secondly, due to its simplified formulation, the solution of the optimization problem of the 
sensitivity-based voltage control approach can be obtained in a faster way, which makes it 
more suitable for the on-line management of the operational limits. Finally, the sensitivity-
based voltage control approach does not require the state estimation interface and with limited 
number of voltage and power measurements, it can manage the operational limits of the 
system’’. 

In the first part of the thesis, it is found that performance of the sensitivity-based voltage control 
approach depends on the accuracy of the sensitivity data. If the relations between the voltage 
constraints and decision variables can be linearized accurately, the sensitivity-based voltage 
control approach can manage the operational limits of the system in an efficient and optimal 
manner. In chapter 2, it has been shown that the DSA method and the proposed formulation for 
considering the branch ampacity limits can estimate the corrected node voltages and branch 
currents with little errors when reactive powers of DGs are changed for the voltage regulation 
end. In chapter 4, accuracy of the voltage results obtained by the IDSA has been verified when 
DG active and reactive powers are controlled. In addition, in chapter 5, it has been demonstrated 
that the suggested approach to derive the sensitivity of node voltages with respect to transformer 
tap changes with a negligible error can estimate the node voltages.  

The sensitivity data however can be erroneous because of the non-linearity of the equations. In 
such a case, the multi-step VCA is preferred over the single-step VCA. The MSVCA 
functioning in a closed-loop mode has the advantage that can direct the system towards the 
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targeted (safe) working point even in presence of the inaccurate sensitivity data. In addition, in 
the multi-step VCA, the priority of the voltage regulation is given to the bus with the biggest 
voltage violation such that in each step (or iteration), the biggest voltage violation of the system 
is removed. Thanks to this iterative procedure, the system working point moves gradually 
towards the safe point and the mutual impacts of the control variables are limited to the ones 
located in the feeder with the biggest voltage violation. 

In all the simulated cases of chapters 2 to 5, the corrective control decisions of the SSVCA and 
MSVCA have been made within a very short time, which does not exceed 0.5 s. This confirms 
that the proposed sensitivity-based voltage control approach can comply with the framework of 
the on-line voltage constraints management. 

Considering the results of chapters 6 and 7, it is concluded that the model uncertainty can have 
considerable impacts on the voltage constraints. In order to have a robust solution against the 
uncertainty effects, we can keep the VCA simple (relying on the simplified deterministic 
network model) and modify its targeted bounds based on the maximum deviations that the node 
voltages can have due to the model uncertainty. An alternative approach is to transfer the 
uncertainties inside the VCA and construct a robust optimization formulation. The latter method 
appears to be more optimal and less conservative since its solution is immunized against the 
considered working point while in the former approach, we modify the targeted bounds of the 
VCA based on the maximum deviations of the node voltages. On the other hand, the former 
method can be better scaled with the framework of the on-line voltage constraints management.   

8.3. Applications 

The sensitivity-based voltage control approach developed in the first part of the thesis can be 
used as the centralized decision-making tool of the DSOs to manage the voltage constraints of 
the MV distribution systems while keeping the ampacity limits of the branches. As discussed 
in the end of chapter 5, the sensitivity-based VCA by having the network data and relying on 
limited measurements can manage the operational limits of the system. The main advantage of 
the proposed approach over the classical centralized VCA methods is that it does not require 
the state estimation interface and its computation time is very fast that makes it suitable for the 
on-line management of the operational limits.  

In addition, the proposed framework in chapter 6 can bring useful information to DSOs 
regarding the impacts of the model inaccuracy on their performed calculations and analyses. It 
determines the upper and lower bounds of voltage variations due to uncertainty of the network 
model. Finally, given that the voltage deviations arisen from the imperfect deterministic 
network model are inevitable, the DSOs can utilize the robust VCA developed in chapter 7. The 
corrective solution of the robust VCA remains immunized (at an extra cost) against any 
realization of the uncertainty within the predefined bounds.     

8.4. Perspectives and future works 

The VCAs developed in the first part of the thesis can be completed further by taking advantage 
of the other voltage control methods such as energy storage, load management, and power 
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electronics-based devices. In addition, complementary constraints can be added to the VCAs 
regarding the impacts of the undertaken control decisions on the operational limits of the 
transmission system that is in the above of the MV system. For instance, to limit the power 
factor at the substation transformer of the MV distribution system to a predefined range.  

