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Summary

The European Union aims at reaching climate neutrality at horizon 2050 by
achieving an economy with net-zero greenhouse gas emissions. Such ambitious
policy target has implied and will continue to imply big changes in European
energy systems, which accounted for 74% of European greenhouse gas emis-
sion in 2019. In this line, the electricity sector is currently rapidly shifting
its supply mix towards less carbon-intensive energy sources, which conducts
to growing shares of weather-dependent renewable energy sources (e.g., wind
and photovoltaic power). The generation profile of these technologies differs
from conventional ones (e.g., gas-fired units) by their high intermittency and
uncertainty, which rises the difficulty of ensuring a continued, real-time balance
between the electricity demand and supply.

This balancing requirement is vital when operating electricity systems since
a mismatch between demand and supply automatically deteriorates the system
frequency, which may trigger the disconnection of system components, and
ultimately, lead to power blackouts. In the unbundled European electricity
markets, the balancing management is supported via the balancing markets,
which establish (amongst other) the market rules for the real-time trading of
energy. While originally designed at national level, the European balancing
markets are currently undergoing a harmonization process for fostering the
cooperation between European countries. In this process, the favored option for
pricing the real-time energy imbalances is the single price imbalance settlement,
which provides financial incentives for market actors to adopt an imbalance
position in the opposite direction of the total net system imbalance. When
appropriately provided, this real-time balancing service is beneficial for the
whole system as it reduces the total net system imbalance, which requires thus
less costly corrective balancing actions.

This work is focused on developing novel forecast-driven strategies for foster-
ing the provision of such real-time balancing services in European electricity
markets. Practically, these strategies are studied using an integrated approach,
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where the entire value chain, i.e., from forecasting to the decision-making
processes, is modeled for optimizing close-to-real-time the imbalance position
of a market actor. In this setting, the methodological contributions principally
concern the modeling of uncertainty and risk in their operational strategies.
More specifically, novel probabilistic forecasting methods based on deep learning
techniques have been proposed, aiming at better capturing the high volatility
of the total net system imbalance. In complement, for exploiting at best the
predicted probabilistic information, tailored stochastic decision-support tools
(i.e., stochastic programming and robust optimization method) are developed,
for which a new data-driven approach was designed for continuously adjusting
the risk policy of the market actor. The implementation of the developed
approaches on real-world market data from the Belgian power system corrobo-
rates the key goal of the single price imbalance settlement, by showing that
the market actor can increase its operating profit by optimizing its imbalance
position, while reducing the total net system imbalance. Additionally, advanced
neural networks architectures based on attention mechanisms demonstrate
top forecasting performance for predicting the total net system imbalance.
Finally, the data-driven approach for continuously adjusting the risk policy
shows promising economic benefits in comparison with a static (determined
once and for all) risk policy.

The final research efforts of this work are devoted on interpretability of deep
learning-based forecasting methods, which aim at accurately identifying the
most important input features of the model and their interaction when returning
the prediction. Combining the predictive power of deep neural models with
interpretable outcomes is an essential step for fostering their practical adoption
in the energy industry. To achieve interpretability in both feature and time
dimensions, the attention-based neural architecture is here augmented with
subnetworks dedicated to endogenously quantify the relative importance of each
input feature. Outcomes using the data from the Belgian power systems show
that adding interpretable components within the neural architecture does not
hinder their prediction performance, while shedding light on its most important
drivers.
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CHAPTER 1.
Introduction

The first chapter provides a brief introduction to the current energy challenge,
which allows positioning the objectives and contributions of the proposed
research work. More specifically, Section 1.1 gives general information on
the importance of energy in human activities and its effect on economy and
environment, for contextualising the 2050 European Union’s energy development
goals, which emphasises the key role of electricity as a decarbonized energy
carrier. On this basis, Section 1.2 presents the motivation, research questions
and scope of the proposed research work. Then, Section 1.3 exposes the
associated research objectives and scientific contributions. Finally, Section 1.4
provides an outline of the remainder of this dissertation.

1.1. Background
Energy is a key competency for the economic development of a country,

whose abundance greatly facilitates the daily activities of human life. Before
the 1900s, the daily human activities were essentially powered by the burning of
biomass (mostly wood), the mechanical force deployed by small-sized windmills,
or simply by human and animal muscles. Then, at the turn of the 20th century,
novel energy sources based on the combustion of fossil fuels (i.e., coal, oil and
natural gas) were progressively discovered and introduced in the daily human
activities [1]. This is illustrated in Fig. 1.1a, which provides a worldwide picture
of the use of energy over timepoints of the last two hundred years. It can be
observed that the use of fossil-based energy have steadily increased, and that
such an increase was also accompanied with a rapid economic growth at world
level (which is showcased in Fig. 1.1b). Fig. 1.1b estimates the worldwide
economic growth using the per capita gross domestic product (GDP), i.e., the
total monetary income per person of the goods and services produced within a
defined geographical area, which is evaluated in constant 2011 $ over the years
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Figure 1.1.: World energy use (Fig 1.1a) and economic growth (Fig. 1.1b) over
the last two centuries [2].

1820-2018. During this time period, the GDP indicator rose by more than a
factor of twelve at world level, reaching 15212 $ in 2018 from 1102 $ in 1820.
Besides, this increase of GDP is even more spectacular for Western Europe and
the United States, where their GDP stepped up by a factor of about twenty [2].

During this relatively short period of time, the world entered in a new eco-
nomic era, which was supported by constant innovations (e.g., the steam engine,
electricity or combustion engine) and the intensive use of fossil fuels. From a
positive perspective, the resulting economic growth have enabled important
social progresses (e.g., on literacy, infant mortality, and life expectation), an
increased availability of products, and a facilitated mobility, which allows
granting the majority of the population higher living standards. However, the
deposits of fossil fuels are physically bounded and are not easily replenished,
while their intensive exploitation and massive combustion negatively impact the
environment. Indeed, scientific evidences attribute the greenhouse gases (e.g.,
carbon dioxyde CO2) emitted by the combustion of fossil fuels as key drivers
for the climate change, which tends to a relatively rapid global warming of the
Earth (see Fig. 1.2). A consensus position for avoiding the worst consequences
of global warming is to limit the average temperature rise to less than 2◦C com-
pared to pre-industrial levels [3]. This requires a rapid shift from a fossil-based
economy towards a carbon neutral society, which unleashes less greenhouse gas
emissions in the atmosphere. Such considerations have increased the shares of
nuclear, hydropower and renewable energies in the energy supply mix over the
past half century, but their input at world level is still limited at 18.5% in 2021
according to [4].

As about 74% of the greenhouse gas emissions globally originate from the

2
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Figure 1.2.: Changes in global surface temperature over the past 170 years (Fig
1.2a) and aggregated contributions to 2010–2019 warming relative
to 1850–1900, assessed from attribution studies (Fig. 1.2b) [5].

energy sector in Europe (see reference [4] over the year 2019), the European
Union has drawn up a road map with joint energy and climate goals to be
reached for the years 2030 and 2050, which are currently revised by the Euro-
pean Commission in the ‘Fit for 55’ package [6]. At each step, quotas in terms
of reduction in greenhouse gas emissions, development of renewable energies
and improvement in energy efficiency are defined. Hence, by 2030, the Member
States of the European Union will be enforced to: i) reduce their greenhouse
gas emissions by 55% compared to 1990 levels, ii) increase the energy efficiency
of their economies by 36-37% compared to a 2007 baseline, and iii) increase the
share of renewable energies in their final energy consumption to 40%. In 2050,
the European target is to achieve a climate-neutral economy, i.e., an economy
with net-zero greenhouse gas emissions. The achievement of these climate and
energy goals constitutes a major challenge for the energy sector, which comes
down to effectively shift fossil-based energy sources towards more carbon-free
energy sources (e.g., the renewable or nuclear energy sources), while ensuring a
security of supply and competitive prices for the end-user.

In this context, electricity is considered as a crucial energy carrier for reaching
the carbon neutral economy target in 2050. Formerly, electricity was favoured
for its intrinsic qualities such as high final conversion efficiencies, flexibility in its
development planning, precise control of the output power, and property that
no mechanical noise is emitted at the point of use. Today, this trend is further
strengthened by the possibility of incorporating less carbon-intensive technolo-
gies in the electricity supply mix, with, for instance, wind and photovoltaic
production. In complement, an electrification process at the demand-side is
currently boosted in the European Union, where novel electricity-based solu-
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Figure 1.3.: European electricity generation for renewable energies over 1990-
2019 [4]

tions in the transportation and residential heating sectors (e.g., electric cars or
electric heat pumps) are currently strongly encouraged [7].

Fig. 1.3 illustrates the shift initiated in the electricity supply mix, where
the European electricity production from renewable energy sources is continu-
ously rising since the 1990s. However, this massive introduction of Variable
Renewable Energy Sources (VRES)1, like wind and photovoltaic production,
greatly impacts the planning and operation of the electricity systems [8], [9].
Practically, a stable and secure operation of an electricity system requires a
continued balance in real-time between the electricity demand and supply. The
difficulty of managing this balance requirement is rising in today’s electricity
systems with the growing shares of VRES. Indeed, as their production pro-
files are highly intermittent and uncertain (due to the chaotic atmospheric
conditions governing them), the VRES cannot be straightforwardly piloted
for following the variations in electricity demand. In addition, the VRES are
characterized by high capital and low operating costs, whose investment costs
are largely predominant over fuel (which is free) and maintenance. Hence, the
massive introduction of VRES in electricity systems was initially triggered by
support mechanisms, which have distorted the wholesale electricity market
prices due to their operational costs close to zero. These lower prices tend
to push off-market more rapidly than anticipated conventional power plants
(e.g., gas-fired units), even though the electricity systems are still designed
to be operated with such controllable units. This brings major and pressing

1also denoted as weather-dependent renewable energy sources
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Figure 1.4.: The Belgian net load for the 6th January 2014 and 2020.

challenges in the planning and operation of electricity systems, which now
requires to manage the variability and limited predictability of VRES, while
less controllable production units are available [10], [11].

1.2. Motivation, Research Questions and Scope
For ensuring a well-functioning electricity system, two critical aspects at

different time horizons are typically considered: adequacy and security [12].
Adequacy indicates the ability of the electricity system to own a sufficient
production capacity (including imports) to supply with high enough probability
the end-users at all times. This aspect principally explores whether enough
infrastructure investments are initiated in the electricity system with a long
term perspective (e.g., a 10-year period) [8]. Security refers to the ability of
the system to respond to sudden disturbances arising in the electricity sys-
tem without major service interruptions [13]. This aspect principally explores
whether the electricity system can recover from sudden, unanticipated events
such as electric short circuits or non-anticipated loss of system components
with a short term perspective. In this work, the interest is on the short-term
operation of the electricity system, i.e., the ability of the electricity system
to modify its electricity production or consumption in response to variability
(expected or not). Short-term operational issues have grown in significance
lately since these issues have been intensified with the increasing penetration
of weather-dependent renewable energy sources.

5
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Short-term operational issues were formerly driven by i) outages on the supply
side and the transmission networks, and ii) the variable and uncertain electricity
demand. Forced outages, which results in a sudden loss (or excess) of power,
are an inherent characteristic of generation and transmission systems, and are
hardly predictable. Then, the exact electricity demand is difficult to know
beforehand as it depends on external variables such as consumer preferences
and weather conditions. Today’s electricity systems face an additional source
of variability and uncertainty, which is introduced by the weather-dependent
renewable energy sources. The net load curve can be used for illustrating
one aspect of this variability. The net load consists in subtracting the wind
and photovoltaic electricity production from the total load of the electricity
system. In certain times of the year, with the increased contribution of weather-
dependent renewable production, these curves produce a ‘belly’ appearance
in the mid-afternoon that quickly ramps up to produce an ‘arch’ similar to
the neck of a duck. This type of curve is called the ‘duck curve’ [14]. In Fig.
1.4, this curve is produced for the Belgian power system on a quarter hourly
basis for the 6th January of both 2014 and 2020 years, which are respectively
characterized by 4402 MW and 7682 MW of weather-dependent renewable
production capacities. We can observe that, for that day, the system operator
needs to be more reactive in 2020 with the controllable electricity production
for meeting the sharp changes in the electricity net load. Two distinct ramp
periods emerge. The first one in the downward direction, occurring after 8:00
a.m., when conventional generation is replaced by photovoltaic production
(producing the belly of the duck). The second ramp occurs around 5:00 p.m.
when the sun lies down and photovoltaic production ends, which require the
system operator to dispatch rapidly resources in the upward direction (the arch
of the duck’s neck). Hence, the introduction of weather-dependent renewable
generation reduces the number of full load hours of controllable units, which now
requires novel high flexible operational capabilities for starting and stopping
multiple times per day. Such effects substantially rise the difficulty of ensuring
a continued, real-time balance between the electricity demand and supply.

However, this balancing requirement is vital when operating electricity sys-
tems as a mismatch between demand and supply automatically deteriorates the
system frequency (the nominal frequency is set at 50 Hz in Europe), which may
consequently trigger the disconnection of system components, and ultimately,
lead to power blackouts. In order to maintain the system in balance, the
expected and unexpected variations of net load have to be covered with flexible
means of the electricity system, which can alter their production or demand
upon a signal request in a relatively short-time frame. As showcased in Fig. 1.5,
this can be provided by:

6
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• controllable thermal power plants: the traditional source of short-term oper-
ational flexibility in power systems is delivered by the cycling of controllable
thermal power plants (e.g., coal- and gas-fired steam power plants). Cycling
consists in starting up, shutting down, ramping up or ramping down a power
plant to vary its power output [9]. Of course, such a dynamic operation is
accelerating the unit’s aging, which rises its operational cost [15];

• demand response: demand response accommodates the demand of an elec-
tricity load following a signal (e.g., a price signal). Natural candidates for
demand response are i) thermostatically controlled loads, which can contain
a certain thermal inertia. This allows these loads to be both fully responsive
and non-disruptive in terms of the perceived energy service [16]. ii) Electric
vehicles, whose charging profiles of their batteries can be managed when
parked [17]. Although industrial demand response can be currently exploited
in electricity systems, the best pathway for introducing residential demand
response is still subject to researches [18], [19];

• energy storage systems: these technologies are characterised by an energy
reservoir (which can store the energy via another carrier), which bidirec-
tionally exchanges with the electricity system. Different energy storage
technologies exist [20], where pumped-hydro storage units and battery facili-
ties are the most well-developed [21], [22];

• interconnections: interconnections allow to import (or export) flexibility
from/to other regions by means of cross-border exchanges. The development
of interconnections goes hand in hand with an integrated European electricity
market, as it allows to facilitate the energy exchanges between European
countries [23].

Note that the weather-dependent renewable energy sources could also be
part of the solution by relying on adequate control techniques of their power
electronics devices located at the interface between the installation and the
electricity network. Hence, for instance, wind turbines under specific control
schemes – see, e.g., in [24] – can modulate their output power, and even deliver
balancing services to the grid if they are operated below their maximum output
power (although, the reliability of the committed service may be questioned
due to the inherent intra-hour wind speed fluctuation) [25].

Thermal power plants, demand response, energy storage systems, intercon-
nections and active control of weather-dependent renewable energy sources are
currently the main flexibility options in today’s electricity systems. Since the
uncertainty of weather-dependent renewable energy sources decreases closer to
the moment of delivery [26], [27], adjusting the decisions of flexible power units
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Figure 1.5.: The principal flexible means of the electricity system.

closer-to-real-time is needed for unlocking the cost-saving potential associated
with this gain of accuracy – see, e.g., [28], [29]. Competing in liberalized
electricity markets (see Chapter 2), operators of power units, which are thus
market actors, currently adapt their short-term physical operations based on
the financial exchanges performed on the electricity markets [30]. Hence, the
decisions made on the electricity markets at a short-(i.e., one day in advance)
and very-short-(i.e., few hours to a quarter hour in advance) terms are thereby
crucial in order to appropriately manage a flexible portfolio (e.g., batteries,
pumped-storage stations, etc.). Yet, as very-short-term electricity markets
(which are all more detailed in Chapter 2) suffer from a lack of liquidity, they are
not pragmatically considered in the literature and, thus, remain insufficiently
researched to date [31], [32]. This status is currently moving as these markets
have recently received a special attention from European policy makers to
increase their harmonization and, consequently, their liquidity. For instance,
different market pilots are currently launched in Europe such as the cross-
border intraday market (XBID) project [33] or various initiatives concerning
the balancing markets (e.g., PICASSO or TERRE projects) [34].

The balancing markets are the main mechanisms for supporting the real-time
balancing requirement in the European electricity systems. While originally
designed at national level, the rules of the balancing markets follow an har-
monization process for fostering the balancing cooperation between European
countries [35]. In this process, the favored option for pricing the real-time energy
imbalances is the single price imbalance settlement, which provides financial
incentives to market actors to adopt a real-time out-of-balance position in the
opposite direction of the total net system imbalance. These real-time balancing
services, when appropriately provided, allows reducing the total net system
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imbalance, and is thus beneficial for the whole system, which requires less
costly corrective balancing actions. In this sense, Brijs et al. [36] attribute the
increased provision of such real-time balancing services as one of the reasons
of the decline of balancing requirements in the Central Western European
region from 2012 to 2015. In this context, several authors have studied near
real-time dispatch strategies for providing these real-time balancing services in
a single price imbalance setting [37]–[39]. While these strategies are presented
in more details in Section 2.8 of Chapter 2, their common feature is that
they rely on deterministic decision-support tools, wherein optimal decisions,
i.e., the intentional imbalance positions of the actor, are based on a single-
point forecast of the system imbalance direction (which is positive or negative).

However, the real-time market signals such as the total net system imbalance
have proven to be highly volatile and difficult to predict [40], [41], and sub-
optimal out-of-balance positions can expose the actors to significant financial
penalties [42]. The high uncertainty and risk associated with the provision of
real-time balancing services create thus great challenges for the market actor.
Besides, the volume of energy traded in real-time is by design small (as it
describes a mismatch between the electricity demand and supply), such that
the provision of even a small real-time balancing service (in terms of volume of
energy) may impact the real-time system balancing. For all these reasons, this
thesis aims at developping novel formulations for answering the main following
research question:

• How can we efficiently support the decision-making process of a flexible
actor willing to provide real-time balancing services to the electricity
system via the opportunities provided by the single imbalance pricing
scheme?

Throughout this work, this main research question has been subdivided
into four subquestions, and consequently transferred into the research strategy.
Each of the following subquestions is addressed in the following chapters of
this dissertation:

• How can we improve the forecasting performance of future system imbal-
ances, with an accurate quantification of the level of uncertainty?

• How do we mathematically formulate the optimal decision-making process
of a strategic actor providing real-time balancing services, while taking
into account both the market small size and high uncertainty?

• Being exposed to significant financial penalties, can we improve the fi-
nancial risk management of a market actor providing real-time balancing
services?
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• Besides providing high-quality probabilistic predictions, can we provide
interpretable insights on how they are generated for better increasing the
designer and/or user confidence in the prediction outcomes?

Overall, the generic nature of the associated methodological contributions
pertaining to the modeling of uncertainty and risk in operational strategies of
market actors may nourish further research efforts in other market frameworks.
Besides, the achievement of this research project allows gaining new or improved
insights on the provision of real-time balancing services within a single imbalance
price scheme (which is the current European favored option). The case studies
are based on real-world market data from the Belgian power system, which
allows performing quantitative observations for this market segment. The
presented research contributions and findings may thus be of interest to all
electricity actors, e.g., researchers, policy makers, system operators, business
entities.

1.3. Research Objectives and Scientific
Contributions

The goal of this thesis is to develop novel forecast-driven strategies for fos-
tering the provision of real-time balancing services. Practically, these strategies
are studied using an integrated approach, where the entire value chain, i.e.,
from forecasting to the decision-making process, is modeled for optimizing
close-to-real-time the imbalance position of a market actor. More specifically,
the presented work sets the following four research objectives:

• Attaining high-quality probabilistic forecasts. High-quality prob-
abilistic forecasts of the total net system imbalance are a mandatory
condition for a well-informed intentional imbalance position of the mar-
ket actor within the single price imbalance settlement framework. In
this objective, novel deep learning-based time series forecasting tools are
investigated for generating improved probabilistic predictions.

• Developing tailored risk-aware stochastic decision-support tool.
Based on the predicted probabilistic information, novel mathematical
formulations are developed for incorporating i) the small market size, and
ii) the high uncertainty and risk associated with these real-time balancing
opportunities.

• Adjusting continuously the risk policy of a market actor. In this
objective, machine learning techniques are leveraged for adjusting, at
each decision step, the financial risk management of an actor based on the
current market conditions along with its expected objective outcomes.
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• Adding interpretability in probabilistic forecasts. This objective
aims at incorporating notions of interpretability (i.e., the identification
of the most important input features over time) in deep learning-based
time series forecasters for improving the designer and/or user confidence
in their outcomes.

The achievement of these four complementary objectives provides an inte-
grated decision-making tool for optimizing close-to-real-time the energy position
of a market actor’s portfolio in European electricity markets. From a practical
point of view, this research project would enable market participants to mobilize
their remaining margins of flexibility that do not meet technical requirements
(e.g., in the balancing markets) and/or sufficient economic gains (e.g., in the
day-ahead market) in previous market segments. By extension, this provision of
additional flexibility to the system would also benefit the end-users by reducing
the balancing activation costs. Given these research objectives, we list the four
main contributions w.r.t. the literature:

• On accuracy in probabilistic forecasting. This thesis investigates and
pushes further deep neural network architectures for predicting real-life
time series of electricity systems (e.g., the total net system imbalance and
real-time electricity prices). Particularly, advanced sequence-to-sequence
recurrent neural models are developed aiming at better capturing the
complex spatio-temporal dynamics characterizing electricity quantities.
The proposed advancements have resulted in the following contributions:

– J. Bottieau, F. Vallée, Z. De Grève, J-F. Toubeau, "Leveraging
Provision of Frequency Regulation Services from Wind Generation
by Improving Day-Ahead Predictions using LSTM Neural Networks,"
in 2018 IEEE International Energy Conference (ENERGYCON),
Limassol, Cyprus, 2018.

– J-F. Toubeau, J. Bottieau, F. Vallée and Z. De Grève, "Deep
Learning-Based Multivariate Probabilistic Forecasting for Short-
Term Scheduling in Power Markets, " in IEEE Trans. Power Syst.,
vol. 34, no. 2, pp. 1203-1215, 2019.

– J-F. Toubeau, T. Morstyn, J. Bottieau, K. Zheng, D. Apos-
tolopoulou, Z. De Grève, Y. Wang, and F. Vallée, "Capturing
Spatio-Temporal Dependencies in the Probabilistic Forecasting of
Distribution Locational Marginal Prices," in IEEE Trans. Smart
Grid, vol. 12, no. 3, pp. 2663-2674, 2021.

• On tailored risk-aware decision-support tools. This thesis proposes
two novel decision-support tools for providing real-time balancing services:
i) one based on stochastic programming, which optimizes the imbalance

11



Chapter 1. Introduction

position of a market actor to maximize its expected profit over a finite set
of scenarios, and ii) one based on robust optimization, which optimizes the
imbalance position of a market actor under the worst-case realization of
the probabilistic predicted information. Both formulations are structured
as a bi-level program, which mathematically capture the interaction
between the intentional imbalance position of the actor and the price
signal of the single imbalance pricing mechanism. This part led to the
following contribution:
– J. Bottieau, L. Hubert, Z. De Grève, F. Vallée and J-F. Toubeau,
"Very-Short-Term Probabilistic Forecasting for a Risk-Aware Partic-
ipation in the Single Price Imbalance Settlement, " in IEEE Trans.
Power Syst., vol. 35, no. 2, pp. 1218-1230, 2020.

• On adjusting the risk policy of a market actor. For the first time,
a data-driven risk-adaptive approach is implemented for progressively
updating and improving the risk policy of a market actor based on the
dynamically changing market operating conditions. This approach is
tested on the scenario-based and robust optimization frameworks. This
methodology has been published in:
– J. Bottieau, K. Bruninx, A. Sanjab, Z. De Grève, F. Vallée and J-F.

Toubeau, "Automatic Risk Adjustment for Profit Maximization in
Renewable Dominated Short-Term Electricity Markets," in ITEES,
vol. 3, issue 12, 2021

• On interpretability in probabilistic forecasting. Novel attention-
based neural architectures are proposed for predicting real-time electrical
quantities in an interpretable fashion. The selection of relevant variables
is internalized into the model, which provides insights on the relative
importance of individual inputs. Then, attention mechanisms are used for
enabling the model to explicitly focus on relevant temporal dependencies,
which allows shedding light on the most relevant time dynamics such as
seasonal patterns. In this line, two contributions have been proposed
(one is published, and the other one is currently peer-reviewed):

– J. Bottieau, Y. Wang, Z. De Grève, F. Vallée, and J-F. Toubeau,
"Transformer Model for Interpretable Probabilistic Forecasting of
Real-Time Electricity Prices," currently in second round of review
in IEEE Trans. Power Syst.

– J-F. Toubeau, J. Bottieau, Y. Wang, and F. Vallée, "Interpretable
Probabilistic Forecasting of Imbalances in Renewable-Dominated
Electricity Systems," in IEEE Trans. Sust. Energy. Early access:
https://ieeexplore.ieee.org/abstract/document/9464660.
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The complete list of publications (including side projects) can be found in
Appendix A.

1.4. Thesis Outline
The organisation of this report is presented as follows:

• Chapter 2 firstly introduces the basics concerning the European short-
term electricity markets, and is concluded by a detailed presentation of
the opportunities offered by the provision of real-time balancing services.

• Chapter 3 is focused on the probabilistic time series forecasting models,
with an emphasis on neural networks models. The developed models are
assessed and compared on the Belgian system imbalance signal.

• Chapter 4 presents the risk-aware stochastic decision-support tools for
providing the real-time balancing services.

• Chapter 5 extends the risk-aware stochastic formulations by proposing an
automatic risk-adaptive approach for continuously adjusting the financial
risk management of a market actor.

• Chapter 6 details a (neural) Transformer-based model that provides
interpretable prediction outcomes. The forecasting model is tested on the
Belgian (real-time) imbalance prices, which are typically characterized
by low- and high-price regimes. The case study allows shedding light on
the attribution importance of the different inputs processed by the model
depending on the predicted price regime.

• Chapter 7 concludes this report, while proposing some perspectives for
future research.
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CHAPTER 2.
European Short-Term Electricity Markets

Electricity is a commodity with the following characteristics:

• Electricity demand and supply need to be matched continuously for
ensuring a stable frequency within the electricity network.

• Electricity follows paths defined by physical laws (e.g., Kirchhoff’s laws),
and not the pathways defined by financial transactions.

• Electricity flows through a complex infrastructure, wherein a wide range of
components (e.g., alternators, transformers, protection devices, inverters,
physical lines and industrial motors) interconnects the production units
to the end-users across a wide geographical area.

Fig. 2.1 showcases the synchronous electricity network of Continental Europe,
which serves over 400 million customers in 24 countries. The physical infras-
tructure of electricity systems is commonly subdivided into i) the high-voltage
transmission system, which carries the electricity generated by large power
plants over long distances (typically at 380kV - 30kV), and ii) distribution
systems, which sources residential and industrial consumers at lower voltage
levels (from 30kV to 220V). The continuity of the electricity service is vital
to all of connected end-users for their daily activities (e.g., hospitals or cold
storages). If a mismatch between electricity demand and supply appears, the
network encounters difficulties such as deviations of the system frequency (set
at 50 Hz in Europe, as illustrated in Fig. 2.1), which can disturb the op-
timal operation of the system components (e.g., industrial motors) and the
grid assets (transformers, power plant auxiliary equipment, etc.). Indeed, in
case of generation shortage, the missing electricity is taken from the inertia
of the rotating machines that are synchronized with the grid. These gener-
ators are thus decelerating, which leads to a frequency decrease, and even
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Figure 2.1.: The synchronous grid of Continental Europe. [44].

to a disconnection of these units if the rotation speed goes below a thresh-
old. Consequently, if a frequency deviation is not immediately alleviated, the
electricity network can face a domino effect of disconnections of generators,
which importantly jeopardizes its stability. Ultimately, a failure to restore
the balance could lead to an entire system collapse, which is called blackout.
A blackout is very costly for society as a whole as it takes several hours for
restoring the electricity services. For instance, it took about 12 hours to restore
the electricity system after the Great Blackout of 2011 in Pacific Southwest
affecting 2.7 million residents of San Diego, California, Arizona and Mexico [43].

Due to the characteristics of electricity, the planning and operation of elec-
tricity systems are not straightforward. This complexity is reverberated in
the price of electricity, which includes, besides the price of commodity, other
regulated costs related to the well-functioning of the network infrastructure
(the so-called transmission and distribution costs). Moreover, additional taxes
and levies, which promote specific energy development policies, can be added
on top of the electricity price. In this work, we solely focus on the com-
modity component of the electricity price, which is obtained via the
wholesale electricity markets.

The liberalization process of the European electricity system is discussed
in Section 2.1. This liberalization process led to the introduction of market
mechanisms for organizing the exchanges between self-interested third parties,
where new roles and responsibilities have been defined. The roles of system
operators, regulators and power exchanges are discussed in Section 2.2, while
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the different responsibilities that are endorsed by market actors, i.e., Balance
Responsible Parties and Balancing Service Providers, are respectively presented
in Section 2.3 and 2.4. The electricity markets aim at maximizing the coor-
dination between the electricity supply and demand sides in a competitive
framework, while considering to the best extent the physics governing the power
units and flows of electricity. Section 2.5 describes how both electricity supply
and demand sides are accorded in this framework, while detailing how the
physical constraints governing electricity systems are introduced in the markets.
These electricity markets are now well-anchored in each Member State, but
harmonization efforts are still required for defining a common structure across
Europe. The current status of this harmonization process is provided in Section
2.6 for the European short-term electricity markets. Then, Section 2.7 presents
an overview of the different challenges and trading solutions associated with
each short-term electricity market, while Section 2.8 presents a more detailed
discussion of the targeted application, i.e., the provision of real-time balancing
services. Finally, Section 2.9 concludes this Chapter.

2.1. Liberalization of the European Electricity
System

In most European countries, the electricity system was initially planned and
operated by single, vertical national utilities. Each of these national entities
was responsible for the generation, transmission, distribution, and retail of
electricity for their geographical area. At that time, as the supply of electricity
was considered as a service of general economic interest, it was not subject
to the rules of competition established by the European Union (EU) Treaties
of Rome (1957) and Maastricht (1993). In the 1990s, a wave of liberalization
concerning different industrial sectors (e.g., air transport, insurances or banking)
started in Europe, driven by the promise of efficiency earned via lower costs
and prices. In line with these sectors, the electricity system was also reformed
as follows: i) the generation, purchase and sale of electricity were unbundled
from transmission and distribution services, ii) markets were organized for
introducing competition between producers and suppliers, iii) regulated mo-
nopolies operating the transmission and distribution networks were established,
and iv) regulators monitoring both the market-based and regulated activities
were instituted [45]. Since the beginning of this liberalization process, the
achievement of a common internal electricity market across all Member States
was envisaged [46]. However, after thirty years of legislation, the completion of
this internal electricity market is still not achieved, which reflects the difficulty
of reforming a patchwork of electricity systems that where centrally planned.
As shown in Fig. 2.2, the liberalisation process was driven by four European

17



Chapter 2. European Short-Term Electricity Markets

1st Energy Package 2nd Energy Package 3rd Energy Package 4th Energy Package

1996 2003 2009 2019

• Functional

unbundling

• Wholesale electricity

markets

• Functional and legal

unbundling

• Creation of National 

Regulation Authorities

• Retail markets

• Definition of 

unbundling

models

• Creation of 

ACER

• Creation of 

ENTSO-E

• Updates of EU 

market rules

• Energy communities

• Launch of the EU 

DSO entity

• Risk preparedness

for future electricity

crises

Figure 2.2.: The timeline of the different energy packages that support the
liberalization process of the European electricity system [45].

legislative energy packages over the period 1996 to 2019. The energy packages
were then transposed into national laws by each Member State in the years
following. It should be noted that the same liberalization process has happened
for the gas sector.

The First Package in 1996 takes the first steps towards the unbundling of
the competitive part (producers and suppliers) from the regulated part (the
transmission and distribution activities). The collusion between these two parts
is hampered by prohibiting the transmission/distribution system operators, i.e.,
the regulated entities managing the high-voltage (380kV - 30kV) and medium
to low-voltage (30kV - 220V) electricity networks, to disclose any confidential
information to the competitive side, while being independent (at least function-
ally) from other third parties. However, a large room of manoeuvre is left for
each Member State for introducing and organizing the wholesale competition
between producers, large industrial consumers, and electricity retailers, which
results in different national electricity markets.

The Second Package in 2003 amends the previous one by going a step further
in unbundling requirements for the transmission and distribution system opera-
tors. Indeed, the electricity network should now be operated, maintained and
developed through a legally separate entity. National Regulation Authorities are
also designated for ensuring transparency and competitiveness in the electricity
markets, while guaranteeing the public interest. Besides, smaller industrial and
residential end-users were now free to choose their own electricity suppliers
from a panel of actors.

The Third Package focuses on resolving certain structural problems, while
improving the functioning of European electricity markets. Indeed, the final
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report of the energy sector inquiry in 2007 identifies the lack of integration
between national markets and their high degree of concentration as impor-
tant persisting shortcomings [47]. In this line, for alleviating discrimination
access to the grid that may obstruct competitors’ entrance, this package further
strengthened the unbundling process by presenting three models, i.e., ownership
unbundling, independent system operator, and independent transmission sys-
tem operator. The ownership model was openly favoured, which requires that
the transmission system operator is completely independent from producers
and suppliers. An Agency for the Cooperation of Energy Regulators (ACER)
at European level is also established for increasing the cooperation between
the different national regulation authorities. Similarly, the European Network
for Transmission System Operators for Electricity (ENTSO-E) is also built for
ensuring an optimal management between the different national transmission
system operators. Through both entities, the Third Energy Package triggered
the creation of electricity network guidelines and codes, which technically details
common guidelines and rules for designing the European electricity markets.

Lastly, in the line of the 2015 Paris Agreement, a Fourth Package, i.e., the
"Clean Energy for All European" package, was implemented in 2019. This
package is more oriented toward the energy transition and climate goals, with
a focus on the participation of citizens in the energy transition. Through
eight legislative acts, the European Union updates its energy policy framework
for reaching the targets of 2030, i.e., 40% cut in greenhouse gas emissions
compared to 1990 levels, 32% of renewable energy sources in the energy mix
and 32.5% of increase in energy efficiency over current levels. To do so, amongst
others, this package reworks the European market rules for improving the level
playing field, i.e., putting all technologies and market actors on equal footing.
It also introduced the concept of energy communities in its legislation, which
enables the local active participation of citizens in the electricity system. It
also increases the competences of the European Union agency ACER for, e.g.,
drafting the network codes and guidelines. It also mandates the establishment
of an European distribution system operator entity called EU DSO entity, and
provides guidance regarding the establishment of capacity mechanisms, i.e., a
mechanism aiming at ensuring adequate investment in power plants. Besides,
it obliges each Member State to prepare plans for preventing and managing
potential future electricity crises.

All this legislative process leads to an organisation of the economic dimension
of the electricity systems into different markets, ranging from long-term to short-
term arrangements. In the following Sections, the roles and responsibilities of
the different actors are presented.
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Figure 2.3.: System Operators, Regulators and Power eXchanges in Europe [48].

2.2. System Operators, Regulators and Power
Exchanges

In line with the evolution of the European legislation, different entities were
established for operating and regulating the electricity networks and markets
at both national and European levels, as illustrated in Fig. 2.3.

The Transmission System Operators (TSOs) are entities who carry out the
operation, maintenance and development of the electricity transmission network
in their given area. Their missions include: i) building and maintaining the
electricity network, ii) assuring a non-discriminatory access to the electricity
network, iii) guaranteeing the security and quality of electricity supply, iv)
ensuring a continuous balance between the total electricity demand and supply,
while preventing voltage violations and line congestions, v) promoting efficient
and transparent electricity markets. The entity responsible of the Belgian trans-
mission network is Elia, while the entity managing the coordination among the
different national TSOs is ENTSO-E, i.e., the European Network of Transmis-
sion System Operators. ENTSO-E is involved in the creation of the network
codes, and publishes a European ten-year network development plan (TYNDP)
every two years, which presents the foreseen developments of the European
electricity network in the next 10 to 20 years.

The National Regulatory Authorities (NRAs) are entities politically and
financially independent. They are entrusted to guarantee transparency and
competitiveness of the electricity markets, while protecting the rights of con-
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sumers. In Belgium, the federal entity is called the Commission of Regulation
of Electricity and Gas (CREG). The corresponding entity at European level is
the Agency for the Cooperation of Energy Regulators (ACER), which ensures
that the national regulatory frameworks evolve within the framework of the
European energy development policies. ACER publishes an annual market
monitoring report, and they are also involved in the creation of the network
codes.

The distribution system operators (DSOs), such as Ores, Sibelga or Fluvius
in Belgium, are entities who carries out the safe and reliable operation of the
medium to low-voltage networks (below 30 kV). They connect end-users, install
electricity meters and communicate the metering to the suppliers. The Clean
Energy Package establishes an European entity of distribution system operators
(EU DSO entity) to increase efficiencies in the electricity distribution networks,
and to improve the cooperation of DSOs with ENTSO-E and TSOs.

Power eXchanges (PXs) are anonymous electronic platforms, which trade
blocks of energy by matching the offers and bids of multiple actors. PXs
complement bilateral contracting, also called over the counter (OTC) markets,
where two actors negotiate bilaterally without others knowing the details of
the transaction. OTC markets are still larger in volume since market partic-
ipants can rely on tailor-made contracts and products, but PXs receive an
increasing attention as higher electricity wholesale volume is observed [49].
The PXs are known as more transparent as prices and volumes are published
through their platforms, while the details of OTC trades remain between the
negotiating parties. Practically, the PXs receive orders from various market
participants, and have the responsibility for matching and allocating orders
in accordance with the relevant participant agreements and regulations. Elec-
tricity trading in PXs can start up to a few years before the delivery via the
futures market1 until an horizon shorter than a day via the day-ahead and
intraday markets. In Europe, the two largest PXs are: Nord Pool and EPEX
SPOT, which have gradually consolidated their dominant positions through
different mergers and acquisitions. Note that these two PXs are also desig-
nated as Nominated Electricity Market Operators (NEMOs) in Belgium. The
NEMO is a certified PX that is allowed to co-organize the coupling of the
day-ahead and intraday markets at European level (more details in Section 2.6).

TSOs have the responsibility of balancing the electricity demand and supply.

1futures market define the long-term standardised products traded in power exchange, while
the term forward market is reserved for products that can be tailored-made and traded
OTC. Note that the term forward electricity market can cover both types of products [50].
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However, the current legislation in Europe prohibits the TSOs from possessing
their own generation and consumption means (including storage units), and,
thus, are not able to ensure directly by themselves the stability of their network.
For this reason, the TSO outsources its balancing responsibility to private
entities called Balance Responsible Parties (BRPs), which are presented in the
next section.

2.3. Balance Responsible Parties

A Balance Responsible Party (BRP) is an entity appointed at different
access points of the electricity grid, i.e., the interface between transmission and
distribution levels where injections and/or off-takes are measured, through a
contract with the TSO. The contracted BRP has the responsibility to compose
a daily balancing schedules of its portfolio on a quarter-hourly basis. Hence,
for instance, residential end-users are represented by an electricity supplier,
which acts as a BRP for granting the access to the transmission system network.
Examples of BRPs in Belgium include suppliers (e.g., Lampiris or Luminus),
generation companies (e.g., Electrabel), large industrial users (e.g., Arcelor-
Mittal Energy), or even purely financial entities (e.g., Gazprom Marketing &
Trading).

Each BRP is thus responsible of maintaining a balance on a quarter-hourly
basis within its portfolio. The portfolio of a BRP can be composed of its
own generation, its own consumption, and energy exchanges with other BRPs.
These exchanges can occur via the electricity markets, from years ahead up
to close to real-time. The long-term markets allow BRPs to hedge short-term
price risks and uncertainties, while the short-term markets (up to one day
before the delivery) allow BRPs to react against changing operating condi-
tions such as unplanned outages, weather-dependent renewable production,
the demand level, or network outages. In short-term electricity markets, the
exchanges between BRPs mainly take place in the day-ahead and intraday
markets, which are managed by Power eXchanges. Due to the ongoing integra-
tion of weather-dependent renewable energy sources, BRPs exchange more and
more volumes in these markets as the production profiles of weather-dependent
renewable energy sources are less uncertain closer-to-real-time. Fig. 2.11 de-
picts the interactions of the BRPs up to one day before the delivery of electricity.

The Day-Ahead (DA) market is the main short-term arena for trading energy
between BRPs. The market is cleared once at 12H00 in the day before delivery
(day D-1) based on an auction mechanism, where hourly blocks of energy
are traded for the following 12-36 hours. Practically, the day-ahead market
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Figure 2.4.: Short-term interactions of the Balancing Responsible Parties.

outcomes are hourly day-ahead prices, which are defined for each hour of the
following day (day D), and the volumes exchanged between BRPs. After the
day-ahead market clearing, the local TSO requires the BRPs to provide their
nominations, i.e., their balanced schedules at both consumption and production
levels, on a quarter-hourly basis for the next day. Based on these nominations,
the TSO can verify whether the dispatched power units do not lead to voltage
violations or line congestions within their control area. Indeed, the day-ahead
market-clearing procedure does not fully consider the physics of the transmis-
sion and distribution networks, which can lead to impractical market outcomes
(more information in Section 2.5). In this case, remedial measures are necessary,
which can be i) a change in the grid topology, ii) re-dispatching actions, where
the TSO updates the generation and/or consumption scheduling of a BRP, or
iii) countertrading actions, where cross-border exchanges are altered by the
TSOs. These remedial measures have a cost for the system, which amounts
3.6 billion € for a volume of 61 972 GWh in 2020 [49]. In addition, the TSO’s
interventions are expected to be more frequent in the near future, due to
the improper network representation in the day-ahead market-clearing pro-
cedure and the increasing share of weather-dependent renewable energy sources.

After the nominations of BRPs, the intraday market is opened up and allows
them to exchange their energy surplus or deficit up to 5 minutes before real-
time, which result from forecast errors or unexpected events (as a power plant
outage). In Europe, two designs for the intraday market exist: discrete auctions
and continuous trading. Both designs can coexist, but continuous trading is
the dominant model in Europe as volumes are considered too low for organizing
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auctions. In auction-based market, similarly to the day-ahead market, several
intraday sessions are organized over the day according to different gate closure
times. After each gate closure, the orders are frozen, and are cleared for ob-
taining the market prices and volumes for the corresponding market period. In
a continuous market, matches between BRPs can be performed at any time
during the trading session if their respective orders are concordant. Hence, a
continuous intraday product is not defined by an unique price common to all
BRPs (as in the auction mechanism), but by different prices depending on the
time at which the match is concluded. The European Network Codes, and more
specifically the Capacity Allocation and Congestion Management guidelines
(CACM GL) [51], suggest that continuous trading (wherein an order book
aggregating all demand bids and sell offers is continuously updated) should
be the main European intraday market mechanism. This offers more trading
possibilities for BRPs to adjust their schedules closer-to-real-time, which is
important for, e.g., renewable energy technologies, that could be otherwise
exposed to imbalance costs.