The second part of the thesis could be improved further considering other sources of 
uncertainty. For instance, the line length can be different from that of the nominal model due to 
twist and turn of the cable in the duct along the feeder. This will affect both line resistance and 
reactance. In addition, the transformer reactance may have been changed with respect to its 
nominal value due to the aging or other reasons. More importantly, due to lack of the sufficient 
measurements in the MV distribution systems, load active powers are not known with certainty. 
Therefore, beside the considered uncertainty linked to the load reactive power (through the load 
power factor), load active power can be also an uncertain parameter. Similarly, in the case that 
the values of DG active and reactive powers are not available, assumptions on DG powers 
should be adopted as well. Consequently, in practice, the uncertainties are not only linked to 
the network model, but also they are arisen from the network working point. Developing a 
robust VCA that can take into account uncertainties associated with the network model as well 
as the network working point will be of a great interest as the future work of the current thesis. 
Moreover, reducing the needed number of scenarios using the improved Monte Carlo 
techniques can make the robust VCA compatible with the context of the real-time voltage 
management.    
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Acronyms 
 

ABC Area Between Curves 

ANM Active Network Management 

APFC Automatic Power Factor Control 

AVC Automatic Voltage Control 

AVR Automatic Voltage Regulation 

BCBV Branch Current to Bus Voltage 

BIBC Bus Injection to Branch Current 

CDF Cumulative Distribution Function 

DFIG Doubly-Fed Induction Generator 

DG Distributed Generation 

DLF Direct Load Flow 

DSA Direct Sensitivity Analysis 

DSO Distribution System Operator  

FACTS Flexible AC Transmission Systems 

IDSA Improved Direct Sensitivity Analysis 

JBSA Jacobian-Based Sensitivity Analysis 

LF Load Flow 

LHS Left-Hand Side 

LV Low Voltage 

MC Monte Carlo 

NRLF Newton-Raphson Load Flow 

MILP Mixed-Integer Linear Programming  

MSVCA Multi-Step Voltage Control Algorithm 

MV Medium-Voltage 

OLTC On-load Tap Changer 

OPF Optimal Power Flow 

POSA Perturb-and-Observe Sensitivity Analysis 

RHS Right-Hand Side 

RO Robust Optimization 

RTU Remote Terminal Unit 
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RVCA Robust Voltage Control Algorithm 

R/X Resistance to Reactance 

SCADA Supervisory Control And Data Acquisition 

SSVCA Single-Step Voltage Control Algorithm 

UKGDS United Kingdom Generic Distribution System 

VCA Voltage Control Algorithm 

VSA Voltage Sensitivity Analysis 
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Nomenclature   
 

Sets: 

NL Set of load buses   

G Set of DG units 

U Set of nodes with voltage rise issue  

L Set of nodes with voltage drop issue 

C Set of branches with the ampacity limits  

B Set of all branches  

J Set of column indices of matrix A which are subject to uncertainty  

 

Indices:   

k and n Index for load buses 

l Index for buses with voltage drop issue 

u Index for buses with voltage rise issue 

x Index for DG unit number 

J Index for branch number 

s Index for branches with the ampacity limits 

i Index for entries of matrix A which are subject to uncertainty 

 

Parameters: 

brI  Branch current 

I Node current 

init

brI  Initial current of branch 

max

brI  Maximum current of branch 

itI  Node current at iteration number it 

V  Node voltage 

max
brQ  

Maximum reactive power variation of branch while keeping the ampacity 

limit 

brP , brQ  Branch active and reactive power flows, respectively 
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LP , LQ  Load active and reactive powers, respectively 

r , x  Branch resistance and reactance, respectively 

DGP  Active power production of DG 

max
DGQ , min

DGQ  
Maximum and minimum possible variations of DG reactive power, 

respectively 

max
TRTap , 

min
TRTap  

Maximum and minimum possible movements of transformer tap changer, 

respectively 

V

P




 Sensitivity of voltage with respect to active power 

V

Q




 Sensitivity of voltage with respect to reactive power 

Tap

V

V




 Sensitivity of voltage with respect to transformer tap changes 

V , I  Voltage and current phase angles, respectively 

req
wV  

Required voltage modification to remove the biggest voltage violation 

found at bus w  

wV  Voltage value at the bus with the biggest voltage violation, i.e., bus w 

,req ri
wV  Required voltage modification to solve voltage rise violation at bus w 