Indeed, BRPs are charged with imbalance fees each time they deviate from
their nominations. These fees are set on a quarter-hourly basis by the imbalance
settlement. The imbalance settlement mechanism aims at ensuring that BRPs
efficiently support the balance of the electricity system. This mechanism is
organized ex-post (after the delivery of electricity) by the TSO, and reflects the
cost related to the real-time activation of additional energy (called balancing
energy) on BRPs that were not able to honour their schedules. In real-time, a
BRP can be in surplus of energy (also denoted as a positive or long imbalance
position) or in shortage of energy (i.e., a negative or short imbalance position)
compared to its nominations. The net total sum of all BRP’s imbalance posi-
tions gives the system imbalance, which is managed to be as close as possible
to zero. Note that the direction of the imbalance position of one BRP can be
different from the direction of the whole system’s imbalance position. As the
pricing mechanism of the imbalance settlement is not (yet) uniform in Europe,
different design choices currently exist [52].

A main design choice is whether the imbalance price is uniquely defined, i.e.,
"single pricing", or if positive and negative imbalances are priced differently,
i.e., "dual pricing". Overall, in both pricing mechanisms, unbalanced BRPs
that are in the same direction than the system imbalance pay for the activated
balancing energy (red boxes in Fig. 2.5). These two imbalance pricing mecha-
nisms differ when the unbalanced BRPs are in the opposite direction of the
system imbalance. For this situation, dual pricing caps the imbalance price
at the day-ahead price, while single pricing does not. This difference results
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Figure 2.5.: Dual and single imbalance pricing schemes using marginal pricing.

into two types of behaviors for BRPs. In dual pricing, BRPs are incentivized
to strictly stick to their energy schedules. Indeed, as shown in Fig. 2.5, dual
pricing penalizes, or at least does not reward, any individual imbalances. In
single pricing, unbalanced BRPs in the same direction than the system im-
balance are charged with an expensive penalty, while the unbalanced BRPs
in the opposite direction receive an attractive imbalance price. Indeed, the
latter cases of imbalances (green boxes in Fig. 2.5), which provide a real-time
balancing service to the system, are remunerated at the same price than the
balancing energy activated by the TSO. The European guidelines on balancing
markets clearly state that imbalance prices should reflect the real-time value of
energy, and favours single pricing over dual pricing (although, dual pricing can
be implemented as an exception) [53]. The European guidelines also favour
marginal pricing, where the last activated balancing energy bids determine the
imbalance price. Overall, the single imbalance price depends i) on the sign
of the system imbalance, and ii) on the Marginal Incremental Price (MIP),
i.e., the highest price of the energy balancing bids needed for compensating
a shortage of energy for a given quarter hour, or the Marginal Decremental
Price (MDP), i.e., the lowest price of the energy balancing bids needed for
compensating a surplus of energy for a given quarter hour.

In fig. 2.5, it can be observed that the financial responsibility of balancing
the system in real time is supported by the BRPs, but it should be recalled
that the operational responsibility for maintaining this balance still remains
within the hands of the Transmission System Operator (TSO). To achieve this,
the TSO buys the needed balancing energy services from other market actors,
named Balancing Services Providers (BSPs), through the balancing markets,
which is the focus of the next section.
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Figure 2.6.: Examples of technical requirements that a balancing service must
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2.4. Balancing Service Providers
In Europe, the balancing actions, which aim at restoring the system balance,

are designed for guarding the system frequency deviation within the range of
49.8 Hz and 50.2 Hz [54]. This is achieved by trading the real-time measured
system imbalance from qualified electricity market participants, i.e., the Bal-
ancing Service Providers (BSPs).

BSPs are flexible actors, such as gas-fired power plants, demand response
facilities, or storage operators, whose power units must meet certain technical
requirements for offering standardized balancing services to the TSOs (see
Fig. 2.6). The balancing services can be either upward (i.e., an increase in
generation and/or decrease in consumption), or downward (i.e., a decrease in
generation and/or increase in consumption). The upward balancing services
are activated for dealing with negative system imbalances (e.g., undersupply
or overconsumption situations causing a frequency drop), while downward
balancing services are needed for positive system imbalances (e.g., oversupply
situations causing a frequency rise). The costs for activating upward balancing
services are usually more expensive than the day-ahead and intraday prices,
while the costs for activating downward balancing services are commonly lower
than the day-ahead and intraday prices.

As illustrated in Fig. 2.7, the balancing services are procured via two market
segments: i) the balancing capacity market, which remunerates the availability
of the balancing services during the contracted period, and ii) the balancing
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Figure 2.7.: Short-term interactions of the Balancing Services Providers

energy market, which prices the actual activation of the balancing services in
real time. Contracted bids in the balancing capacity market are automatically
transferred to the balancing energy market, but non-contracted (also called
"free") bids can also be added in the balancing energy market. The balancing
capacity costs are socialized by TSOs through their transmission network tariffs,
but the costs incurred by the real-time activation of balancing reserves are
covered by the unbalanced BRPs.

The services in the balancing markets are standardized into four types of
products: i) Frequency Containment Reserves (FCR), ii) Automated Frequency
Restoration Reserves (aFRR), iii) Manual Frequency Restoration Reserves
(mFRR), and iv) Replacement Reserves (RR). Their chronological activation
order is shown in Fig. 2.8. As there is only one buyer (the TSO), the total
amount of each balancing service is subject to strict European regulations. For
instance, in 2019, the volumes of the Belgian balancing services are set to 80
MW for FCR, 145 MW for aFRR and 894 MW for mFRR.

FCR is the first balancing service to be activated. FCR stabilizes the system
frequency in a time frame of seconds (usually up to 30 seconds), with an
automatic and local activation. For providing FCR, the BSPs must install
specific equipments to continuously measure the network frequency, and to
quickly adjust their output power for a time period up to 15 minutes. Overall,
the FCR volume is dimensioned to handle the loss of the largest generation unit
within the control area. Hence, the FCR volume at ENTSO-E level is fixed at
3000 MW, which are distributed between the different control zones according
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to their importance in the synchronous area of Continental Europe. After
FCR, FRR are the following balancing services to be activated, whose aim is to
restore the frequency back to its reference level. More specifically, aFRR denote
frequency restoration services that are controlled in an automatic fashion by
the TSO, where their activation signal is a set point continuously transmitted
by the TSO. The full activation of aFFR is performed in 7.5 minutes, and
remains active for the time needed. On the other hand, mFRR necessitate a
manual activation from the BSPs, and relieve aFRR in case of a prolonged
system imbalance. Finally, RR is the slowest type of services as their activation
time ranges from 15 minutes up to hours, and it is used for supporting or
releasing FRR activation.

2.5. Clearing the Market
Overall, electricity market prices aim at promoting i) long-run efficiency,

i.e., how well efficient investments in the electricity system are encouraged,
and ii) short-run efficiency, i.e., how well the available electricity resources are
coordinated for maximizing the social welfare [55]. The social welfare can be
defined as the sum of the net consumers’ surplus and of the producers’ profit
from trading, which captures a notion of an economic gain considering the
entire society.

Most of the European short-term electricity markets (i.e., the day-ahead and
balancing markets) are based on an auction mechanism, where the intersection
point between the demand and supply curves provides the market price and
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volume. The demand curve is the consumer bids (ranked in a descending order)
representing their demand quantities along with their maximum price they are
willing to pay. Similarly, the supply curve is the producer offers (ranked in an
ascending order), which represents their available production quantities along
with their minimum selling prices. An illustration of the auction mechanism
based on these demand-supply curves is given in Fig. 2.9.

With this mechanism, all producers with a lower offer price than the market-
clearing price are scheduled and paid by the market-clearing price, and, thus,
benefit from the difference between the market-clearing price and their opera-
tional cost (which enables them to recover their investment costs). Similarly,
all consumers with a higher bid price than the market-clearing price pay their
energy at the market-clearing price, and, thus, benefit from the difference
between the market-clearing price and their utility cost. By finding the equi-
librium point between this consumers’ and producers’ surplus (indicating by
the two shaded areas in Fig. 2.9), the market-clearing procedure maximizes the
social welfare [56]. In practice, this equilibrium problem can be written as a
centralized optimization program, which maximizes the social welfare subject
to the producer bids and consumer offers.

Another form of trading applied in the electricity markets is continuous
trading. As illustrated in Fig. 2.10, the offers and bids are not simultaneously
matched after one gate-closure time, but they are sequentially treated according
to the first-come–first-served rule. If the price of a new buy order is equal or
higher than the price of an existing sell order (or the opposite), both orders are
automatically matched. Each match is settled following the pay-as-bid principle,
where the price is set by the oldest order of the two. The unmatched orders are
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stored in an order book, where all their details are accessible to other market
participants for facilitating future matching. As depicted in Fig. 2.10, the order
book is structured of two sides: the sell and buy orders. The sell orders are
sorted in descending order, while the buy orders are sorted in ascending order.
The bid-ask spread is the difference between the lowest price of a seller and the
highest price of a buyer, which is used as a proxy for measuring the liquidity
of this type of market. In a continuous trading scheme, the same quantity of
energy for a certain delivery period may have different prices depending on
the time of the transaction. The continuous trading scheme is currently the
favoured option for the European intraday market.

One of the fundamental difficulties when organizing the electricity markets
is that the commercial flows do not necessary reflect the physical flows. This
can be due by i) an inexact representation of the electricity network in the
market-clearing mechanism, and ii) an inexact incorporation of the (non-convex)
techno-economic constraints of the power units. The less compatible the results
of the market is with the physical reality of the system components of the
electricity system, the greater will be the need for corrective measures. These
corrective measures may entail huge costs for both system operators and market
participants.

Concerning the market-clearing mechanisms accounting the electricity net-
work limitations, two major options are currently used worldwide [57]: nodal
and zonal pricing, which are showcased in Fig. 2.11. On one hand, nodal pric-
ing, which is typically used in US-style markets, determines local price signals
for each grid node. These prices are derived from the balancing equations of
each grid node, i.e., the nodal generation must equal nodal consumption, while
accounting the import/export of power with other nodes. This necessitates the
computations of the physical flows of each line, which is usually achieved by
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Figure 2.11.: Pricing with network limitations for a 4-node/3-zone network [57].

nodal Power Transfer Distribution Factors (PTDFs). These values provide a
linearized approximation of the load flows in response to an incremental change
of import/export at each node. Note that other network constraints, such as
thermal capacities of the lines, are also incorporated. On the other hand, via
zonal pricing, the market-clearing algorithm enforces the balancing equation
only at zonal level (which delimits an ensemble of grid nodes), inside which the
network is represented as a copper plate (i.e., having an unlimited transmission
capacity within the zone). This pricing scheme thus defines an uniform price
for the whole zone, but at the expense of a loss of modeling accuracy, which
may result in internal congestions. This pricing scheme is currently applied in
European electricity markets. The European zones are commonly delimited
according to national borders (which thus enabling consistent prices within a
same country, such as Belgium), but countries can be subdivided into several
zones in order to cope with internal structural congestions (such as Italy). The
financial exchanges operated between zones, also referred to as cross-border
capacities, can be allocated following two methods: Available Transfer Capacity
(ATC) or Flow-Based (FB) methods. The former method limits the maximum
commercial exchanges between zones by predefined lower and upper bounds (the
ATC values). These bounds are calculated ex-ante (in day-2) by the TSOs, and
define the maximum commercial exchanges between zones that are compatible
with the physics of the network and operational security standards. However,
in the market-clearing procedure, these ATC values are hard constraints, and,
consequently, provide conservative cross-border capacity constraints. On the
other hand, the latter option, the FB method, introduces zonal PTDFs for
characterizing the physical flows between the zones during the market-clearing
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Figure 2.12.: Illustration of the linked order (left) and loop order (right).

procedure. These values, which are also determined ex-ante by the TSOs, allow
to model linear dependencies between the flows and import/export of each zone
during the market-clearing procedure. Evidently, although sharing similarities
with nodal PTDFs, zonal PTDFs are less accurate as i) the nodes are grouped
into zones, and ii) their values are computed ex-ante based on a reference case
(i.e., a forecast of the state of the electricity system at moment of delivery) [57].
Nevertheless, the literature shows that the FB method demonstrates a global
increase of trade volumes, which leads to welfare gains compared to the ATC
method [58].

While the physics of the network is important, the techno-economic con-
straints of the power units may also create a dissonance between the mar-
ket outcomes and the physical reality. In the traditional representation of
auction-based markets, the structure of the orders are conventionally defined as
price-quantity pairs, where buyers and sellers offer their marginal cost curves.
However, such orders cannot reflect all the non-convexities of generation profiles
and costs pertaining to the currently existing power units. For instance, thermal
power plants have minimum up and down temporal constraints, while their
cost structure include starting, operational and shutdown costs. In this setting,
trading exclusively hourly price-quantity pairs in the day-ahead electricity
market cannot provide the possibility for BRPs to inform the market-clearing
mechanism about all their relevant techno-economic constraints, which may
induce imbalance penalties in case of infeasible schedules. In light of this
shortcoming, block and complex orders have been introduced in the day-ahead
market. Fig. 2.12 illustrates two block orders: the linked block order and loop
order. The first type of order is defined by parent and child orders, where the
acceptance of the child block depends on the acceptance of the parent block.
This order allows, e.g., to detail more precisely in the market the starting,
shutdown and operating costs of the thermal units. On the other hand, the
loop order is a family of two orders that are executed or rejected together.
This order was designed for better informing the market about the operation
of energy storage systems. However, the use of such orders rises important
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Figure 2.13.: The bidding zones in Europe [60].

algorithmic and economic challenges in the European day-ahead electricity
markets. Indeed, these orders introduce non-convexities as they are character-
ized by binary values, which increases greatly the complexity of defining the
market equilibrium price. For more detailed discussions on this problematic,
the interested reader is referred to the work [59] and references therein.

2.6. Towards an Integrated European Electricity
Market

The European approach for merging and coordinating each national elec-
tricity market is zonal market coupling. This approach defines bidding zones
(usually defined by national borders), where the prices are uniform at each
zone and market period. Fig. 2.13 shows the current delineation of the bidding
zones in central, west and north Europe.

Integrating the European electricity markets represents both economical and
technical advantages. As an order of magnitude, the total economic benefit for
integrating the electricity market was estimated at 4 billions € for the year
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2016 [61]. In addition, the more an electricity system is interconnected, the
more its level of inertia is increased, as more synchronously rotating machines
are coupled. This allows mitigating drop or spike of frequency when a mismatch
between production and consumption occurs, which facilitates the operation of
the network. Another advantage of exchanging electricity across borders is the
more effective use of resources that are geographically dispersed. As the wind
and solar conditions are uneven across a wide geographical area, the collective
behavior of renewable energy source’s production profiles can mitigate their
intermittency at some extent [62]. Finally, the relative importance of the most
severe incident decreases as system size increases, while the balancing capacity
energy necessary to cope with such incidents can be mutualized across the
different Member States. However, it should be recalled that the resulting price
convergence across the Member States creates winning situations (consumers
where prices were high can pay less after integration, and producers where prices
were low have an access to a market with higher prices) and loosing situations
(producers with high prices face increased competition, and consumers with
low prices experience higher prices). Besides, the needed cooperation for
integrating the electricity markets could reinforce the market power of certain
actors, which may limit the promised benefits. For instance, in 2014, the two
leading European power exchanges, EPEX SPOT and Nord Pool, have agreed
to not compete for their short-term electricity trading services across Europe,
which has led the European Commission to fine them about 6 million € in
cartel settlement [63].

Integrating the Day-Ahead Market
All the bids and offers in European day-ahead markets are coupled via a

common optimization algorithm called the Pan-European Hybrid Electricity
Market Integration Algorithm (EUPHEMIA), which aims at maximizing the
social welfare, while accounting the interconnections between the zones. The
operation of the algorithm is performed by the Nominated Electricity Market
Operators (NEMOs) on a rotational basis. The EUPHEMIA market-clearing
task is arduous as it deals with a wide variety of non-convex orders (e.g., the
linked block or loop orders), which forces the implementation of heuristics and
iterative solving methods to deal with, e.g., the existence of multiple equili-
bium solutions (see reference [64] for a public description of the EUPHEMIA
algorithm).

Integrating the Intraday Market
The closer to real time the more specific the needs of the Balance Responsible

Parties (BRPs) are and, consequently, the more difficult it is to find the right
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counterparty. In a context where intraday volumes are naturally low, continuous
trading became the dominant model in Europe for intraday markets. Following
the Capacity Allocation and Congestion Management guidelines [51], the Single
Intraday Coupling (SIDC) project has delivered in 2018 the first go-live platform
of an European continuous intraday market. Through this platform, the BRPs
can match their intraday orders with orders submitted outside their zones, as
long as enough transmission capacity is available.

Integrating the Balancing Market
The target model for integrating the European balancing markets is a

TSO-TSO model, where the cross-border exchanges of balancing services are
exclusively handled by TSOs via a common merit order list. The common merit
order list ensures that the cheapest balancing energy bids are firstly activated
across different zones. Naturally, this integration process requires i) a high
level of harmonization of balancing products, and ii) a highly sophisticated IT
infrastructure due to the need of robust and efficient real-time communication.
The technical requirements of the standard European balancing products are
designed to be as much as possible technology neutral (which allows ensuring
a level playing field for all technologies), rather than oriented for particular
technologies. The different pilots for harmonizing the European balancing
markets are shown in Fig. 2.14.

The FCR Cooperation is a regional project involving TSOs from Austria,
Belgium, the Netherlands, France, Germany, Switzerland, Slovenia and West
Denmark for procuring their FCR in a common market. This FCR Cooperation
is performed with daily auctions considering 4 hours-based symmetric products.
The auction takes place every day at the gate closure time 08:00 CET, and
applies for the next delivery day. In parallel, another cooperative project is
the International Grid Control Cooperation (IGCC), which aims at avoiding
simulatenous activations of opposite aFRR in adjacent zones. Practically,
this imbalance netting process is carried out continuously with a 5-seconds
refreshing rate based the imbalance signals of the different coupled market
zones, and is limited by the available transmission capacity. Hence, instead of
simultaneously activating aFFR in two adjacent zones, only the TSO with the
higher absolute system imbalance activates the required difference of aFFR.
Note that, between 2012 and 2019, the accumulated benefit from this imbalance
netting was estimated at 475 million €, while the investment and operational
costs are respectively 20 million € and 1 million € [45].

The PICASSO project (launched in 2017) is focused on establishing the Eu-
ropean aFRR platform, which is legally enforced to be operational in July 2022.
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Figure 2.14.: The different balancing pilots for establishing the European Bal-
ancing markets.

This platform will allow to exchange standard aFFR balancing products across
Europe. In the same vein, the MARI and TERRE projects are respectively
responsible for implementing the mFRR and RR European platforms.

2.7. Trading in European Short-Term Electricity
Markets

Recalling Section 1.2 of Chapter 1, the main flexibility options for a market
actor (either a Balance Responsible Party (BRP), a Balancing Service Provider
(BSP), or both), are thermal power plants, demand response, energy storage
systems, active control of weather-dependent renewable energy sources, and
(cross-border) energy exchanges. Elaborating efficient trading strategies for
leveraging their economic value in short-term (European) electricity markets
has been an extensive subject of research in the power system community
over these two past decades. This Section exposes some key challenges and
trading approaches for each market segment, while highlighting the importance
of an accurate representation of the real-time market operation in the trading
strategies of BRPs and BSPs.
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Trading in Day-Ahead Electricity Markets

The day-ahead electricity market was the first short-term market segment
receiving a high attention from the power system community. As thermal power
plants were formerly the predominant power technologies, early references were
focused on developing day-ahead trading strategies that adequately incorporate
their (non-convex) operational constraints (e.g., starting up, shutting down,
ramping up and ramping down), while assuming a perfect information about
the day-ahead electricity prices – see, for instance, the mixed-integer linear
programming problem in [65]. The latter hypothesis concerning perfect fore-
sight was gradually lifted in the power systems community, as shown in [66],
where crafted scenarios of day-ahead electricity prices are introduced in the
trading model of a thermal power plant for better accounting the day-ahead
price uncertainty. This notion of uncertainty was even further intensified with
the introduction of weather-dependent renewable energy sources since their
production profiles are highly intermittent and variable. Such considerations
have boosted the energy forecasting community in developing probabilistic
forecasting models, which allow better informing the trading strategies of BRPs
about forecast uncertainty – see, e.g., [67] and references therein. The interest
of such probabilistic forecasting models is illustrated in [68], which derives
optimal trading strategies for wind producers based on probabilistic predicted
quantiles of their production profiles. In this line, along with the development
of probabilistic forecasting models, two-stage stochastic decision-support tools
were progressively introduced in the power system community, whose resulting
objective function, on the one hand, maximizes the expected profit in the
day-ahead electricity market, and, on the other hand, minimizes the expected
imbalance penalties that may occur in case of real-time energy deviations [69].
Indeed, as the weather-dependent renewable energy sources were increasingly
becoming technologically mature, their granted advantages (e.g., a fixed feed-in
tariff or no balancing responsibility) in the electricity markets were loosened,
which exposes their owner to imbalance penalties in case of a real-time energy
deviation.

Alternatively, with the advent of carbon-free energy resources, the market
participation of energy-constrained technologies (such as energy storage sys-
tems and demand response) have also received an increasing attention from the
power system community. Practically, energy storage systems are additionally
constrained w.r.t. thermal power plants by the physical capacities of their
reservoir (that can be, e.g., water tanks or battery cells), which reduces their
energy availability over time [70]. On the other hand, the energy availability of
demand response typically depends on user-specified constraints, which can be:
i) a buffer capacity of an industrial process, which allows stopping the activity
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for a certain period of time [71], ii) the thermal comfort of end-users, which
dictates the behavior of thermostatically loads [72], and iii) the travel rou-
tines of drivers, which impose that batteries of electric vehicles are sufficiently
charged at certain periods of time [73]. Overall, demand response providers
are essentially small, decentralized and self-interested, and their interactions
with the day-ahead electricity market are commonly mediated by an aggregator
(e.g., a BRP grouping an ensemble of demand response providers). Note that
the development of adequate business models defining the interaction between
the aggregator and demand response providers is still under research [18],
[19]. Overall, when participating in the day-ahead electricity markets, these
technologies attempt to capture price spreads by charging during off-peak mar-
ket periods (characterized by low prices) and discharging during peak market
periods (subject to high prices), which allows mitigating temporal mismatches
between electricity production and consumption over the day. However, due
to the limited controllability of the aggregator on the behaviors of demand re-
sponse providers, the aggregator has to deal with unexpected energy deviations
in real time, which also exposes him to imbalance penalties.

Hence, the real-time market operating conditions, and, consequently, their
modeling assumptions, have a direct impact on the day-ahead trading strategies
of BRPs. This is illustrated in [74], where a wind power producer adopts
more efficient trading strategies when detailing more precisely the real-time
market operating conditions in its day-ahead trading strategy. Generally, the
modeling of imbalance prices in day-ahead trading strategies can be of gradual
complexity: i) a deterministic representation of the imbalance penalties [75],
ii) a stochastic representation of the imbalance penalties (e.g., via a set of
scenarios) [76], and iii) a representation of the imbalance price formation within
the trading strategy of the BRP [74]. In i) and ii), the trading strategies of
BRPs are based on the assumption that their imbalance positions would not
influence the formation of the imbalance price (i.e., a price-taker approach).
On the other hand, the formulation in iii) allows to capture the impact the
imbalance position of the BRP on the imbalance price formation (i.e., a price-
maker approach). As the imbalance settlement is small in volume by design,
the latter approach is selected for our market application as it naturally takes
into account the market small size inherent to the imbalance price settlement
(see Chapter 4).

Finally, considering the European day-ahead market framework, a large share
of developed trading strategies considers only one price signal per market period
(which thus implicitly considers a single zone, wherein the electricity network
is represented as a copper plate), for which their trading intention is uniquely
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provided to the market through price-quantity orders (which are insufficient for
informing the market-clearing algorithm of all the techno-economical constraints
of the BRP portfolio). However, referring to Section 2.5, failing to properly
account the network limitations and the techno-economical constraints of the
portfolio may lead to energy schedules infeasible in practice, which may entail
costly imbalance penalties for BRPs. Yet, to the best of the author’s knowledge,
there is still little progress in the power system community for incorporating such
considerations in the BRP trading strategies. This may be explained by the non-
availability of the European day-ahead market algorithm EUPHEMIA, where
only some general aspects are given in the public documentation [64]. The lack of
its full mathematical procedure renders the development of a (computationally-
efficient) unified European day-ahead electricity market framework a highly
difficult task for researchers (e.g., due to the existence of multiple equilibrium
solutions) [77]. This mathematical complexity is even further exacerbated when
such non-convex market-clearing mechanisms are solved within the trading
strategies of BRPs (see, e.g., the model in [78]). This lack of an official European
market-clearing model also impacts the studies on the added value of different
block orders (e.g., the linked block order or the loop order) over the conventional
price-quantity pairs in the trading strategies of BRPs. Indeed, the ex-post
performance of block orders w.r.t. conventional ones is currently investigated
using either i) already outputted day-ahead price signals by EUPHEMIA [79],
with a price-taker assumption (i.e., the trading strategy of the BRP does not
influence the market-clearing mechanism), or ii) an ex-post centralized economic
dispatch problem [80], which assumes a full disclosure of all the techno-economic
constraints of the BRPs to the market operator.

Trading in Intraday Markets
The day-ahead energy schedules of Balance Responsible Parties can be re-

fined over the day using the intraday market opportunities. Such opportunities
are commonly studied considering a Virtual Power Plant (VPP), which is a
market actor combining different technologies in its portfolio (e.g., a wind power
unit complemented with an energy storage system) [29], [81]–[83]. This exten-
sion towards the intraday stages for VPPs results from i) the decrease over time
of the uncertainty pertaining to the production profiles of weather-dependent
renewable energy sources, and ii) the necessary continual monitoring of the
energy availability of energy-constrained units (e.g., energy storage systems
or demand response), whose scheduling decisions can be adapted over the
day. Overall, the most challenging part lies in the multiple sequential intra-
day stages, where information can be updated at each stage, which increases
drastically the dimensionality, and, thus, the tractability of the associated
decision-support tool. Different trading strategies have been developed in
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accordance with both auction-based and continuous intraday formats.

Considering the auction-based format (which is, e.g., well-anchored in the
Iberian electricity market [69]), rolling optimization (also denoted as model
predictive control or receding control horizon in the literature) approaches are
generally used for readjusting the energy schedules of VPPs [29], [81]. In this
setting, the dynamic updates of forecasts are leveraged by solving an intraday
decision-support tool (with a look-ahead horizon) recursively over the day.
More specifically, the intraday decision-support tool is formulated and solved
at each decision stage with a look-ahead horizon, but only the trading decisions
in the first time step of the look-ahead horizon are implemented. Then, for the
next stage, the look-ahead horizon is shifted forward, and the calculation is
repeated, based on updated forecasts and previous trading decisions. A the end
of the day, the final decisions of the market actor are thus the sequence of the
decisions in the first time step of each look-ahead horizon [84]. This framework
is then generally extended to a stochastic process, where the uncertainty of
future electricity quantities (e.g., the intraday prices or wind power) is mitigated
via scenarios.

On the other hand, the continuous intraday format increases even further
the dimensionality complexity of the intraday trading strategy. Indeed, in this
format, the market actor can continuously submit its bids and/or offers, while
observing the trading opportunities contained in the order book. Hence, the
buy and sell prices of a delivery may evolve over time, while, in the auction-
based format, the intraday market is cleared at different gate-closure-times
over the day. Due to these particularities, reinforcement learning approaches
have been preferred over stochastic optimization procedures in [85], [86] for
participating in the continuous intraday market. Note that, nevertheless, a
multistage stochastic optimization approach is still used in [87], where ad-
vanced decomposition techniques and dedicated sampling approaches have been
leveraged for countering the curse of dimensionnality.

Trading in Balancing Markets
The balancing market opportunities are typically studied in the day-ahead

stage by the power systems community, along with the opportunities offered by
the day-ahead electricity market. This renders the market participant as, on
one hand, a Balancing Service Provider (BSP) and, on the other hand, a BRP.
For simplicity reasons, the trading strategy in both day-ahead electricity and
balancing markets are commonly jointly optimized [88]–[90], even though their
auctions occur separately in Europe. Such joint optimization scheme aims at
identifying the best trade-off between the revenue streams coming from i) the
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day-ahead market, ii) the balancing capacity market, and iii) the balancing
energy market.

One of the most challenging part when proposing balancing services in day-
ahead is to properly consider the uncertain activation of balancing energy in
real time. This issue is particularly exacerbated for energy-constrained tech-
nologies (e.g., energy storage system or demand response), which is not only
constrained by the installed capacity (MW) and ramping abilities (MW/min)
(as is the case of thermal power generation), but also by their energy avail-
ability (MWh). Failing to properly anticipate the impact of the uncertain
activation of scheduled balancing services on their energy content may thus
result into overly optimistic bidding strategies, i.e., offering balancing capacity
that the market actor is unable to deploy when requested in real time. This
may result in costly real-time balancing penalties and/or a temporary exclusion
from participation in balancing markets. The representation of the real-time
activation of balancing energy can become rapidly computationally-intensive
for the optimization problem. For example, if one considers 3 activation values
for each of the 96 time steps of the day, one will end up with 396 possible
trajectories to feed its stochastic decision-support tool. The balancing ac-
tivation is thus considered in [91] using an average activation rate at each
time step. However, this deterministic procedure does not guarantee that the
resulting scheduling is feasible when the actual balancing activation deviates
from its mean value. In the same vein, the balancing energy requirement is
satisfied in expectation in [92], where the anticipated activation of balancing
energy is represented through different scenarios. For alleviating this issue,
the work in [93] ensures the real-time feasibility of balancing activation by
considering a worst-case scenario in the day-ahead stage, whereas reference [90]
considers probabilistic constraints to account for uncertain balancing activation.

Overall, as the rising shares of weather-dependent renewable energy resources
introduce a higher degree of uncertainty in real-time market operating con-
ditions, the role of real-time markets (i.e., the balancing energy market and
imbalance settlement) become central in forming efficient trading strategies [94].
In line with this evolution, the European balancing market favours the single
price imbalance settlement, which better reflects the real-time value of en-
ergy. This imbalance settlement mechanism allows BRPs to provide real-time
balancing services, which are presented in the next Section.
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2.8. Provision of Real-Time Balancing Services
The European balancing products are activated based on real-time frequency

deviations measurements. This reactive design implicitly assumes that no
anticipated future system imbalances are alleviated by the TSOs. This design
generates high spikes in the balancing energy prices during periods where high
system imbalances are measured. Recalling Section 2.3, the resulting balancing
activation costs are then transferred to unbalanced BRPs via the single price
imbalance settlement.

For each imbalance settlement period (typically 15 minutes), each BRP is
thus defined by an imbalance position, which is priced by the single imbalance
price. This imbalance price provides incentives (financial rewards) to Balance
Responsible Parties (BRPs) when they contribute to restore the system balance
by their imbalance position (e.g., a deficit of energy in the power system and a
surplus of generation for the BRP). Recalling Fig. 2.5 in Section 2.3, the single
imbalance price is based on i) the direction of the system imbalance, and ii)
the cost of the most/least expensive activated upward/downward balancing
energy bid. Based on this marginal pricing method, Fig. 2.15 depicts how the
intentional imbalance position of a BRP can influence the single imbalance
price. A negative system imbalance (SI<0), i.e., the case a) in Fig. 2.15, defines
a generation shortage in the system, while a positive SI, i.e., the case b) in
Fig. 2.15, reflects a generation surplus. In case of generation shortage (SI<0),
the TSO activates upward reserves, which drives the imbalance price towards
a high price regime (typically exceeding the day-ahead prices). In this case,
a negative imbalance position aggravates the shortage of the system. Hence,
the BRP in this negative imbalance position would have to pay an expensive
price to the TSO for the additional activation of upward reserves. If the BRP
has a positive imbalance position, its imbalance decreases the overall balancing
needs. In that case, the unbalanced BRP would receive an attractive price for
each ‘excess’ MWh. On the other hand, in case b) of Fig. 2.15, the system is
in generation surplus (SI>0). Downward reserves are thus activated, thereby
lowering the imbalance price (typically leading to an imbalance price below the
day-ahead energy market prices). Using the same reasoning, we can observe
that the single imbalance pricing in this setting incentivizes financially BRPs
to adopt a negative imbalance position.

Generally, the BRPs that degrade the system balance are penalized, while
those that help maintaining the system balance are rewarded. Hence, the BRP,
by adopting an intentional positive (e.g., by overproducing) or negative (e.g., by
overconsuming), can provide real-time balancing services to the system outside
the standard submission of balancing energy bids. These opportunities
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Figure 2.15.: a) Impact of the imbalance position of a market actor in case of
a negative system imbalance (e.g., shortage of energy). b) Impact
of the imbalance position of a market actor in case of a positive
system imbalance (e.g., oversupply of energy).
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complement the European balancing markets by fostering the use of
flexible resources that do not necessarily meet the technical require-
ments of standard balancing products. These real-time balancing
services can be also referred in the literature by passive balancing (in
reaction to the balancing services that are actively activated by the
TSO), or even implicit balancing. The provision of such real-time
balancing services are the focus of this report, and they are studied
based on the Belgian power systems. The Belgian power system is a good
proxy for illustrating the aspired integrated European electricity markets as i)
the imbalance settlement period is set to be 15 minutes, ii) the Belgian TSO
(Elia) employs a paid-as-cleared remuneration for balancing energy, iii) the
imbalance prices are set at the marginal activation cost of the balancing energy
merit order curves, and iv) a single imbalance pricing method is implemented.

For reaching the full benefit of these real-time balancing services, the publica-
tion of timely and comprehensive real time market data is a prerequisite. In this
context, e.g., the Belgian TSO publicly provides day-ahead information with
near real-time updates on the available balancing energy offers (capacity and
activation costs), and the system imbalance position for each 15-minute period
[95]. Such information allow BRPs and Balancing Services Providers (BSPs)
to better represent future balancing energy market-clearing procedures and
associated imbalance price formations in their trading strategy. As we can ob-
serve in Fig. 2.15, an important variable of the single imbalance pricing scheme
is the total net system imbalance, which directly affects the imbalance price
regime (i.e., either low for positive system imbalance and high for negative ones).

Hence, for providing these real-time balancing services, several authors have
studied near real-time dispatch strategies based on the system imbalance signal.
Abdisalaam et al. [37] propose a real-time re-optimization model for assessing
the value of residential demand response, while assuming a perfect foresight
of the system imbalance. Zapata Riveros et al. [38] propose a deterministic
optimization approach for an aggregator of residential cogeneration systems,
where econometric models predict the future system imbalance and imbalance
price signals. Koch presents in [39] a trading strategy, based on a logistic
regression model, aiming at capturing the arbitrage value between the intraday
market and the single price imbalance settlement. In all of these works, the pro-
curement of real-time balancing services relies on deterministic decision-support
tools, in which optimal decisions, i.e., the intentional imbalance positions of the
actor, are based on a single-point forecast of the system imbalance direction
(which is positive or negative). In this dissertation, we go beyond these
deterministic approaches by, in a first step, developing probabilistic
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time series forecasting models of the system imbalance that, in a sec-
ond time, will feed risk-aware decision-support frameworks tailored
for providing real-time balancing services.

2.9. Conclusion
This Chapter aims at providing an overview of the European short-term

electricity markets from a market actor’s perspective. Firstly, the driving forces
behind the organization of the European electricity markets were commented
by detailing each European legislative energy packages from 1996 to date. This
novel economic organization of the European electricity system triggered the
emergence of new entities. In this line, the roles of Transmission System Oper-
ators, National Regulation Authorities, Distribution System Operators, and
Power eXchanges, which currently operate and regulate the electricity networks
and markets, were presented at both national and European levels. Then,
focusing on the European short-term electricity markets, the responsibilities
and trading opportunities of the two major European market entities, i.e., the
Balance Responsible Party and the Balancing Service Provider, were discussed.
In the following, the different market-clearing mechanisms of the short-term
European electricity markets were detailed, while presenting how the network
constraints and non-convexities in costs and generation profiles are handled in
the European framework. Next, a status of the harmonization process of the
European short-term electricity markets is provided, which is followed by a brief
overview of the challenges and trading approaches for each market segment,
highlighting the importance of the real-time electricity markets. Finally, the
market opportunities provided by the provision of real-time balancing services
are explained.

In the next chapter, we focus on developing time series probabilistic forecast-
ing methods for accurately anticipating future system imbalances, which is a
key variable for providing appropriate real-time balancing services.
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CHAPTER 3.
Towards High-Quality Probabilistic Time Series

Forecasting Using Neural Networks

Knowing future trends of key electricity quantities (e.g., electricity demand
or prices) is crucial for successful trading strategies in a competitive environ-
ment [68]. This is why the development of time series forecasting tools is
abundant in the power systems literature since the introduction of electricity
markets. Currently, time series forecasting models derived from deep neural
networks achieve top prediction performance [96], [97]. In this line, this Chapter
focuses on neural architectures of gradual complexity for predicting system
imbalances. More specifically, this Chapter investigates how the flexible nature
of neural networks can be leveraged for better capturing the complex time
dependencies between both past observed and future known information.

This Chapter is organized as follows. A general introduction of time se-
ries forecasting is provided in Section 3.1. Section 3.2 details the forecasting
application, which concerns the prediction of system imbalances. Next, two
architectures of neural networks, i.e., the feed-forward and recurrent neural
networks, are presented in Section 3.3 and Section 3.4, respectively. Section 3.5
presents how recurrent neural architectures can be tailored for fostering their
accuracy performance in presence of past observed and future known input
variables. This leads to the development of sequence-to-sequence recurrent
neural networks with and without attention mechanisms. Then, the training
and inference stages of neural networks are succinctly exposed in Section 3.6.
This is followed by Sections 3.6-3.9, which respectively detail the benchmark
methods, the probabilistic error metrics and the case study. Sections 3.6-3.9
allow quantitative observations of the presented neural architectures with re-
spect to other well-established forecasting methods (e.g., Autoregressive moving
average (ARMA) model or tree-based ensemble methods), based on real-life
market data extracted from the Belgian power systems. Finally, Section 3.10
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Figure 3.1.: Deterministic and probabilistic time series forecasting

concludes this Chapter.

3.1. Time Series Forecasting

Time series forecasting aims at predicting estimates of a time series at
different time points in the future. When applied on electricity time series, this
information can then be used in decision-making processes of market actors for
supporting their trading strategy. As showcased in Fig. 3.1, a deterministic
approach only provides a single time trajectory of the future expected behavior
of the time series. The deterministic forecasting approach can be formulated
as the following regression problem:

E(yt0+1, ..., yt0+τmax|xht0−lmax
, ...,xht0 ,x

f
t0+1, ...,x

f
t0+τmax) (3.1)

where t0 is the forecast creation time, and yt0+1:t0+τmax is the time series to
predict over the time steps {t0 + 1, ..., t0 + τmax} of the prediction horizon. The
indices {lmax, τmax} are respectively determining the number of look-back and
look-ahead time periods. The inputs xht0−l ∈ Rmh are past time series observed
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(e.g., recent forecast errors of renewable generation) at time step t0 − l, while
the inputs xft0+τ ∈ Rmf are future information, e.g., the prices cleared at the
day-ahead stage or calendar information, already known at time step t0 + τ of
the prediction horizon.

While point predictions can provide some insights on the future, capturing
the uncertainty associated with the prediction outcomes can improve the
decisions of decision-support tools [98]–[101]. The uncertainty may originate
from i) noises in the explanatory variables, and ii) a model misspecification
(e.g., a linear forecaster attempting to model a non-linear dependency). The
probabilistic forecasting approach is usually written as the following time series
regression problem:

p(yt0+1, ..., yt0+τmax|xht0−lmax
, ...,xht0 ,x

f
t0+1, ...,x

f
t0+τmax) (3.2)

For predicting such conditional probabilistic distributions p(.|.) of the variable
of interest, two distinct approaches can be found in the literature [102]: i) a
two-step procedure, which is based on the addition of a probabilistic forecast
error model on top of deterministic forecasts [103]–[106], and ii) methods that
directly provide probabilistic predictions of the variable of interest [107]–[109].
In the latter approach, in a non-parametric setting, two methods have been
widely applied in the power systems literature, namely kernel density estimators
[110], [111] and direct quantile regression models [112], [113]. In this Chapter,
the focus is on quantile regression methods, which directly provides the specified
q-quantiles ŷt0+τ,q such that:

q = P (yt0+τ ≤ ŷt0+τ,q) , ∀τ ∈ {1, ..., τmax}, ∀q ∈ Q (3.3)

where Q is the set of quantiles to predict.

Overall, the deterministic (3.1) and probabilistic (3.2) regression problems
are traditionally solved through a supervised learning approach. The supervised
approach fits a forecasting function fΘ(xht0−lmax:t0

,xft0+1:t0+τmax
) based on a paired

dataset containing, on the one hand, the past observed and future known inputs
and, on the other hand, the targets. In particular, an error function L is used
for measuring the compatibility of the forecasting function fΘ with respect to
all the samples i ∈ I of the paired dataset (Yi,Xi), where Yi = (yi,t0+1:t0+τmax)

and Xi =
(
xhi,t0−lmax:t0

,xfi,t0+1:t0+τmax

)
is the i-sample of the dataset. Based on

this error signal, the parameters Θ of the forecasting function fΘ are optimized
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Figure 3.2.: Pinball loss for the quantiles q ∈ {0.05, 0.5, 0.95}

as follows:

Θ∗ = argmin
Θ

∑
i∈I

L(Yi, fΘ(Xi)) (3.4)

Let T the length of the prediction horizon and ŷt0+τ a deterministic prediction
outcome, the error function L is typically the mean square error function in a
deterministic framework. For a single sequence, the mean square error function
is written as:

L =
1

T

τmax∑
τ=1

(yt0+τ − ŷt0+τ )
2 (3.5)

In a quantile regression framework, the error function L is usually the pinball
loss function (also denoted as the quantile loss function), which is expressed as:

L =
1

T · |Q|

τmax∑
τ=1

∑
q∈Q

q·max(0, yt0+τ−ŷt0+τ,q)+(1−q)·max(0, ŷt0+τ,q−yt0+τ ) (3.6)

where the operator |.| stands for the cardinality of the associated set, and
ŷt0+τ,q is the q-quantile of the predicted distribution at time t0 + τ .