,req dr
wV  Required voltage modification to solve voltage drop violation at bus w 

ri
wV , dr

wV  
Voltage values at the bus with the biggest voltage violation in the voltage 

rise and drop states, respectively  

obs

pert

V

P




 Sensitivity of voltage at the observed point with respect to power variation 

at the perturbation point  

obsV  Voltage variation at the observed point 

pertP  Power variation at the perturbation point   

Re( )I , Im( )I  Real and imaginary parts of the node current, respectively  

lossP , lossQ  Branch active and reactive power losses, respectively  

MM, (% )Err  Mismatch and relative error of the voltage estimation, respectively  

cor
wV  Corrected voltage at bus w  
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TY  Transformer admittance   

a  Transformer turn ratio 

Pa , Pb , Pc  The coefficients of voltage dependency related to load active power 

Qa , Qb , Qc  The coefficients of voltage dependency related to load reactive power 

 ,   
Voltage dependency exponents related to load active and reactive powers, 

respectively 

*
LP , *

LQ  Actual load active and reactive power consumptions, respectively  

PF Power factor of load 

0R , newR  The initial and modified branch resistances, respectively   

T  Temperature variation of the cable conductor   

c  Temperature coefficient of resistivity 

N 
Number of scenarios created by the MC simulations in the probabilistic 

framework of chapter 6 

N1, N2 
Number of scenarios created by the MC simulations in the pre-processing 

and post-processing stages of the robust VCA, respectively  

nbus, nbr Total number of the system buses and branches, respectively 

  Random variable subject to uncertainty  

 ,  ,   Parameters defining the borders of the uncertainty sets  



DG

V

P




,


DG

V

Q




,



Tap

V

V




 

Perturbations of the voltage sensitivity coefficients related to DG active 

power, DG reactive power, and transformer tap changes, respectively 



DG

V

P




,


DG

V

Q




,



Tap

V

V




 

Uncertain voltage sensitivity coefficients related to DG active power, DG 

reactive power, and transformer tap changes, respectively 

 

Variables:  

DGQ  Reactive power change of DG  

ind
DGQ  Reactive power change of DG towards inductive direction  
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cap
DGQ  Reactive power change of DG towards capacitive direction 

DGP  Active power change of DG  

TRTap  Transformer tap movement  

down
TRTap  Downward transformer tap movement 

up
TRTap  Upward transformer tap movement 

 

Matrices:  

BIBC Bus injection to branch current matrix   

BCBV Branch current to bus voltage matrix   

DLF Direct load flow matrix 

DGIB DG injections to branch parameters matrix  

R, X Matrices including the line resistances and reactances, respectively  

Vk Vector of nodal voltages at the load buses 

V1 Vector of reference voltages equal to 1 pu 

I , brI  Vectors of nodal and branch currents, respectively   

P, Q Vectors of nodal active and reactive powers, respectively 

J-1 Inverted Jacobian matrix 

J1, J2, J3, J4 Sub-Jacobian matrices  

ΔP , ΔQ  Vectors of nodal active and reactive powers, respectively  

ΔV , Δθ  Vectors of nodal voltages magnitudes and phase angles, respectively  

bl , bu  Lower and upper bounds of the control variables  

TC  Transpose vector of coefficients of linear objective function  

A , eqA  Matrices of linear inequality and equality constraints, respectively 

b, eqb  LHSs of the inequality and equality structural constraints, respectively  

x Vector of decision variables  
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Appendix 1: Direction of active and reactive powers 

Let consider the circuit enclosed in the box shown in figure A-1 with entering current I and 
voltage V [69].  

 

 

Figure A-1: Circuit enclosed in the box 

We can determine active and reactive powers supplied or absorbed by the circuit according to 

the relation *S VI , where S is the apparent power and I* is the conjugate current. When current 
I lags the voltage by an angle between 0 and 90°, we find that active and reactive powers (P 
and Q) are both positive, indicating that watts and vars are being absorbed by the inductive 
circuit or element inside the box. Conversely, when I leads voltage by an angle between 0 and 
90°, active power is still positive but reactive power is negative meaning that negative vars are 
being absorbed or positive vars are being supplied by the capacitive circuit inside the box. 
Finally, when active power P is negative, circuit inside the box is supplying active power. 
Therefore, circuit inside the box   

 absorbs real power if 0P   

 supplies real power if 0P   

 absorbs reactive power if 0Q   

 supplies reactive power if 0Q   

It should be noted that the box shown in figure A-1 could include a (portion of) network or an 
element such as DG or load.  
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Appendix 2: Parameters of the 33-bus system  

Base power =1 MVA 
Base voltage =12.66 kV 
Total active power of loads: 3.72 MW 
Total reactive power of loads: 2.3 Mvar 
Average resistance of the lines: 0.6731 ohm 
Average reactance of the lines: 0.5870 ohm 
 

Branch data 

Branch 
number 

Sending 
node 

Ending 
node 

Resistance 
(ohm) 

Reactance 
(ohm) 

     

1 1 2 0.0922 0.0477 
     

2 2 3 0.4930 0.2511 
     

3 3 4 0.3660 0.1864 
     

4 4 5 0.3811 0.1941 
     

5 5 6 0.8190 0.7070 
     

6 6 7 0.1872 0.6188 
     

7 7 8 1.7114 1.2351 
     

8 8 9 1.0300 0.7400 
     

9 9 10 1.0040 0.7400 
     

10 10 11 0.1966 0.0650 
     

11 11 12 0.3744 0.1238 
     

12 12 13 1.4680 1.1550 
     

13 13 14 0.5416 0.7129 
     

14 14 15 0.5910 0.5260 
     

15 15 16 0.7463 0.5450 
     

16 16 17 1.2890 1.7210 
     

17 17 18 0.7320 0.5740 
     

18 2 19 0.1640 0.1565 
     

19 19 20 1.5042 1.3554 
     

20 20 21 0.4095 0.4784 
     

21 21 22 0.7089 0.9373 
     

22 3 23 0.4512 0.3083 
     

23 23 24 0.8980 0.7091 
     

24 24 25 0.8960 0.7011 
     

25 6 26 0.2030 0.1034 
     

26 26 27 0.2842 0.1447 
     

27 27 28 1.0590 0.9337 
     

28 28 29 0.8042 0.7006 
     

29 29 30 0.5075 0.2585 
     

30 30 31 0.9744 0.9630 
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31 31 32 0.3105 0.3619 
     

32 32 33 0.3410 0.5302 

 

Load data 

Bus 
number 

Active power 
(kW) 

Reactive power 
(kvar) 

 

2 100 60 
   

3 90 40 
   

4 120 80 
   

5 60 30 
   

6 60 20 
   

7 200 100 
   

8 200 100 
   

9 60 20.0 
   

10 60 20 
   

11 45 30 
   

12 60 35 
   

13 60 35 
   

14 120 80 
   

15 60 10 
   

16 60 20 
   

17 60 20 
   

18 90 40 
   

19 90 40 
   

20 90 40 
   

21 90 40 
   

22 90 40 
   

23 90 50 
   

24 420 200 
   

25 420 200 
   

26 60 25 
   

27 60 25 
   

28 60 20 
   

29 120 70 
   

30 200 600 
   

31 150 70 
   

32 210 100 
   

33 60 40 
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Appendix 3: Parameters of the 77-bus system  

Base power =100 MVA 
Base voltage =11 kV 
Number of loads: 75  
Total active power of loads: 24.274 MW 
Total reactive power of loads: 4.854 Mvar 
Total length of the system lines: 56.82 km 
Longest feeder of the system: feeder 1, 11.15 km 
Average resistance of the lines: 0.0898 ohm 
Average reactance of the lines: 0.0515 ohm 
Transformer reactance (XT): 12.5% pu in the transformer base power (80 MVA) 
   
 

Branch data 

Branch 
number 

Sending 
node 

Ending 
node 

Resistance 
(ohm) 

Reactance 
(ohm) 

1 1 2 0 XT 
2 2 3 0.0665 0.0512 
3 3 4 0.0665 0.0512 
4 4 5 0.0729 0.0198 
5 4 6 0.0665 0.0512 
6 6 7 0.0665 0.0512 
7 7 8 0.0729 0.0198 
8 7 9 0.0665 0.0512 
9 9 10 0.0729 0.0198 