Overall, at each time step t0 + τ of the prediction horizon, the deterministic
forecasting model provides a 1-dimensional output, while the probabilistic
forecasting model provides a |Q|-dimensional output describing the uncertainty
around the prediction. Fig. 3.2 illustrates the pinball loss function for a
specific time step and q ∈ {0.05, 0.5, 0.95}. We can observe that the pinball
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loss applies asymmetric weighting, i.e., q and (1-q), to the absolute value of
the distance between the forecasted q-quantile and the actual observation.
Hence, when the forecasted q-quantile is higher than the actual observation,
the absolute difference is multiplied by a factor (1-q). On the other hand, when
the forecasted q-quantile is lower than the real value, the error is multiplied by
a factor q. In this way, in accordance with the quantile definition in Eq. (3.3),
the pinball loss penalizes lower (higher) quantiles more severely in case of an
overestimation (underestimation).

In general, four types of forecasting models are proposed in the literature [114]:
i) persistence methods, which simply consider that future observations will
have the same values as the current instance, ii) physical methods, which are
based on a detailed mathematical description of the environment governing the
variable of interest (e.g., full modeling of the market rules and participant’s
behaviors to predict market prices), iii) econometric models, which build
mathematical models of predefined complexity based on statistic inferences
(e.g., autocorrelation), and iv) machine learning methods, which are based
on generic, non-linear models that are trained using a self-learning procedure
(without being explicitly programmed to achieve the prediction task, and
with no arbitrary assumptions on the model complexity). Overall, persistence
methods are very naïve, and do not provide useful information for decision-
making. Yet, they can be a surprisingly solid benchmark. Physical models, on
the other hand, are characterized by a high computational complexity, which
hinders their practical utilization for forecasting applications with frequent
updates. Moreover, they require detailed analytical formulations for modeling
the predicted phenomenon, and are thus not easily transposable on other
forecasting applications. Econometric models mostly combine linear inferences
of lagged values of the variable of interest, which prevents them from capturing
non-linear dependencies present in the dataset. For these reasons, machine
learning approaches have recently topped the prediction performance, and this
trend is expected to be further intensified by the increase availability of reliable
databases and computer capabilities. This Chapter is thus focusing on machine
learning forecasting models, with an emphasis on neural models. Different
neural architectures of gradual complexity will be presented and tested based
on the prediction application of system imbalances. The following Section
further details this application and its interest for the electricity system.

3.2. Forecasting System Imbalances

The definition of the term ‘system imbalance’ may refer to distinct imbalance
signals in the literature. Three signals describing an imbalance situation may
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Figure 3.3.: Belgian system imbalances (which is given by the opposite value
of the Net Regulation Volume) and imbalance prices on the 1st
January 2019.

coexist in Europe: the Area Control Error (ACE), the Net Regulation Volume
(NRV), and the residual system imbalance of the control area. The ACE is the
difference between the scheduled and actual values of the power exchanged in
the TSO control area, i.e., the system imbalance as if no balancing control
was performed by the TSO. The net regulation volume (NRV) is the net
total balancing volume of energy (upward and downward) activated by the
TSO. The residual system imbalance is given by the subtraction between the
ACE and NRV signals (which is not equal as the balancing energy markets
are reactive by design). In this dissertation, we assume that the TSO has
perfectly responded to the actual system imbalance, and, thus, we focus
on predicting the NRV signal. Hence, in the following, the term ‘system
imbalance’ therefore refers to the opposite value of the NRV signal. This
assumption is perfectly aligned with the Belgian imbalance pricing scheme
over the years 2016-2019, where the imbalance price regime (either low via the
Marginal Decremental Price (MDP) or high via the Marginal Incremental Price
(MIP)) was established by the sign of the NRV signal (positive or negative) [115].

Globally, these three imbalance signals depend on the real-time operating
conditions of the whole electricity system, which consequently render them
highly variable and uncertain. Fig. 3.3 describes such uncertainty and volatility
for the Belgian system imbalances on the 1st January 2019. Overall, four
factors mainly drive the system imbalance signals, which are: i) the human
behaviors, which can lead to a non-rational dispatch of resources in electricity
markets, ii) the chaotic dynamics of atmospheric systems, which generate
forecasting errors of, e.g., weather-dependent production and electric heating
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consumption, iii) unexpected outages of voltage lines or power plants, and iv)
an inadequate design of the electricity markets w.r.t. the physical reality of the
electricity system (e.g., the hourly time resolution of the day-ahead electricity
market yielding ramping trajectories for power plants, which cause imbalances).
These four factors are highly challenging to capture, which complicates the
prediction of system imbalance signals in comparison with other time series
(e.g., wind power or day-ahead electricity price forecasting).

Once predicted, the system imbalance signal can then be used for extracting
some information on the imbalance price regime. This dependency is shown in
Fig. 3.3, where we can observe that imbalance prices (right figure) are i) high
(i.e., prices higher than the day-ahead electricity prices) in periods of energy
shortage at system level, and ii) low in periods of excess of production. While
the predictions of the imbalance signals can be of value for both Transmission
System Operator (TSO) and the Balance Service Providers (BSPs), this
report illustrates their usefulness for Balancing Responsible Parties (BRPs),
where the probabilistic forecasts of system imbalances will be subsequently
used in tailored risk-aware stochastic decision-support tools in Chapters 4 and 5.

3.3. Feed-forward Neural Networks
The feed-forward neural network (FFNN) is the traditional neural network

architecture used in the literature [116]. Let Ŷ = (ŷt0+1:t0+τmax,∀q∈Q)ᵀ ∈ RT ·|Q|

and X =
(
xht0−lmax:t0

,xft0+1:t0+τmax

)ᵀ
∈ R(lmax·mh)+(τmax·mf ) respectively be the

probabilistic predictions of the targeted time series and its associated inputs.
In a concise fashion, the forecasting function of the FFNN consists in two linear
transformations, with a non-linear activation in between:

Ŷ = WFFNN
2 fNL(WFFNN

1 X + bFFNN
1 ) + bFFNN

2 (3.7)

where WFFNN
1 ∈ RD×|X |, WFFNN

2 ∈ RT ·|Q|×D, bFFNN
1 ∈ R∈D and bFFNN

2 ∈ RT ·|Q|
are weight parameters defining the forecasting function, fNL is the element-wise
application of a non-linear activation function, and |.| stands for the cardinality
of the associated vector. The parameter T defines the length of the prediction
horizon. Note that the dimension D, defining the number of processing units
in the hidden layer, is a task-dependent hyperparameter to be tuned.

As illustrated in Fig. 3.4, the set of inputs X forming the input layer is
provided to the first hidden layer of the network. The flow of information
is then propagated through all the hidden layers to the output layer. More
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Figure 3.4.: 1-layer and stacked feed-forward neural networks (where biases are
omitted).

precisely, the flow of information outputting the prediction ŷt0+τ,q is decomposed
as follows (biases are omitted):

ad =
∑
x∈X

wFFNN
dx x, ∀d ∈ D (3.8a)

bd = fNL(ad), ∀d ∈ D (3.8b)

ŷt0+τ,q = aτq =
∑
d∈D

wFFNN
τqd bd, ∀τ ≤ T,∀q ∈ Q (3.8c)

where wFFNN
dx ∈ WFFNN

1 , wFFNN
τqd

∈ WFFNN
2 are i) the weight from the input

x ∈ X to the processing unit d ∈ D, and ii) the weight from the processing
unit d to the prediction outcome ŷt0+τ,q, respectively. The vector {ad,∀d ∈ D}
results from the weighted sum of the inputs X by the parameters WFFNN

1 ,
and the vector {bd, ∀d ∈ D} is given by the non-linear transformation fNL(.)
of {ad, ∀d ∈ D}. Note that, in a regression framework, a linear activation
function is often privileged for the output layer, i.e., aτq is linearly transformed.

The FFNN architecture is theoretically known to be able to fit any data
generating process between inputs and outputs. Relying on the constant
increase of computing power, this ability can be augmented by increasing the
number of successive non-linear transformations in their architecture, which
allows the network to extract more representative features from raw data.
Practically, this is usually done by simply stacking several hidden layers in the
FFNN architecture, as shown in the right side of Fig. 3.4. In this setting, two
hyperparameters are tuned: i) the number of hidden layers, i.e., the number of
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non-linear transformations fNL(.) in Eq. (6.3), and ii) the number of neurons
per hidden layer. For both FFNN networks, the forecasting function is fitted by
optimizing the weightsWFFNN

. and biases bFFNN
. . The non-linear transformation

fNL(.) is an essential component for the representation power of neural networks
[117]. Formerly, the selected activation functions were either the sigmoidal
activation function (3.9a) or the hyperbolic tangent activation function (3.9b),
due to their mathematical properties, i.e., they are differentiable, monotonically
increasing, and bounded (see Fig. 3.5). Their mathematical formulations are
expressed as follows:

f sig =
1

1 + e−x
(3.9a)

f tanh =
ex − ex

ex + ex
(3.9b)

With the advent of deeper FFNN, today’s standard choice of the activation
function is rather the rectified linear unit (ReLU) (3.10a), for which experi-
mental results suggest that it improves the convergence of deeper models with
faster computation properties. However, due to its derivative behavior (see
Fig. 3.5), the ReLU unit may be stuck to output a zero value for any training
sample, thereby no longer contributing to the network output (which is called
a ‘dying ReLU’). For overcoming this issue, other activation functions were
designed with a small slope for negative values such as the exponential linear
unit (ELU) (3.10b). Let γ an hyperparameter (typically equals to 1), the ReLU
and ELU activation functions are expressed as:

fReLU = max(x, 0) (3.10a)

fELU =

{
x x > 0

γ(ex − 1) x <= 0
(3.10b)

To be enclosed in the non-linearity region of the activation functions, the
data are usually scaled between [−1, 1] before entering the neural network.
This procedure does not degrade the information contained in the data, and is
necessary to fully leverage the non-linearity ability of neural models. In this
work, the input X and output Y data (that are continuous) are rescaled using
a standardization approach:

ż = κmin +
(z − zmin)(κmax − κmin)

zmax − zmin
(3.11)

where ż, zmin and zmax are, respectively, the standardized, maximum and mini-
mum values of a time series Z, and the values κmin, κmax determine the range of
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Figure 3.5.: The different activation functions and their derivative.

the scaled values. Note that the data can also be normalized so as to have a zero
mean and a standard deviation equal to one. Both scaling procedures can be
used, and, in our experiments, do not lead to significant differences in the results.

In addition to continuous inputs, time series forecasting can be feeded with
calendar-based features, which help the model to better capture seasonal
patterns. For instance, the system imbalance is strongly related to human
activity, which thus results in daily and weekly periodicities. By nature,
calendar-based features are categorical variables, e.g., the hour of the day
h = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23}, for
which both rescaling procedures (i.e., standardization and normalization) are
not adequate for handling their discontinuities. Indeed, the relative importance
between time data is not easily quantified by a numerical value. For instance,
the second hour of the day is not 2 times more important than the first one. In
this context, a first approach that may be envisaged is one-hot encoding, which
consists in representing the categorical time data in a mutually exclusive binary
representation [118]. Concretely, the h-value of the hour of the day is mapped
to a vector of 24 binary inputs Mh ∈ R24, one for each hour of the day, where
only one digit can be equal to 1. For example, h = 2 is one-hot encoded as
M2 = [0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]. One issue with
this approach is that it may increase drastically the dimensionality of the input
space (e.g., a vector of 96 binary variables encoding all quarter hour of the
day). For overcoming this issue, embedding layers can be used, which linearly
transforms the one-hot encoded calendar-based feature into a fixed-dimensional
vector [119]. Considering the hour of the day, the embedding layer is written

56



Chapter 3. Towards High-Quality Probabilistic Time Series Forecasting Using
Neural Networks

as follows:

H = Wemb.
Mh ·Mh (3.12)

where H ∈ RD is the embedded D-dimensional hour of the day, Wemb.
Mh ∈ RD×24

is the weight parameters to be optimized, and Mh ∈ R24 denotes the one-hot
encoded hour of the day. Note that the weight parameters of the embedding
layer is optimized along with the other neural layers.

The states and outputs of the FFNN solely depend on the provided inputs,
with no recurrent connections about previous states of the network. This tends
to rapidly increase the dimension of the neural network, and thus, the number of
parameters, as the entire input vector must be presented at one go. This could
constrain the length of the look-back and look-ahead time windows in time
series forecasting. For modeling dynamic processes, recurrent neural networks
(RNNs) have been proposed for propagating relevant information within their
architecture, without explicitly entering the entire input vector each time the
model returns an outcome. The RNNs are presented in the next Section.

3.4. Recurrent Neural Networks

Recurrent neural networks (RNN) are self-connected units, whose recur-
rent connection hτ allows the network to have a memory of previous time
steps. Given an input sequence X = (Xt0+1, . . . ,Xt0+τmax)ᵀ, the predictions are
obtained by iterating the following equations ∀τ ∈ {t0 + 1, ..., t0 + τmax}:

hτ = H
(
WRNN

1 Xτ +WRNN
2 hτ−1 + bRNN

1

)
(3.13a)

Ŷτ = WRNN
3 hτ + bRNN

2 (3.13b)

where WRNN
1 ∈ RD×|Xτ |, WRNN

2 ∈ RD×D, WRNN
3 ∈ R|Q|×D, bRNN

1 ∈ RD and
bRNN

2 ∈ R|Q| are parameters of the forecasting function. H is the hidden layer
function, which was formerly an element-wise application of a sigmoid function.
Note that the hidden dimension D is also a hyperparameter to be tuned.

However, when using an element-wise sigmoid function as H, the RNNs can
suffer issues when backpropagating the gradients for optimizing the weight
parameters [120]. Indeed, the gradients may explode or vanish when they are
backpropagated along the time dimension (which can represent a large number
of time steps), which perturbs the optimization procedure of the forecasting
function. To mitigate the latter issue, Hochreiter and Schmidhuber in [121]
suggested the long short term memory (LSTM) architecture (shown in Fig. 3.6).

57



Chapter 3. Towards High-Quality Probabilistic Time Series Forecasting Using
Neural Networks

X X

X

Input Gate Output Gate

Forget Gate

Tanh activation function

Figure 3.6.: The LSTM unit

The HLSTM is composed of a memory cell, whose interactions with the inputs
are controlled via three multiplicative gates: the input, forget and output gates.
For a time step τ , the LSTM mathematical expressions (with biases omitted)
are expressed as :

iτ = f sig (W LSTM
1 Xτ +W LSTM

2 hτ−1

)
(3.14a)

fτ = f sig (W LSTM
3 Xτ +W LSTM

4 hτ−1

)
(3.14b)

oτ = f sig (W LSTM
5 Xτ +W LSTM

6 hτ−1

)
(3.14c)

cτ = fτcτ−1 + iτf
tanh (W LSTM

7 Xτ +W LSTM
8 hτ−1

)
(3.14d)

hτ = oτf
tanh (cτ ) (3.14e)

where W LSTM
{1,3,5,7} ∈ RD×|Xτ |, and W LSTM

{2,4,6,8} ∈ RD×D are the parameters of the
LSTM forecasting function.

The multiplicative gates iτ , fτ , and oτ allow the memory cell cτ to
store and access information as time elapses, while preserving the gra-
dient flow. For instance, the input gate iτ can output a value close to
0 such that the corresponding input Xτ will not overwrite the memory
cell. Similarly, the forget gate can discard any irrelevant information of
previous time steps from the memory cell, while the output gate controls
the influence of the memory cell on the output hτ . Hence, such gating
mechanisms allow different LSTM units to capture different time dependencies,
which enable the LSTM network to model time series with multiple time scales.

As mentioned, the LSTM allows an access to previously fed information,
but no connection with later inputs are permitted in its original form. The
bidirectional LSTM (denoted BLSTM, and illustrated in Fig. 3.7) typically
enables this access on available future information by processing the input
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Figure 3.7.: BLSTM neural network processing the information in both positive
and negative time directions.

sequence in both directions [122]. Practically, at each time step τ of the
prediction horizon, the BLSTM model has access to two hidden states, i.e.,

−→
h τ

that provides a representation of previous events, and
←−
h τ that summarizes the

information of the following time steps:

−→
hτ = HLSTM

(
Xj,τ ,

−→
h τ−1

)
(3.15a)

←−
hτ = HLSTM

(
Xj,τ ,

←−
h τ+1

)
(3.15b)

Ŷτ = WBLSTM
1

−→
h τ +WBLSTM

2

←−
h τ + bBLSTM

1 (3.15c)

where WBLSTM
1 ∈ R|Q|×D , WBLSTM

2 ∈ R|Q|×D, and bBLSTM
1 ∈ R|Q| are the

parameters of the BLSTM output layer.

However, even the BLSTM network is designed to process a fixed-size input
vector at each time step, which renders this architecture not flexible enough
for encoding both past and future information into the model. As showcased
in Fig. 3.7, in a first approach, this can be achieved by a coding trick, where
past information are repeated at each time step τ ∈ {t0 + 1, t0 + τmax} of
the forecasting horizon. However, such coding tricks inevitably augment the
size of inputs, and thus, the dimension of the network, which may render the
former advantage of recurrent architectures over feed-forward architectures less
distinct.
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3.5. Bridging Past and Future Input Variables

Efficiently processing the past observed values and the known information
about the future is non-trivial with recurrent neural architectures due to
the necessity to feed models with a fixed-dimensional input vector. Indeed,
the number of past covariates is likely to differ from the number of known
inputs about the future. A first successful solution is provided by sequence-to-
sequence (also referred to as encoder-decoder) models, which are composed of
two different computing blocks for processing respectively past observed and
future known information. These architectures have been formerly developed
for improving the performance of neural networks in translation applications
or speech recognition tasks [123].

The Sequence-to-Sequence Model

The sequence-to-sequence model is represented in Fig. 3.8, where two different
blocks process the past observed and future known information. The encoder
processes past input data, which is already observed at the forecast creation
time t0 over the look-back window lmax. The aim of the encoder is to map
this input sequence into a fixed-length vector cenc that captures all the relevant
past dynamics. Based on this past summary, the decoder then generates the
multi-horizon predictions along with the known information about the future.
In this Chapter, the encoder and decoder blocks are represented by LSTM
layers due to their intrinsic capabilities of capturing temporal dynamics. For
clarity, the hidden states associated with the encoder blocks are denoted by
henc
t , while hdec

τ is used for the hidden states of the decoder. The encoder block
processing the past time steps t ∈ {t0 − lmax, ..., t0} is written as:

henc
t = HLSTM (xht , henc

t−1

)
, ∀t ∈ {t0 − lmax, ..., t0} (3.16a)

cenc = henc
t0

(3.16b)

Then, the decoder reads this past summary cenc along with the future known
inputs xft over the future time steps τ ∈ {t0 + 1, ..., t0 + τmax} as follows:

hdec
t0

= cenc (3.17a)
hdec
τ = HLSTM (hdec

τ−1, {xfτ ; cenc}
)
, ∀τ ∈ {t0 + 1, ..., t0 + τmax} (3.17b)

Yτ = W dec
1 hdec

τ + bdec
1 , ∀τ ∈ {t0 + 1, ..., t0 + τmax} (3.17c)

where W dec
1 ∈ R|Q|×D, and bdec

1 ∈ R|Q| are the parameters of the sequence-to-
sequence output layer.
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Figure 3.8.: Sequence-to-sequence model for processing both past observed and
future known information.

However, the use of a fixed-length vector cenc can be a bottleneck for exchang-
ing information between the encoder and decoder blocks. Indeed, this makes it
difficult for the model to cope with large look-back windows. To address this
issue, the attention mechanism was proposed, where distinct past vector cenc

τ

are computed at each time step τ of the forecasting horizon.

The Attention-Based Sequence-to-Sequence Model

The attention mechanism adds a computing layer on top of the encoder
block, wherein the input information is mapped into a sequence of vectors
Cenc = {cenc

t0+1, ..., c
enc
t0+τmax

} instead of the fixed-length vector cenc. The goal is to
selectively adapt the relevant encoder-side information at each time step of the
prediction horizon τ ∈ {t0 + 1, ..., t0 + τmax}.

Different architectures have been developed to derive this sequence of context
vectors Cenc. In this Chapter, we use an attention mechanism inspired by the
Bahdanau layer [124]. In that framework, all the hidden states of the encoder
are jointly used for constructing each element of the τmax-dimensional context
vector Cenc, thus facilitating the representation of long-term dependencies.
However, in its traditional form, this attention mechanism only exploits
the past information {xh

t ,∀t ∈ {t0 − lmax, ..., t0}}. Here, we extend the
attention mechanism on both past and known future data, giving rise to
the attention-based sequence-to-sequence model described in Fig. 3.9. The
resulting architecture is able to learn complex alignments between the different
time steps of the studied horizon. Two attention layers are implemented,
and respectively interact with two different encoder blocks. One encoder
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Figure 3.9.: Attention-based sequence-to-sequence model for processing both
past observed and future known information.

processes the past data xht over the look-back steps t ∈ {t0 − k, ..., t0}, and
the other encoder processes the future data xfτ over the look-ahead steps
τ ∈ {t0 + 1, ..., t0 + τmax}. The resulting computed information chτ and cfτ are
then jointly treated into a decoder layer that provides the predictions over
the horizon τ ∈ {t0 + 1, ..., t0 + τmax}. Note that such a framework allows
incorporating longer future contextual information, without being limited to
the length of the forecast horizon.