10 9 11 0.0665 0.0512 
11 11 12 0.0665 0.0512 
12 12 13 0.0729 0.0198 
13 12 14 0.0665 0.0512 
14 14 15 0.0665 0.0512 
15 15 16 0.0729 0.0198 
16 15 17 0.0665 0.0512 
17 17 18 0.0665 0.0512 
18 18 19 0.0729 0.0198 
19 18 20 0.0665 0.0512 
20 20 21 0.0729 0.0198 
21 20 22 0.0665 0.0512 
22 22 23 0.0665 0.0512 
23 23 24 0.0729 0.0198 
24 23 25 0.0665 0.0512 
25 25 26 0.0665 0.0512 
26 26 27 0.0729 0.0198 
27 2 28 0.0745 0.0574 
28 28 29 0.0745 0.0574 
29 29 30 0.0542 0.0147 
30 29 31 0.0745 0.0574 
31 31 32 0.0745 0.0574 
32 32 33 0.0542 0.0147 
33 32 34 0.0745 0.0574 
34 34 35 0.0542 0.0147 
35 34 36 0.0745 0.0574 
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36 36 37 0.0745 0.0574 
37 37 38 0.0542 0.0147 
38 2 39 0.0745 0.0574 
39 39 40 0.0745 0.0574 
40 40 41 0.164 0.1565 
41 40 42 0.0542 0.0147 
42 42 43 0.0745 0.0574 
43 43 44 0.0542 0.0147 
44 43 45 0.0745 0.0574 
45 45 46 0.0542 0.0147 
46 45 47 0.0745 0.0574 
47 47 48 0.0745 0.0574 
48 48 49 0.0542 0.0147 
49 2 50 0.0917 0.0706 
50 50 51 0.0917 0.0706 
51 51 52 0.0571 0.0155 
52 51 53 0.0917 0.0706 
53 53 54 0.0917 0.0706 
54 54 55 0.0571 0.0155 
55 54 56 0.0917 0.0706 
56 56 57 0.0571 0.0155 
57 56 58 0.0917 0.0706 
58 58 59 0.0917 0.0706 
59 59 60 0.0571 0.0155 
60 59 61 0.0917 0.0706 
61 61 62 0.0917 0.0706 
62 62 63 0.0571 0.0155 
63 2 64 0.2038 0.1056 
64 64 65 0.2038 0.1056 
65 65 66 0.0624 0.017 
66 2 67 0.2038 0.1056 
67 67 68 0.2038 0.1056 
68 68 69 0.0624 0.017 
69 2 70 0.266 0.1378 
70 70 71 0.266 0.1378 
71 71 72 0.0663 0.018 
72 71 73 0.266 0.1378 
73 73 74 0.0663 0.018 
74 2 75 0.2038 0.1056 
75 75 76 0.2038 0.1056 
76 76 77 0.0624 0.017 
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Load data 

Bus 
number 

Active power 
(MW) 

Reactive power 
(Mvar) 

1 0 0 
2 0 0 
3 0.342 0.0684 
4 0.342 0.0684 
5 0.222 0.0444 
6 0.344 0.0688 
7 0.344 0.0688 
8 0.222 0.0444 
9 0.344 0.0688 

10 0.224 0.0448 
11 0.344 0.0688 
12 0.344 0.0688 
13 0.224 0.0448 
14 0.344 0.0688 
15 0.344 0.0688 
16 0.224 0.0448 
17 0.344 0.0688 
18 0.344 0.0688 
19 0.224 0.0448 
20 0.344 0.0688 
21 0.224 0.0448 
22 0.344 0.0688 
23 0.344 0.0688 
24 0.224 0.0448 
25 0.344 0.0688 
26 0.344 0.0688 
27 0.224 0.0448 
28 0.426 0.0852 
29 0.426 0.0852 
30 0.212 0.0424 
31 0.426 0.0852 
32 0.426 0.0852 
33 0.212 0.0424 
34 0.426 0.0852 
35 0.212 0.0428 
36 0.426 0.0852 
37 0.426 0.0852 
38 0.212 0.0428 
39 0.426 0.0852 
40 0.426 0.0852 
41 0.212 0.0424 
42 0.426 0.0852 
43 0.426 0.0852 
44 0.212 0.0424 
45 0.426 0.0852 
46 0.212 0.0428 
47 0.426 0.0852 
48 0.426 0.0852 
49 0.212 0.0428 
50 0.434 0.0868 
51 0.434 0.0868 
52 0.216 0.0432 
53 0.436 0.0872 
54 0.436 0.0872 
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55 0.216 0.0432 
56 0.436 0.0872 
57 0.216 0.0432 
58 0.436 0.0872 
59 0.436 0.0872 
60 0.216 0.0432 
61 0.436 0.0872 
62 0.436 0.0872 
63 0.216 0.0432 
64 0.392 0.0784 
65 0.392 0.0784 
66 0.116 0.0232 
67 0.392 0.0784 
68 0.392 0.0784 
69 0.116 0.0232 
70 0.394 0.0788 
71 0.394 0.0788 
72 0.102 0.0204 
73 0.396 0.0792 
74 0.1 0.02 
75 0.392 0.0784 
76 0.392 0.0784 
77 0.116 0.0232 
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Appendix 4: The relevant publications  
  

1. B. Bakhshideh Zad, J. Lobry and F. Vallée, "Impacts of the model uncertainty on the 
voltage regulation problem of medium-voltage distribution systems," IET Generation 
Transmission & Distribution, vol. 12, no. 10, pp. 2359-2368, 2018. 

 

2. B. Bakhshideh Zad, H. Hasanvand, J. Lobry and F. Vallée, "Optimal reactive power 
control of DGs for voltage regulation of MV distribution systems using sensitivity 
analysis method and PSO algorithm," International Journal of Electric Power and 
Energy Systems, vol. 68, pp. 52-60, 2015. 

 

3. B. Bakhshideh Zad, J. Lobry and F. Vallée, "A new voltage sensitivity analysis method 
incorporating power losses impact," Electric Power Components and Systems (Under 
review: initial submission on August 2017, revised paper has been submitted on 
February 2018). 

 

4. B. Bakhshideh Zad, J. Lobry and F. Vallée, "A robust voltage control algorithm 
incorporating the model uncertainty impacts," Working paper.  

 

5. B. Bakhshideh Zad, J. Lobry, and F. Vallée, "Impacts of the load and line inaccurate 
models on the voltage control problem of the MV distribution systems," 52nd 

International Universities Power Engineering Conference (UPEC), Greece, 2017. 
  

6. B. Bakhshideh Zad, J. Lobry and F. Vallée, "A centralized approach for voltage control 
of MV distribution systems using DGs power control and a direct sensitivity analysis 
method," in IEEE International Energy Conference (ENERGYCON), Belgium, 2016. 
 

7. B. Bakhshideh Zad, J. Lobry, F. Vallée and H. Hasanvand, "Optimal reactive power 
control of DGs for voltage regulation of MV distribution systems considering thermal 
limit of the system branches," International Conference on Power System Technology 
(POWERCON), China, 2014. 

 

8. B. Bakhshideh zad, J. Lobry, F. Vallée and O. Durieux, "Improvement of on-load tap 
changer performance in voltage regulation of MV distribution systems with DG units 
using D-STATCOM," in 22nd International Conference on Electricity Distribution 
(CIRED), Sweden, 2013.  
 

9. B. Bakhshideh Zad, J. Lobry and F. Vallée, "Coordinated control of on-load tap changer 
and D-STATCOM for voltage regulation of radial distribution systems with DG units," 
in Electric Power and Energy Conversion Systems Conference, Turkey, 2013. 

 

10. H. Hasanvand, B. Bakhshideh Zad, A. Parastar, J. Lobry, and, F. Vallée, "Voltage 
support and damping of low frequency oscillations in a large scale power system using 
STATCOM," in IEEE International Energy Conference (ENERGYCON), Belgium, 
2016. 
 

11. V. Klonari, B. Bakhshideh Zad, J. Lobry, and F. Vallée, "Application of voltage 
sensitivity analysis in a probabilistic context for characterizing low voltage network 
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operation," in 2016 International Conference on Probabilistic Methods Applied to 
Power Systems (PMAPS), China, 2016. 
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