BLSTM models are used as encoders for treating the raw input data in both
positive and negative time directions, thus capturing local forward and backward
time dependencies. The hidden state ht is defined as the concatenation of the
forward and backward BLSTM states, i.e., ht =

[−→
h t;
←−
h t

]
. It thus contains

a summary of both preceding and following time horizons, but with a focus
on the information at time step t. The hidden states of the two BLSTM
models are then used for generating the sequence of context vectors Ch and Cf .
Without loss of generality, the encoder block processing the past time steps
t ∈ {t0 − lmax, ..., t0} is expressed as:

−→
h h
t = HLSTM

(
xh
t ,
−→
h h
t−1

)
,
←−
h h
t = HLSTM

(
xh
t ,
←−
h h
t+1

)
(3.18a)

Ch = f att
({
h

h

t0−lmax
, ..., h

h

t0

})
(3.18b)

where f att(.) is the user-defined attention mechanism. The bahdanau-based
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attention mechanism is used, which is detailed as follows:

ch
τ =

t0∑
t=t0−lmax

ατth
h

t , ∀τ ∈ {t0 + 1, ..., t0 + τmax} (3.19)

where the alignment value ατt is computed by:

ατt =
erτt∑t0

t=t0−lmax
erτt

(3.20)

with rτt aims at quantifying the degree of relevance of the encoder state hh

t at
time t for the prediction outcome at time τ . This alignment value is computed
based on the encoder state hh

t and the hidden state sh
τ−1 of the decoder layer

at time τ − 1 as follows:

rτt = υattf tanh(W att
1 sh

τ−1 +W att
2 h

h

t ) (3.21)

where υatt ∈ R1×D, W att
2 ∈ RD×D and W att

2 ∈ RD×D are parameters. The
hyperparameter D is the dimension of the concatenated hidden state of the
BLSTM network. Note that a similar alignment architecture is used to obtain
the context sequence Cf .

Then, the outputs ch
τ and cf

τ of both attentional layers are then processed
by two LSTM decoders of dimension D, which respectively yield the following
hidden states sh

τ and sf
τ :

sh
τ = HLSTM (ch

τ , s
h
τ−1

)
, sf
τ = HLSTM (cf

τ , s
f
τ−1

)
(3.22)

Finally, the outputs
[
sh
τ ; s

f
τ

]
of both LSTM decoders (3.22) are con-

catenated, and are linearly transformed to generate the predictions
{ŷt0+1,∀q∈Q, ..., ŷt0+τmax,∀q∈Q}.

3.6. Training and Inference of Neural Networks

The training of neural networks aims at finding the optimal weight pa-
rameters by minimizing an error function L. This optimization process is
traditionally performed using gradient backpropagation [70]. In short, gradient
backpropagation is an algorithm that can be summarized in four stages:

1. The forward pass, which consist in outputting the predictions given the
current weights and biases values;
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2. The computation of an error signal, which is obtained by comparing the
targeted values with the predictions using the loss function L;

3. The backward pass, where each partial derivatives of the loss function
with respect to each weights and biases of the neural model are computed;

4. The updates of weights and biases, which is based on the gradient descent
method.

This learning process is iterated by passing several times throughout the
whole historical dataset until a convergence criterion is achieved. The gradient
descent is used for adjusting the network weights in the direction of the negative
error gradient of the loss function L. The first-order gradient descent method
(in its simplest form) is written as:

wk+1
i,j = wki,j − α

∂L
∂wki,j

(3.23)

where wki,j is the weight between the processing units i and j of two successive
layers at iteration k of the backpropagation algorithm. The learning rate
α ∈ [0, 1] scales the step size in the direction of the negative error gradient
of the loss function L. In this report, the Adam approach [125] is used as
gradient descent method, which automatically and individually adapts the
learning rate α for each network parameter in order to escape local optima
during the training phase.

The weight updates can be done in a batch or online mode. In batch
mode, the weights and biases of the neural model are only updated after
computing the loss function over the whole historical dataset. Regarding the
online mode, the weights and biases are iteratively updated based on the loss
function of each sample of the historical dataset. The batch mode allows
a faster convergence of the optimization procedure, while the stochasticity
introduced by the online mode can help escaping from local minima. In this
report, a mini-batch mode is preferred, which consists in updating the weight
parameters based on the loss function of small groups of samples (i.e., 96
samples representing a daily sequence in our case study), thereby providing a
compromise between both approaches.

The computation of the value ∂L
∂wki,j

in (3.24) can rapidly become very complex
and computationally intensive for weights and biases located on first layers.
For decomposing this mathematical complexity, the backward pass in stage
3. recursively applies the chain rule algorithm. For instance, recalling the
notations from Eq. (3.8) of the FFNN in Section 3.3, the partial derivative of
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the weight parameters wFFNN
τqd

and wFFNN
dx are expressed as:

∂L
∂wFFNN

τqd

=
∂L
∂ŷτ,q

· ∂ŷτ,q
∂aτq

(= 1) ·
∂aτq

∂wFFNN
τqd

(3.24a)

∂L
∂wFFNN

dx

=
∂L
∂ŷτ,q

· ∂ŷτ,q
∂aτq

(= 1) ·
∂aτq
∂bd
· ∂bd
∂ad
· ∂ad
∂wFFNN

dx

(3.24b)

Note that the chain rule is even more expanded when optimizing recurrent
neural networks due to the recurrent connection over the time dimension. In
this case, the overall optimization process is called backpropagation through
time. Overall, the difficulty of coding the backward pass has been greatly
reduced with the introduction of libraries such as Tensorflow [126] written in
the open source language Python, as routines are included to automatically
differentiate any neural network architectures.

The backpropagation algorithm ends when a convergence criterion is reached.
For maximizing the generalization capability to unseen data, the commonly
adopted criterion is early stopping. This criterion necessitates to divide the
whole historical dataset into two separate sets, i.e., the training and validation
sets. The weight parameters of the model are updated using the training set,
while the validation set is used for assessing the generalization abilities of the
model (i.e., no optimization is done on the signal errors when travelling the
validation set). The optimization process is stopped when no performance
improvement is apparent on the validation set. Indeed, as soon as the error on
the validation set stagnates or increases, this signifies that the network starts
to overfit, i.e., exploiting artifacts in the data (e.g., erratic error measurements)
rather than relevant patterns. A typical illustration of the evolution of training
and validation curves for a FFNN is showcased in Fig. 3.10, where the weight
parameters of the final model are selected based on the minimum error of the
validation set.

The dimension of the network also influences the generalization capabilities
of the model. Indeed, a model too simplistic will not be able to replicate the
underlying data generation process, while a model excessively complex is more
prone to the overfitting issue. The dimension of the network is described by
two hyperparameters, i.e., the number of hidden layers L and the number
of processing units D within each layer. These two hyperparameters are
task-dependent parameters, whose optimal values are not known beforehand.
Hence, in order to find the optimal model complexity during the training
phase, different configurations need to be tested, which requires each time a
complete training of a new model from scratch. In this report, the selection of
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Figure 3.10.: Evolution of the training and validation curves for a FFNN with
50 processing units.

hyperparameters is achieved by random search, which uniformly draws trials
from each configuration space of hyperparameters (e.g., L = {1, 3, 5} and
D = {5, 10, 50, 100, 250}) [127]. The final configuration is the one achieving
the lower validation loss.

In our case studies, the loss function L is the pinball loss function. However,
in case of perfect prediction, the pinball loss cannot be differentiated because
of the kink (sharp corner point) of this function at this particular point. To
address this issue, a smooth approximation of the pinball loss is constructed by
including the Huber norm within the loss function [128]. The idea is to replace
the L1 norm by the (continuously differentiable) L2 norm when the error is
lower than a (preferably small) user-defined threshold ε (here, we arbitrarily
use ε = 10−6):

H (yτ , ŷτ,q) =

{
(ŷτ,q−yτ )2

2ε
|ŷτ,q − yτ | ≤ ε

|ŷτ,q − yτ | − ε
2
|ŷτ,q − yτ | > ε

(3.25)

where the values yτ,q are the outputs of the forecaster, and yτ the actual (ground
truth) observations. The approximated pinball loss EQ can then be calculated
as:

EQ =
∑
τ∈T

∑
q∈Q

{
q ·H (yτ , ŷτ,q) ŷτ,q < yτ

(1− q) ·H (yτ , ŷτ,q) ŷτ,q ≥ yτ
(3.26)
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As the resulting loss function is differentiable, the neural networks can
thus be trained using the gradient-based backpropagation method. Note that
quantile crossing issue may arise when predicting a discrete set of quantiles. In
this report, a naive rearrangement of the predicted q-quantiles is conducted in
ex-post, i.e., the q-quantiles are sorted in ascending order at each time step of
the prediction horizon after they are predicted [129]. Note that this procedure
is also performed for the benchmark methods.

Once trained, the neural models are then used on novel input conditions, i.e.,
the test set, for inferring their probabilistic predictions. The inference process
is simply the stand-alone computation of the forward pass (stage 2. of the
optimization procedure). Regarding computational times between training and
inference stages, for instance, an attention-based sequence-to-sequence model
with 131k parameters takes around 1 minute for being trained over one pass
of 103872 training samples using a mini-batch size of 96, while its inference
time for generating its predictions on a sample of the test set is lower than
one second. This difference between training and inference time also stands
for other time series forecasting approaches (e.g., tree-based or econometric
models), which renders them operational for close-to-real-time purposes.

3.7. Benchmark

We compare the proposed neural network architectures with a wide range
of techniques for the probabilistic forecasting of system imbalances. First, two
naive methodologies are implemented:

• A step-wise averaging model (Step-Avg), where the system imbalance
distribution of each forecasting time step is computed based on the average
of all past observations corresponding to this specific period of the day.

• A probabilistic generalization of persistence (Persistence) based on a
random walk model. The forecast assumes a Gaussian distribution where
the mean is given by the last available system imbalance realization, and
the variance is determined by exponential smoothing of previous squared
errors [130].

Then, three other well-established models in time series forecasting are also
implemented:

• An Auto-Regressive Moving Average (ARMA) model, for which we com-
pute prediction intervals assuming that the residuals are uncorrelated
and normally distributed [131].
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• A quantile regression forest (QRF), i.e., a bagging-based ensemble method,
in which the outcomes of independent regression trees are used for esti-
mating the conditional distribution [132]. The forest is set to 500 trees.
Note that the random forest method is more detailed in Subsection 5.2.3
of Chapter 5 for the interested reader.

• A gradient boosting regression tree (QGBRT) trained with the quantile
loss. New regression trees are sequentially created to predict the residuals
of the previously generated ones [133]. The number of boosting stages
is fixed to 100 with an early stopping criterion. Note that the gradient
boosting regression tree method is more detailed in Subsection 5.2.3 of
Chapter 5 for the interested reader.

It should be noted that the ARMA model is only fed with past system
imbalance observations, while tree-based ensemble models (QRF and QGBRT)
have access to the same input data as the neural models. Note that, to avoid
tree-based models to have an output of dimension τmax · |Q|, a different model
is trained for each time step τ of the prediction horizon. This reduces the
output size of each model (thus facilitating training), but at the expense of an
increased training time. In particular, each of the τmax · |Q| QGBRT models
takes around 3 minutes to train (for a total time of more than 45 minutes),
while the whole training time of the τmax QRF models takes 73 minutes. Finally,
the neural models are denoted as follows:

• FFNN stands for the 1-layer feed-forward neural network, while S-FFNN
represents the stacked feed-forward neural network.

• LSTM and BLSTM denotes respectively the Long Short Term Memory
recurrent neural network and Bidirectional Long Short Term Memory
recurrent neural network.

• Seq2Seq and Att-Seq2Seq are the sequence-to-sequence model and
attention-based sequence-to-sequence model presented.

For each forecaster (except the parameter-free naive approaches), the optimal
model complexity is identified using the random search procedure. The same
budget of trials is used across all benchmarks. For illustration purposes, the
search ranges for hyper-parameters of the Att-Seq2Seq is listed hereafter:

• Dimension of the network D = {6, 12, 24, 32, 64, 128};

• number of past time steps lmax = {4, 8, 12, 16, 20, 32, 48};

• initial learning rate a = {10−2, 10−3, 10−4}.
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3.8. Metrics for Probabilistic Forecasting

When dealing with probabilistic forecasting, two (potentially conflicting)
notions are important to consider, i.e. calibration (or reliability) and
sharpness [134]. Calibration refers to the statistical correctness between
the predicted quantiles and the true distribution (i.e., actual observations).
Sharpness is a simple measure of the concentration (width) of the predictive
distributions. Powerful forecasts must thus find a trade-off between maximizing
the sharpness (concentrated intervals), while ensuring that the reliability of the
predicted intervals is preserved. To comprehensively assess this compromise
between reliability and sharpness, three probabilistic scoring tools are employed.

Firstly, we use the pinball loss EQ weighted across all q-quantiles of interest
(in this work, Q = {0.05, 0.15, 0.25, 0.35, 0.45, 0.5, 0.55, 0.65, 0.75, 0.85, 0.95}).

EQ
τ =

∑
q∈Q

qmax (0, yτ − ŷτ,q) + (1− q) max (0, ŷτ,q − yτ ) (3.27)

where yτ,q are the forecasted quantiles, and yτ the actual observations of the
system imbalance (in MW). A lower EQ

τ score indicates a better probabilistic
forecast.

However, by scoring all q-quantiles in one final metric, the pinball loss may
hide low reliability levels for extreme quantiles. For instance, even if the 5%
quantile forecasts completely fail, it may have a very limited impact on the
total score. To address this issue, the Winkler score is implemented, which
quantifies the forecast quality for different prediction intervals. For a prediction
interval of (1− β)100%, the Winkler score EW

τ is defined as:

EW
τ =


ετ , Lτ ≤ yτ ≤ Uτ ,
ετ + 2(Lτ − yτ )/β, yτ < Lτ ,

ετ + 2(yτ − Uτ )/β, yτ > Uτ ,

(3.28)

where Lτ = ŷτ,β/2 and Uτ = ŷτ,1−β/2 are the lower and upper bounds of the
prediction interval defined by the confidence level β, and ετ = Uτ − Lτ is
the interval width. In this report, the Winkler score EW

τ is calculated for
β = {0.1, 0.5, 0.9}.

If an actual realization yτ is within the predicted interval [Lτ , Uτ ], the Winkler
score EW

τ is a direct measure of sharpness. Otherwise, a penalty term, whose
value depends on the severity of the forecast error, is added for reflecting the
deficiency in reliability. Finally, we also use the continuous ranked probability
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score (CRPS), defined as:

ECRPS
τ =

∫
u

(
F̂ (u)− θ(u− yτ )

)2
du (3.29)

where F̂ (.) is the cumulative distribution function (cdf) defined by the
predicted quantiles ŷτ,q, and θ(.) is the Heaviside step function, taking the
value 1 for u ≥ yτ , and 0 otherwise.

Eq. (3.29) is a quadratic measure of the difference between the cdf and
the observation, which is null in case of a perfect probabilistic forecast. It
measures both reliability and sharpness, and has the same unit than the
variable of interest. As we evaluate non-parametric predictive densities, we can
numerically integrate Eq. (3.29) to compute the CRPS score.

3.9. Case study: Probabilistic Forecasting of
Belgian System Imbalances

The case study is conducted on an Intel® Core™ i7-3770 CPU @ 3.4 GHz
with 16 Gb of RAM. The forecasting methods are implemented using Python
3.6.0 with the Keras library (along with the TensorFlow backend) for the neural
models, with the scikit-learn library for the tree-based ensemble models, and
with the statsmodels for the econometric models. We focus on the probabilistic
predictions of the system imbalance (denoted SI) with a 15-minute time
granularity. As mentioned in Section 3.2, the system imbalance is assumed
equals to the opposite value of the Net Regulation Volume (NRV), which is
activated by the Transmission System Operators (TSO). The data spans from
2016-1-1 to 2019-12-31, for a total of four years of data. Specifically, the first
three years of data are used to train and validate the models with a ratio of
85%-15%, while the fourth year is used for testing. Each quarter-hourly step of
the database is used as a forecast creation time t0. A prediction horizon of 4
hours is selected, which corresponds to τmax = 16 time steps, and we compute
the 5th, 15th, 25th, 35th, 45th, 50th, 55th, 65th,75th, 85th, 95th percentiles of
the target distribution (i.e., |Q| = 11) for each of these time periods.

TSOs have the duty to publish a wide range of information for promoting
a transparent and non-discriminatory market such as actual measurements
(e.g., electricity demand and power production, which are here denoted by
the superscript h), day-ahead forecasts of renewable generation and electrical
load (denoted here by the superscript f). Additional information, such as the
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schedules of conventional generation and merit order proxies of operational
balancing prices, may also be provided (also denoted by the superscript f). In
the Belgian power system, we have at our disposal mh = 14 historical covariates
xht0−lmax:t0

and mf = 15 known future information xft0+1:t0+τmax
. These inputs

are gathered as followed:

• the Net Regulation Volume (NRVh ∈ R1);

• the imbalance price (λh,RT ∈ R1);

• the Marginal Decremental Price (MDP) and the Marginal Incremental Price
(λh,bal. ∈ R2);

• the physical cross-border energy flows with France and Netherlands (φh ∈ R2);

• the produced and forecasted wind and photovoltaic powers, with their asso-
ciated installed capacities (P {h,f},renew. ∈ R4);

• the produced and scheduled powers of conventional generators (P {h,f},conv. ∈
R3), composed of pump-hydro, gas and nuclear units;

• the measured and forecasted electricity demand of the grid (L{h,f} ∈ R1);

• the day-ahead electricity prices (λf,DA ∈ R1);

• the merit order proxies of operational balancing prices, i.e., the TSO
expected prices corresponding to different volumes of activated reserves
{−600,−300,−100, 100, 300, 600} MW (λf,bal. ∈ R6).

In parallel, calendar information (x{h,f},cal. ∈ R6), i.e., working days, the
day of the week, the hour, the quarter hour, the month and the absolute
position of the time step, are also available. They are represented by categorical
variables, where, e.g., the quarter hours are described by the set {0, 1, 2, 3}.
For neural models, each calendar information (x{h,f},cal. ∈ R6) is processed
through an embedding layer, which transforms the calendar variable into a
fixed-dimensional vector. This reduces the dimensionality of the input space
(e.g., by avoiding the use of 96 binary variables to encode all quarter hours
of the day), while providing a new learned meaningful representation able
to capture their relative significance. In this way, time steps with similar
properties are placed close to each other in the embedding vector, which cannot
be achieved with traditional techniques such as one-hot encoding. Overall,
the set of historical covariates xht0−lmax:t0

is composed of {λh,RT, NRVh, λh,bal.,
φh, Lh, P h,renew., P h,conv., xh,cal.}, while the set of future known information
xft0+1:t0+τmax

contains {Lf , P f,renew., P f,conv., λf,DA, λf,bal., xf,cal.}. The final
configurations of the forecasting models are:
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• ARMA model, which considers 12 past values and 3 previous values of past
errors, i.e., the autoregressive part p = 12 and the moving average part q = 2.

• QRF model, with a population of 500 trees fully extended. The look-back
window is lmax = 32.

• QGBRT model, with a learning rate α = 0.1, a maximum depth of 8 per
tree, and the number of iterations is determined by using early stopping.
The look-back window is lmax = 32.

• FFNN model, with D = 24 processing units. The look-back window is
lmax = 4.

• S-FFNN model, with three layers of D = 24 processing units. The look-back
window is lmax = 4.

• LSTM model, with D = 12 processing units. The look-back window is
lmax = 4.

• BLSTM model, with D = 12 processing units. The look-back window is
lmax = 4.

• Seq2Seq model, with D = 64 processing units. The look-back window is
lmax = 20.

• Att-Seq2Seq model, with D = 32 processing units. The look-back window is
lmax = 8 .

First, for illustrating the quality of the outcomes obtained using the
att-Seq2seq model, probabilistic forecasts (over the 4 hours horizon) for
March 29, 2020, at 1:00 am, 5:00 am, and 11:00 am, are depicted in
Fig. 3.11. The predicted intervals tend to properly embed the actual system
imbalance realizations, suggesting that the volatility of the signal is well
captured. We can observe some spikes at hourly intervals, i.e., higher
imbalances occur in the first quarter hour of each new hour. This observation
arises from the fact that European day-ahead markets are characterized
by an hourly time resolution, where the electricity is traded in hourly
blocks [MWh/h]. This results in a dispatch of power plants with ramping
trajectories between consecutive hours that are causing imbalances in the
TSO control area. It is worth noting that several theoretical solutions
are proposed to tackle this problem, such as trading power trajectories in-
stead of energy blocks [135], or by introducing asynchronous energy blocks [136].

Fig. 3.12 presents the forecast accuracy in terms of quantile loss of the
different models as a function of the prediction horizon to analyze up to which
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Figure 3.11.: Multi-horizon probabilistic forecasts of the system imbalance on
the 29th March 2019 at 01:00 am (Fig. 6.7a), 5:00 am (Fig. 6.7b),
and 11:00 am (Fig. 3.11c).
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Figure 3.12.: Quantile score of different methods (averaged over the whole test
set) for the prediction horizon {t0 + 1, ..., t0 + τmax}. Outcomes
are split into two sub-figures, i.e., the first one comparing the
att-Seq2Seq model with traditional benchmarks, the second one
comparing the att-Seq2seq with the other neural models.
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964 8

Figure 3.13.: Autocorrelation function of the system imbalance signal

time span it is relevant to anticipate system imbalances. Overall, the differences
in performance (between all forecasters) quickly decrease over time since all
methods tend towards a naive representation of the historical distributions
(differentiated between the quarter hour), thus illustrating the difficulty to
capture the extreme volatility and unpredictability of the system imbalance
over long horizons. In that respect, the naive benchmark (Step-average)
estimating the future system imbalance distributions independently for each
time step (based on the historical system imbalance values measured each day
at the corresponding period) provides a competitive baseline, which is not easily
overcome. Due to the high variability of the system imbalance, the Persistence
model performs very badly. Indeed, it simply propagates past observations
without the ability to infer the most likely future realizations. This behavior
can be explained by the autocorrelation function of the system imbalance
(Fig. 3.13), which shows moderate time dependencies among consecutive
system imbalance realizations. However, we observe peaks at indices 4 and
8 (corresponding to hourly dependencies), which explains the improved
accuracy of Persistence at these time steps (with respect to surrounding steps).
We also see that the ARMA model achieves poor prediction performance,
which may arise from different reasons. First, it only leverages past system
imbalance values (thus neglecting the potential of exogenous information) in a
linear framework. Second, the prediction intervals of ARMA are computed
analytically, assuming that residuals are uncorrelated and normally dis-
tributed, which may lead to poor accuracy when these assumptions are violated.

Then, it can be observed in Fig. 3.12 that the att-Seq2Seq model outperforms
all (naive and state-of-the-art) benchmarks over the 4-hour prediction
horizon. In particular, it yields an average improvement of 1.5% and 3.6%
compared to Seq2seq and QGBRT. QRF also provides reliable outcomes,
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Models CRPS [MW] Winkler score EW
t0+1[MW]

β = 0.1 β = 0.5 β = 0.9
Step-Avg 60 523.2 299.2 205.1
Persistence 65.2 430.7 247.9 167.9
ARMA 59.3 379.6 221.9 152.5
QRF 54.1 389.2 233.2 160.2

QGBRT 54.9 357 208 142.1
FFNN 58 414.8 240.1 163.6
S-FFNN 56.2 373.5 220.4 151.6
LSTM 54.9 366.7 212.2 146
BLSTM 53.8 378.3 220.3 151.4
Seq2Seq 53.7 362.2 211.6 144.7

Att-Seq2Seq 52.9 356.2 210.5 144.2

Table 3.1.: CRPS score averaged over the entire prediction horizon and the
Winkler score for the first step of the prediction horizon t0 + 1.

but it is less accurate than its QGBRT counterpart. Although tree-based
models have the advantage of processing any type of (continuous and
integer) inputs without the need to normalize these data, they still lack the
processing abilities of advanced neural architectures. Another interesting
result is that the S-FFNN (3 hidden layers) obtains better results than
the FFNN, which highlights the importance of depth for leveraging the
full potential of neural networks. Moreover, the LSTM and BLSTM have
better performances than the S-FFNN, which illustrates the benefit to design
tailored architectures for processing the temporal dependencies. Indeed, the
att-Seq2seq model, whose temporal nature is designed to optimally exploit
the past and future temporal dynamics of inputs, seems to achieve this ob-
jective in the lower part of Fig. 3.12 by outperforming all other neural networks.

To complement these results, the CRPS over the entire prediction horizon
and the Winkler scores for different reliability levels at time step t0 + 1 are
computed for all models, and the results are provided in Table 3.1. We observe
similar trends in both metrics. In particular, the Att-Seq2seq model achieves a
higher accuracy in average for the CRPS compared to the other forecasting
models. However, it should be noted that the QGBRT yields the best results
for the first time step t0 + 1 (according to the Winkler score) for the prediction
intervals β = {0.5, 0.9}, which emphasizes its prediction ability for narrower
intervals. Yet, for extreme quantiles, the Att-Seq2Seq obtains better prediction
intervals according to the Winkler scores.
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3.10. Conclusion

This Chapter is devoted to the multi-horizon probabilistic forecasting of the
system imbalances. The system imbalance is a highly variable and uncertain
signal, which directly results from the real-time operating conditions of the
system. This information is essential for providing real-time balancing services,
as the direction of the system imbalance impacts the imbalance price regime
(either low via the Marginal Decremental balancing energy Price (MDP) or
high via the Marginal Incremental balancing energy Price (MIP)).

The following neural architectures of gradual complexity are assessed and
compared: i) shallow (i.e., 1-layer) and stacked feed-forward neural networks,
ii) Long Short Term Memory neural network and their bidrectional counterpart,
and iii) the sequence-to-sequence with and without attention mechanisms. All
these neural architectures have been detailed, and are sequentially suggested
for better capturing the specificities pertaining to time series forecasting (whose
inputs can be composed of past observed and future known inputs). The out-
comes show that advancements in terms of neural architecture are accompanied
with an increase of forecasting performance. Practically, the sequence-to-
sequence Long Short Term Memory neural networks augmented with attention
mechanisms show the highest accuracy compared to other benchmark outcomes
(including econometric models and tree-based ensemble methods). This
suggests that neural architectures suited to the temporal nature of inputs allow
to generate more accurate (tightened) quantiles in comparison with other neu-
ral architectures, which paves the way towards further research in this direction.

The next Chapter is focused on valuing these probabilistic forecasts in
decision-support tool dedicated to provide real-time balancing services.
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CHAPTER 4.
Risk-Aware Stochastic Provision of Real-Time

Balancing Services

The real-time balancing services are provided by the intentional imbalance
positions of Balance Responsible Parties (BRPs) in the opposite direction of
the total net system imbalance. Such services are typically incentivized in a
single imbalance pricing scheme, where all BRPs imbalances are settled at
a unique price. This Chapter proposes risk-aware stochastic mathematical
formulations for providing these services. More particularly, the bi-level
methodology is firstly investigated for capturing the interaction between the
intentional BRP imbalance position and the clearing of the balancing energy
market, which allows avoiding excessive imbalance positions that overstep the
system imbalance. Then, for exploiting at best the probabilistic predictions of
the system imbalance, the uncertainty around the predicted variable is also
modeled in the decision-support tool. This allows improved out-of-balance
decisions, giving the possibility for actors to manage the financial risks, i.e.,
the possibility that an actor’s financial outcome deviates adversely from its
expectation, associated with their energy positions.

This Chapter is organized as follows. Section 4.1 states the market assump-
tions for modeling the single price imbalance settlement in the Belgian context,
followed by a succinct presentation of the market application. Section 4.2 shows
the decision-support tool formulated as a bi-level optimization problem, while
Section 4.3 exposes the reformulation steps for solving the bi-level structure
by off-the-shelf optimization solvers. Then, two risk-aware stochastic opti-
mization methods, based on the bi-level model, are presented, namely robust
optimization and scenario-based stochastic programming. The two optimization
methods differ from their uncertainty modeling paradigm (which is detailed in
Section 4.4): i) robust optimization in Section 4.5 determines the uncertainty
via a deterministic uncertainty set, and ii) stochastic programming in Section
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Figure 4.1.: Reconstruction of the balancing energy market from the published
Belgian TSO data.

4.6 represents the uncertainty under a set of probability-weighted scenarios.
Then, extensive out-of-sample analysis are performed in Sections 4.7-4.9 using
real-world market data from the Belgian power systems. More specifically,
Section 4.7 analyses the practical gains of generating more accurate probabilis-
tic predictions for providing real-time balancing services through the robust
model. Then, Section 4.8 investigates the economic interest of modeling the
decision-support tool as a bi-level structure. Finally, Section 4.9 validates and
compares different financial risk managements that can be adopted by BRPs
for robust optimization and scenario-based stochastic programming.

4.1. Market Assumptions and Application

The single imbalance pricing scheme creates thus an opportunity cost for
the Balance Responsible Parties (BRPs) aggravating the system imbalance
and an opportunity profit for the BRPs helping the system to be balanced.
This mechanism is currently implemented in Netherlands, Germany and
Belgium. In a 2011 analysis comparing the Dutch and German imbalance
management systems [137] (which were respectively based on single and
dual imbalance pricing), the TSO TenneT suggests that the Dutch system
has a higher macro-economic efficiency due to the incentives provided to
Balance Responsible Parties (BRPs) in correcting imbalances. Besides, after
that Germany has adopted the single imbalance pricing scheme, the study
in [138] shows that German BRPs take intentional imbalance positions to

80



Chapter 4. Risk-Aware Stochastic Provision of Real-Time Balancing Services

financially optimize their own portfolio, while having a positive impact on
the system balancing. In that vein, the Belgian Commission of Regulation
of Electricity and Gas (CREG) explicitly states in [139] that each BRP is
required to contribute to a balanced power system, either by maintaining a
balanced portfolio or by holding an imbalanced position in the direction that
helps the power system as a whole. This is aligned with their 2017 monitoring
report [140], which shows that the Belgian average daily profile of positive and
negative system imbalances are rather low in 2017 compared with the period
2007-2013 (where dual imbalance pricing was predominantly implemented).
The provision of real-time balancing services (also called passive contribution)
is also supported by some market stakeholders at European level, where,
for example, the European Federation of Energy Traders (EFET) in [141]
argues that the imbalance price should not be regarded as a penalty to force
market parties to stick to their schedules. Rather, the imbalance price should
reflect the value of electricity in real time, which, as such, provides the correct
economic signal to avoid imbalances or help the system.

Hence, the Belgian power system is selected as the candidate for assessing
the decisions of the developed decision-support tools, as the Belgian imbalance
settlement is perfectly aligned with the European guidelines on the balancing
markets. The main assumption concerns the definition of the system imbalance,
whose value is given by the opposite value of the net Regulation Volume
(NRV) signal. This implicitly assumes that the Transmission System Operator
(TSO) has perfectly responded to the actual system imbalance. This definition
of system imbalances is aligned with the Belgian imbalance pricing scheme
over the years 2016-2019, in which the imbalance price regime was driven by
the sign of the NRV signal at each corresponding quarter hourly imbalance
settlement period [115].

For promoting efficient and transparent balancing energy markets, the
Belgian TSO provides day-ahead information with near real-time updates
on the available balancing energy levels (Sr+,−) and associated activation
costs (Λr+,−) for upcoming 15-minute imbalance settlement periods [95]. As
illustrated in Fig. 4.1, these different activation costs (Λr+,−) corresponding
to the activation of different balancing energy levels (Sr+,−) can be used to
construct the merit order curves (in yellow in Fig. 4.1), which provides a
proxy of the balancing energy market-clearing process. Yet, it should be noted
that this proxy implies two additional assumptions w.r.t. the actual Belgian
balancing energy market: i) the published balancing energy bids assume an
imbalance price constant over intervals of 100 MW, and ii) although these data
cover a large part of the balancing energy products, all balancing energy bids

81



Chapter 4. Risk-Aware Stochastic Provision of Real-Time Balancing Services

are not incorporated such as balancing bids of pumped hydro storage units
(i.e., principally Coo and La Plate Taille storage units in Belgium) [142].

These market data are an important source of information in our market
application, which is the decision problem faced by a BRP owning remaining
flexibility margins at the beginning of the quarter hour. In this setting, the
BRP has the ability to deviate from its current energy position to restore the
balance of the power system, thereby allowing to provide balancing services
not defined by the standard energy balancing products. The imbalance
position of the market actor (denoted hereafter as eimb,+/−), i.e., the remaining
deviation between its schedule and its real-time physical position, is optimized
by anticipating what could be the imbalance price λSI at the end of the
imbalance settlement period based on forecasts of the system imbalance ŜI.
This dependency between the prediction of the system imbalance ŜI, the proxy
of the balancing energy market, and the anticipated imbalance price λSI is
showcased in Fig. 4.1. This framework is run sequentially 96 times a day at
the start of each 15 minutes imbalance settlement period with a horizon of
one time step. At each imbalance settlement period, the BRP thus decides
on the direction (downward or upward) and volume of the provided real-time
balancing service.

4.2. The Bi-level Model

As the volumes of energy exchanged in the balancing energy market are
by nature small (typically between -150 MW and 150 MW for the Belgian
power system), the intentional imbalance positions of the BRP may therefore
have an impact on the balancing energy market clearing. In this line, Fig. 4.2
illustrates two situations where the intentional imbalance position of the
BRP oversteps the system imbalance. In case a), the upward real-time
balancing service provided by the BRP is greater than the absolute value
of the system imbalance, and, consequently, creates a need of downward
balancing. In the end, the positive energy surplus of the BRP is remunerated
at a very low, even negative, imbalance price, which penalizes the BRP
compared to, e.g., the same quantity offered in the day-ahead electricity
market. In case b), an analogue reasoning can be made for a real-time
balancing service provided in case of a negative system imbalance. Here,
the imbalanced BRP will be charged with a much higher imbalance price in
comparison with the day-ahead electricity price for its shortage of energy.
For alleviating such situations, this interaction between the imbalanced BRP
and the clearing of the balancing energy market can be mathematically
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Figure 4.2.: a) Excessive imbalance position of a market actor overshooting a
negative system imbalance. b) Excessive imbalance position of a
market actor overshooting a positive system imbalance.
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Figure 4.3.: The bi-level decision-support tool in a deterministic framework.

captured by a bi-level formulation, which involves an optimization problem
constrained by another optimization problem, see e.g., [78], [92]. Indeed,
since the balancing energy market is cleared with the purpose of minimizing
the activation costs of the balancing energy products, the description of the
clearing mechanism can be conveniently formulated as an optimization problem.

The participation of the actor in the single price imbalance settlement is
thus modeled in a bi-level optimization framework, in which the market actor
anticipates the clearing of the imbalance settlement scheme (λSI) by having
at its disposal i) a list made available by the TSO of the submitted balancing
offers and the associated activation prices, and ii) its own future description
of the future system imbalance. The proposed framework is summarized in
Fig. 4.3 in a deterministic setting. The upper level (4.1a)-(4.1b) aims at defining
the optimal imbalance position (eimb,+/−) of the market actor and the lower
level (4.1c)-(4.1f) performs the clearing of the balancing energy market. In a
deterministic setting, the problem reads as:

max
eimb,+/−
≥0

,λSI
f IS
(
eimb,+/−, λSI

)
(4.1a)

s.t. eimb,+/− ∈ ΠUL (4.1b)

min
ΘLL={s

r+/−
≥0

}
C
(
ΘLL

)
=
∑

r+∈R+

Λr+sr+ −
∑

r−∈R−
Λr−sr− (4.1c)
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s.t.
∑

r+∈R+

sr+ −
∑

r−∈R−
sr− =

− (eimb,+ − eimb,−)− ŜI : λSI
(4.1d)

sr+ ≤ Sr+ : µr+ ∀r+ ∈ R+ (4.1e)
sr− ≤ Sr− : µr− ∀r− ∈ R− (4.1f)

where ΘLL = {sr+ , sr−} are the primal variables of the lower-level problem, and
{λSI, µr+ , µr−} are the dual variables of the lower-level problem. The objective
function (4.1a), maximizing the profit of the market actor, is computed as:

f IS
(
eimb,+/−, λSI

)
= (λSI − C+)eimb,+ − (λSI − C−)eimb,− (4.2)

where C+ and C− define the cost structure of the asset. Practically, the market
actor is incentivized to adopt a surplus energy position eimb,+ when λSI > C+,
and to favor a shortage energy position eimb,− when λSI < C−. Constraint (4.1b)
ensures that these decisions comply with the technical margins ΠUL of the agent.

The lower-level reflects the costs minimization problem (4.1c), in which
the TSO carries out the merit-order-based activation of the balancing energy
products (where the more economic balancing energy bids are activated first).
The offers r+ ∈ R+ and r− ∈ R− are respectively activated at a price Λr+ and
Λr− to compensate the negative and positive imbalances. The imbalance price
λSI is the price associated with the last (marginally activated) offer, which is
endogenously obtained from the dual variable of the constraint (4.1d). The
latter guarantees that the activated amount of reserves exactly offsets the
anticipated imbalances caused by all other actors (ŜI), while accounting for the
strategic participation of the BRP (eimb,+/−). Finally, the set of constraints
(4.1f) ensures that the activated balancing volumes sr+ and sr− do not violate
the energy limits (i.e., capacity Sr+ and Sr− offered at an earlier stage). Note
that the dual variables λSI, µr+ and µr− represent the sensitivity of the lower-
level objective function if the right-hand sides of their associated constraint are
increased marginally. Practically, for instance, the value of the dual variable µr+
gives the amount by which having a marginal increase of the reserve capacity
Sr+ would decrease the lower-level objective function’s optimal value (i.e., the
total cost). It can be interpreted as a shadow price of constraint (4.1e) for
which the TSO would pay to have one unit more of the resource r+ available.
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4.3. From the Bi-level Model to a Mixed-Integer
Linear Formulation

In order to solve the resulting bi-level problem (4.1) by off-the-shelf opti-
mization solvers, it can be converted into an equivalent mixed-integer linear
programming (MILP) formulation using the following steps [143]: i) the convex
(linear and continuous) lower-level problem is replaced by its Karush-Kuhn-
Tucker (KKT) optimality conditions, ii) the non-linearities of the complemen-
tarity conditions within the KKT conditions are equivalently expressed as a
set of mixed-integer linear constraints using a Big-M approach, and iii) the
bilinear term in the objective function is replaced by the related equivalent
linear expression from the strong duality equation of the lower-level problem.

Karush-Khun-Tucker Optimality Conditions

The Karush-Kuhn-Tucker (KKT) conditions are conditions that the optimal
solution of an optimization problem should satisfy. When the optimization
problem is a linear program, the KKT conditions are necessary and sufficient
for optimality [144]. Replacing the lower-level problem by its KKT conditions
transforms the nested optimization problem (4.1) into a mathematical program
with equilibrium constraints (MPEC), allowing to obtain a single level problem.
The KKT conditions of the lower-level problem (4.1c)-(4.1f) are expressed as:∑

r+∈R+

sr+ −
∑

r−∈R−
sr− = −(eimb,+ − eimb,−)− ŜI (4.3a)

0 ≤ −sr+ + Sr+ ⊥ µr+ ≥ 0 ∀r+ ∈ R+ (4.3b)
0 ≤ −sr− + Sr− ⊥ µr− ≥ 0 ∀r− ∈ R− (4.3c)
0 ≤ sr+ ⊥ Λr+ − λSI + µr+ ≥ 0 ∀r+ ∈ R+ (4.3d)
0 ≤ sr− ⊥ −Λr− + λSI + µr− ≥ 0 ∀r− ∈ R− (4.3e)

where the ⊥ operator enforces the perpendicularity between the terms on the
left-hand and righ-hand sides, i.e., their product is zero.

Constraint (4.3a) and the left-hand sides of constraints (4.3b)-(4.3e) ensure
the feasibility of the primal problem. The right-hand sides of constraints (4.3b)-
(4.3c) enforce the feasibility of the dual problem, while the right-hand sides of
constraints (4.3d)-(4.3e) are retrieved from the stationary conditions. Overall,
the non-linear constraints (4.3b)-(4.3e) are the complementarity slackness
conditions, written in a concise fashion.
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Linearisation of the Complementarity Slackness
Conditions

The big-M method [145] is used to transform the non-linear complementarity
slackness conditions (4.3b)-(4.3e) into mixed-integer linear inequalities. It
introduces, for each complementarity slackness condition, a large positive
constant M and a binary variable z. The resulting MPEC model in Section
4.3 is thus recasted as a mixed-integer linear problem (MILP) as follows:

0 ≤ −sr+ + Sr+ ≤ z1
r+M

1
r+ ∀r+ ∈ R+ (4.4a)

0 ≤ µr+ ≤ (1− z1
r+)M2

r+ ∀r+ ∈ R+ (4.4b)
0 ≤ −sr− + Sr− ≤ z1

r−M
1
r− ∀r− ∈ R− (4.4c)

0 ≤ µr− ≤ (1− z1
r−)M2

r− ∀r− ∈ R− (4.4d)
0 ≤ sr+ ≤ z2

r+M
3
r+ ∀r+ ∈ R+ (4.4e)

0 ≤ Λr+ − λSI + µr+ ≤ (1− z2
r+)M4

r+ ∀r+ ∈ R+ (4.4f)
0 ≤ sr− ≤ z2

r−M
3
r− ∀r− ∈ R− (4.4g)

0 ≤ −Λr− + λSI + µr− ≤ (1− z2
r−)M4

r− ∀r− ∈ R− (4.4h)

The selection of appropriate values for the big-M parameters in the optimiza-
tion problem can be a challenging task. When big-M values are too big, the
resulting formulation may not hold the complementarity condition. On the
other hand, too small big-M values may result in numerical ill-conditioning
and/or increase drastically the computational time [92]. One way for choosing
appropriate big-M values is first arbitrarily setting (for each of the complemen-
tarity conditions linearized) a large value for M, e.g., 107, and then solve the
model. In ex-post, the results are checked to investigate whether each of the
complementarity conditions holds. If not, the value of the corresponding M is
reduced until all complementarity conditions are satisfied [92]. This trial-and-
error approach is specifically hard to apply in the context of our optimization
problem, which is solved iteratively multiple times with varying parameters.
Consequently, we have preferred to select adequate big-M values based on the
economic or physical upper bounds of their associated variables [146]. The
big-M values used in our case studies are shown in Table 4.1. For instance, the
constraints related to the dispatch of the balancing energy products sr+/− , i.e.,
eq. (4.4a), (4.4c), (4.4e), (4.4g), are naturally bounded by the energy limits
of blocks Sr+/− . Consequently, the associated big-Ms values M1

r+ and M3
r+ (or

M1
r− and M3

r−) are fixed by the energy limits of block Sr+ (or Sr−). The same
logic can be applied for determining M2

r+ , M
4
r+ , M

2
r− and M4

r− .
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M i
j i = {1, 3} i = 2 i = 4

j = r+ Sr+ max
r+∈R+

(Λr+)− Λr+ − min
r−∈R−

(Λr−) + Λr+

j = r− Sr− − min
r−∈R−

(Λr−) + Λr− max
r+∈R+

(Λr+)− Λr−

Table 4.1.: Big-Ms values

Linearisation of the Upper Level Objective Function
The bilinear term λSI(eimb,+−eimb,−) inside the upper level objective function

can be linearised by applying the strong duality theorem to the lower-level
problem’s objective function [74]. When the optimization problem is convex,
the strong duality theorem states that the objective functions of the primal
and dual problems have the same value at the optimum. From this equality,
an equivalent linear expression can be retrieved for the bilinear term.

λSI(eimb,+ − eimb,−) = −λSIŜI

−
∑

r+∈R+

(Sr+µr+ + Λr+sr+)

+
∑

r−∈R−
(−Sr−µr− + Λr−sr−)

(4.5)

The Deterministic Mixed-Integer Linear Formulation
The final deterministic optimization model is concisely written as follows:

max
ΘD

Eq. (4.1a) (in a linearized format via (4.5)) (4.6a)

s.t. Eq. (4.1b) (4.6b)
Eq. (4.3a) (4.6c)
Eq. (4.4a)− (4.4h) (4.6d)

The model (4.6) optimizes the set of variables ΘD, which contains
the upper variables {eimb,+, eimb,−}, the lower primal {sr+ , sr−} and dual
{λSI, µr+ , µr−} variables of the lower-level problem, as well as the binary vari-
ables {z1

r+ , z
1
r− , z

2
r+ , z

2
r−}. However, relying on a deterministic decision-making

tool for procuring real-time balancing services can be very risky. Indeed, in case
of an erroneous estimation of the future system imbalance state, the BRP can
adopt a position that aggravates the imbalance of the power system, thereby
suffering important financial penalties. In the following Section, two methods
for characterizing the uncertainty of the system imbalance are proposed: i) a
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Figure 4.4.: Illustration of the uncertainty set and scenarios provided by the
estimated empirical cumulative distribution function ECDF(.).

deterministic and set-based method, which is used for the robust optimization
framework, and ii) a scenario-based method, which is applied in the stochastic
programming framework.

4.4. Uncertainty Characterization
The outputs of the probabilistic forecasters in Chapter 3, i.e., the q-quantiles

ŜI
(q)

for q ∈ Q = {0.05, 0.15, 0.25, 0.35, 0.45, 0.5, 0.65, 0.75, 0.85, 0.95}, such
that P(SI ≤ ŜI

(q)
) = q, are leveraged for modeling the uncertainty of the system

imbalance. First, at each quarter hour, the resulting discrete set of q-quantiles
is used to estimate an empirical cumulative distribution function (ECDF)
through cubic spline interpolation, which allows a continuous representation
of the system imbalance distribution [147]. Then, based on the ECDF,
the uncertainty is characterized depending on the subsequent stochastic
decision-support tool. This procedure is illustrated in Fig. 4.4.

For the robust optimization framework, the uncertainty is characterized by
an uncertainty set U , which is defined as a box bounded by a symmetric pair
of q-quantiles from the empirical ECDF. Hence, symmetric lower and upper
bounds

{
ŜI

(q)
, ŜI

(1−q)}
can be selected, each combination ensuring a certain

probabilistic guarantee that the future system imbalance is realized within the
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uncertainty set:

U =
{
SI ∈ R1 : ŜI

(q)
≤ SI ≤ ŜI

(1−q)}
, (4.7)

In this approach, a risk-aversion parameter ε = 1 − 2q can be defined
for characterizing the size of the prediction interval associated with the
uncertainty set. Hence, a larger ε yields a larger (and more conservative)
uncertainty set, while a smaller value leads to a smaller uncertainty set. This
risk-aversion parameter allows the BRP to adjust its risk policy, i.e., the degree
of conservativeness of its decisions, by varying the size of the uncertainty
set [148]. The economic interest of different sizes of uncertainty set is touched
in Section 4.7, and more thoroughly investigated in Section 4.9.

For stochastic programming framework, the methodology presented in [147]
is followed. A set of system imbalance scenarios {ŜIω,∀ω ∈ {1, ..., N}} is
generated by applying the inverse transform method on the estimated ECDF.
This consists in firstly drawing a random variable between [0.05,0.95] (the
orange diamonds in Fig. 4.4) for subsequently retrieving a system imbalance
scenario ŜIω (the blue diamonds in Fig. 4.4). This Monte Carlo sampling
approach is performed at each optimization period for a set Ω of N = 100
scenarios, each of them associated with a probability of occurrence p = 1/N . In
our experiments, increasing further the number of scenarios does not improve
the results of the stochastic programming optimization decision-support tool. If
each objective outcome associated with each ŜIω is effectively weighted given the
predefined probabilities p = 1/N , the scenario-based optimization procedure is
called risk-neutral. For risk-aware approach, the probabilities of each scenario
outcome can be adjusted according to the BRP risk preferences through a risk
measure (note that the sum of the risk-adjusted probabilities is still equals to 1).
In this Chapter, this option is investigated via the Conditional Value-at-Risk
(CVaR) metric (see Section 4.6), which puts more weight on the riskier scenario
outcomes (that deviates adversely from the expectation) in the scenario-based
optimization procedure.

4.5. The Robust Optimization Model
Robust optimization aims at computing a solution that is feasible for any

realization within the uncertainty set U , and that is optimal against the worst-
case realization. The robust counterpart of the model (4.6) illustrated in Fig. 4.5
is written as:

max
ΘR

min
ŜI∈U

f IS(eimb,+/−, λSI) (4.8a)
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Figure 4.5.: The robust optimization framework.

s.t. eimb,+/− ∈ ΠUL (4.8b)

Eq. (4.3a), ∀ŜI ∈ U (4.8c)

Eq. (4.4a)− (4.4h), ∀ŜI ∈ U (4.8d)

where ΘR is the set of variables {eimb,+, eimb,−, sr+ , sr− , λSI, µr+ , µr− , z1
r+ , z

1
r− ,

z2
r+ , z

2
r−}.

In this robust approach, the objective function (4.8a) immunizes the oper-
ational strategy of the BRP against the worst-case realization of the system
imbalance contained in the uncertainty set U . For a polyhedral uncertainty
set (as in our case), it has been shown that the worst-case realization of the
uncertainty set is located at one of its vertices [149]. This property allows to
reformulate the robust problem (4.8) to be solved by off-the-shelf optimizers.
Practically, an auxiliary variable σ is added for representing the worst-case
profit f IS(.) through the additional constraint (4.9b), and the continuity of
the uncertainty set U is managed by enumerating the finite number of vertices
v = {V1, V2} contained in U . The robust optimization-based equivalent of
problem reads as:

max
σ,ΘRF

σ (4.9a)

s.t. σ ≤ f IS (eimb,+/−, λSI
v

)
, ∀v = {V1, V2} ∈ U , (4.9b)

s.t. eimb,+/− ∈ ΠUL (4.9c)
Eq. (4.3a), ∀v = {V1, V2} ∈ U , (4.9d)
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Eq. (4.4a)− (4.4h), ∀v = {V1, V2} ∈ U , (4.9e)

where ΘRF is the set of variables {eimb,+, eimb,−, sv,r+ , sv,r− , λSI
v , µv,r+ , µv,r− ,

z1
v,r+ , z

1
v,r− , z

2
v,r+ , z

2
v,r−}.

It should be noted that solving the worst-case realization is facilitated by
the fact that the uncertainty set U ∈ R1 in our robust formulation. Indeed,
the worst-case realization is generally the lower predicted q-quantile of the
system imbalance, except when the vertices of the uncertainty set are above
and below zero. In the latter case, the robust approach will just prevent the
provision of real-time balancing services. Hence, the determination of the
worst-case realization can be externalized by a if-then procedure, for which the
optimal real-time balancing service can be provided through the deterministic
model (4.6).

4.6. The Stochastic Programming Optimization
Model

Scenario-based stochastic programming is a well-known technique that
optimizes the expected value of the objective function by representing the
distribution of the uncertainty through a set of scenarios, each assigned with a
probability. The scenario-based stochastic program (illustrated in Fig. 4.6) is
written in model (4.10) as follows:

max
ΘSP

E
[
f IS(eimb,+/−, λSI

w )
]

=
1

N

∑
w∈Ω

f IS(eimb,+/−, λSI
w ) (4.10a)

s.t. eimb,+/− ∈ ΠUL (4.10b)
Eq. (4.3a), ∀w ∈ Ω, (4.10c)
Eq. (4.4a)− (4.4h), ∀w ∈ Ω, (4.10d)

where ΘSP is the set of variables {eimb,+, eimb,−, sw,r+ , sw,r− , λSI
w , µw,r+ , µw,r− ,

z1
w,r+ , z

1
w,r− , z

2
w,r+ , z

2
w,r−}.

The objective function (4.10a) consists of the expected profit of the
market actor among the system imbalance scenarios {ŜIw, ∀ω ∈ Ω}. The
balancing clearing process, performed for each scenario ω, is enforced by Eq.
(4.10c)-(4.10d). When the decision-making process is repetitive, stochastic
programming allows to better optimize the expected profit in a long run, but
only if the probability of the distribution is well captured. To do so, the
discrete set of scenarios has to be as much as representative of the original
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Figure 4.6.: The scenario-based stochastic programming optimization frame-
work.

(continuous) uncertain distribution. However, one should notice that the
constraints (4.10c)-(4.10d) are imposed for each scenario, increasing rapidly the
dimension of the problem. Hence, when using stochastic programming, there
is always a trade-off between the number of scenarios, allowing an accurate
representation of the uncertainty, and the computational cost of the problem.

This gap between the original (continuous) uncertain distribution and the
discrete set of scenarios can provide ex-post disappointments to the decision
maker when its actual (true) objective outcome is revealed. One way for
addressing this issue is to nuance the decisions of the risk-neutral model (4.10)
by incorporating a notion of financial risk through the Conditional Value-at-
Risk measure. This allows quantifying a level of trading risk, and to reduce the
volatility of the profit among the set of scenarios Ω. Let ε ∈ [0, 1] representing
a risk-aversion parameter, the CVaRε is defined as the expected profit of the
(1− ε)× 100% worst scenarios. The CVaR-based stochastic program can be
defined as:

max
ζ,ηw
≥0
,Θ

ζ − 1

1− β
∑
w∈Ω

πwηw (4.11a)

s.t. ζ − f IS
(
eimb,+/−, λSI

w

)
≤ ηw, ∀w ∈ Ω, (4.11b)
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eimb,+/− ∈ ΠUL (4.11c)
Eq. (4.3a), ∀w ∈ Ω, (4.11d)
Eq. (4.4a)− (4.4h), ∀w ∈ Ω, (4.11e)

where ζ is the Value-at-Risk (VaR), i.e., the (1-ε)-quantile of the profit
distribution of scenarios. The non-negative auxiliary variable ηw corresponds
to the difference between the VaR ζ and the market actor profit f IS (.) if it is
positive.

In this risk-aware formulation, a larger risk-aversion parameter ε leads to
more conservative decisions (as only the few worst scenarios are considered),
while a smaller value entails more risk-neutral decisions (as the set of scenarios
is widened). Note that a trade-off between the expected profit and the
CVaR metric, i.e., an adjusted-risk approach weighting both contributions in
the objective function, is also doable. The economic interest of risk aware-
ness in stochastic programming for our application is investigated in Section 4.9.

4.7. Economic Interest of Accurate Probabilistic
Forecasts

The economic interest of generating more accurate probabilistic forecasts is in-
vestigated in this Section by studying their economic gains when associated with
the robust model (4.9). Practically, the lower-level problem of the robust model
(4.9) is cleared based on symmetric pairs of the predicted quantiles (which con-
stitute the uncertainty set). Hence, different pairs of quantiles are investigated
for different prediction models on the basis of the following uncertainty sets U ∈
{[ŜI

(0.05)
,ŜI

(0.95)
],[ŜI

(0.15)
,ŜI

(0.85)
],[ŜI

(0.25)
,ŜI

(0.75)
],[ŜI

(0.35)
,ŜI

(0.65)
],[ŜI

(0.45)
,ŜI

(0.55)
]}.

This allows to quantify the economic gain that could be obtained by more
accurate q-quantile SI predictions on real-life market data. The ex-post
economic profits of the BRP fOS(.) are computed via an ex-post out-of-sample
analysis, whose imbalance price is obtained via the stand-alone clearing of
the balancing energy market (4.1c)-(4.1f) based on the actual realization of
the SI and the imbalance position eimb,+/− of the BRP (obtained via the
robust-based optimization). The overall procedure is run sequentially at the
start of each quarter-of-an-hour of the test set, i.e., January and February 2018.
In accordance with the methodology previously presented in Chapter 3, the
following probabilistic forecasting models are assessed:

• the quantile regression forest (QRF);
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• the gradient boosting regression tree (QGBRT);

• the 1-layer feed-forward neural network (FFNN);

• the stacked feed-forward neural network (S-FFNN);

• the Long Short Term Memory recurrent neural network (LSTM);

• the Bidirectional Long Short Term Memory recurrent neural network
(BLSTM);

• the sequence-to-sequence model (Seq2Seq).

Note that only the time periods of the dataset are different from Chapter 3.
In this Chapter, the forecasters are trained using historical data from
2014 until end of December 2016 for outputting the q-quantiles {SI(q),
∀q = {0.05, 0.15, 0.25, 0.35, 0.45, 0.5, 0.55, 0.65, 0.75, 0.85, 0.95}}. The year 2017
is used as a validation set to select the hyper-parameters of the different
models. Then, one step-ahead probabilistic prediction of the system imbalance
is inferred at the start of each quarter hour of the test set (i.e., January and
February 2018), for which their economic interest is assessed.

The probabilistic performances over the entire test are presented in Table 4.2
for the different models. Two scoring metrics are reported: i) the pinball loss,
which is averaged across all q-quantiles of interest, and ii) the Winkler score,
which is calculated for the prediction intervals β = {0.1, 0.3, 0.5, 0.7, 0.9}. The
best results are highlighted in bold font. Similar observations with respect to
Chapter 3 can be reported. The Seq2seq model, whose architecture is designed
to better exploit both past observed and future known dynamic information,
outperforms all other machine learning models. The QRF model seems to
achieve lower performances than other models, while the QGBRT models (one
for each q-quantile) provide similar, even better, results w.r.t. the FFNN
architectures. Note that the S-FFNN (with 3 hidden layers) still obtains better
results than the shallow FFNN.

The probabilistic predictions are then incorporated into the robust dispatch
strategy, where the quality of the resulting decisions is compared in Table
4.3. As a measure of the upper bound of the profit that can be generated,
the decision-support model was firstly run with the perfect knowledge of the
system imbalance. Then, the aggregated profits (summed over all quarter hours
of the 2-months test set period) E(f IS) that were expected at the end of the
optimization procedure are summarized in the upper part of the Table 4.3.
These (in-sample) results are then put into perspective with the actual profits
E(fOS) given in the lower part of Table 4.3. These results are obtained via the
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Table 4.2.: Pinball loss and Winkler scores of the forecasting methods on Jan-
uary and February 2018 for the one-step ahead probabilistic predic-
tion of the system imbalance. The Winkler score is expressed for
the prediction intervals β = {0.1, 0.3, 0.5, 0.7, 0.9}.

Winkler score [MW]Topology Pinball loss [MW]
0.1 0.3 0.5 0.7 0.9

QRF 223 332 246 200 166 137
FFNN 207 310 227 185 154 127
S-FFNN 199 299 220 178 148 123
QGBRT 189 309 212 168 138 114
Seq2seq 179 268 197 159 132 109

(ex-post) clearing of the imbalance settlement, based on the optimized position
eimb,+ and eimb,− of the BRP and the actual realization of the system imbalance.
For focusing on the accuracy impact of the probabilistic forecasts, the feasible
region of the BRP portfolio ΠUL in the robust model is only constrained by
(upward and downward) 120 MW power limits at each quarter hour. The
operating costs {C+, C−} are respectively set at 50 and 30 €/MWh, which
ensures that the BRP will exploit consistent price spreads. Practically, the
BRP will adopt a surplus energy position, i.e., eimb,+ > 0, only if λSI > 50
€/MWh, and a shortage position, i.e., eimb,− > 0, only if λSI < 30 €/MWh. We
consider that no contracts were agreed in advance, and that only the decisions
eimb,+/− describe the imbalance position of the BRP. The resulting MILP model
is implemented in Python, using the Pulp library, and solved using the Gurobi
8.1.1 solver. It is important to mention that the computational time is always
lower than 1 minute (whereas the forecasting tool necessitates less than 1 second
to provide the probabilistic forecasts of interest), which suggests that the robust
formulation can be exploited in the real-time operation of a BRP with flexible
resources.

Based on Table 4.3, several trends can be identified. Firstly, it is observed
that the quality of predictions constitutes a prominent factor to take reliable
decisions. In this way, using the best prediction interval for each technique
(denoted in bold in the lower part of Table 4.2), the Seq2seq model increases
the operational profit between 40 k€ (compared to the second best model, i.e.,
QGBRT) and 298 k€ (for QRF), which corresponds to relative increases of
respectively 2.8% and 21% throughout the test period of January-February
2018. In this way, even small improvements in the prediction accuracy can
result into significant additional profits. This strongly paves the way to further
research to enhance prediction tools. In this way, the best predictor yields
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Table 4.3.: Operational profits of different forecasters describing different
bounds of the uncertainty set when providing robust real-time
balancing services.

Aggregated expected (ex-ante) profits
over the test set [k€]

Perfect forecast 4201
Bounds
05-95

Bounds
15-85

Bounds
25-75

Bounds
35-65

Bounds
45-55

Bound
50

QRF 161 554 1047 1624 2316 2722
FFNN 359 882 1396 1859 2533 2975
S-FFNN 587 1222 1704 2258 2784 3136
QGBRT 216 954 1574 2111 2697 3070
Seq2seq 574 1213 1765 2315 2959 3315

Aggregated actual (ex-post) profits
over the test set [k€]

Perfect forecast 4201
Bounds
05-95

Bounds
15-85

Bounds
25-75

Bounds
35-65

Bounds
45-55

Bound
50

QRF 480 939 1131 1019 634 245
FFNN 850 1126 1203 1015 637 264
S-FFNN 1040 1282 1184 971 564 332
QGBRT 798 1247 1389 1228 950 663
Seq2seq 1151 1429 1391 1251 1023 847
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an operational ex-post profit of 1429 ke, whereas perfect forecasts would
generate 4201 ke. Moreover, in accordance with its forecast outcomes (Table
4.2), QGBRT is very competitive for tightened quantiles, but leads to a lower
performance for larger quantiles (since the Winkler score is typically high for
the prediction interval β = 0.1).

Secondly, the robust formulation ensures that the portfolio never par-
ticipates in the single price imbalance settlement when the bounds of
the uncertainty set (i.e., the pair of the q-quantiles ŜI

(q)
) are of different

signs. On the contrary, when the predicted bounds are sign-consistent, the
market player may deviate from its balanced position with the objective
to help at restoring the power system balance. For this to happen, the
imbalance price must be sufficiently attractive to cover all intrinsic costs
of the unit (which is true in most cases due to the extreme price regimes
of the imbalance price). In this way, in the deterministic setting (where
only the predicted median ŜI

(0.5)
is considered), the market player almost

systematically participates in the imbalance settlement, which represents
an amount of 75 255 MWh over the test set period (when the Seq2seq is
used as forecaster). By contrast, the uncertainty set U = [ŜI

(0.05)
, ŜI

(0.95)
]

leads to a moderate contribution of 16 352 MWh (which are played 27%
of the time, i.e., an average of 25 times a day for the 96 daily settlement periods).

Thirdly, we see that the expected and actual profits can be very different.
Such discrepancies are exacerbated for the tightened quantiles since the
decisions are then based on forecasts with low reliability. Such aggressive
approaches tend to overestimate the profit that will be actually generated,
leading to ex-post disappointments when the actual outcome is revealed. For
instance, the approach with the 45-55 quantiles represents a reliability of
10% that the actual system imbalance lies in the prediction interval, which
ultimately jeopardizes the performance of the optimization. This illustrates
the importance of incorporating risk-awareness in the decision-support tool of
the BRP to hedge against such situations.

In Table 4.3, the most suited approach is the optimization performed with the
15-85 quantiles (obtained with the Seq2seq), since this tool leads to the highest
actual profits, and therefore to the best trade-off between conservativeness
and economic performance. This strategy is sufficiently audacious to properly
take advantage of favorable situations, while hedging against the inherent
volatility of the system imbalance signal, which avoids to participate when
the market conditions are unsure. Indeed, results highlight that the 15-85
quantiles approach leads to erroneous offers (that infer financial penalties)
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occurring 6.5% of the time. In comparison, the deterministic (quantile 50) and
aggressive strategies (45-55, 35-65 and 25-75 quantiles) result in respectively
38%, 32%, 22% and 14% of erroneous offers, while such misinformed decisions
happen respectively 1% of the time for the more conservative strategies (05-95
quantiles).

4.8. Economic Interest of the Bi-level Structure
Two types of approach can be envisaged for modeling the participation of

a market player in electricity markets: the price-taker and the price-maker
approaches. A price-taker market player accepts an exogenous price signal, and
participates in the electricity markets without affecting the price signal, while
a price-maker market player may influence the market-clearing outcome by its
own participation. In our electricity market application, i.e., the European
single price imbalance settlement, there is a high sensitivity of the imbalance
price with respect to the (very fluctuating) system imbalance. Hence, each
actor (even small ones) may act as a price-maker in the single price imbalance
settlement, and may incur sharp regime switching in the imbalance price
(recalling Fig. 4.2). In this section, the economic interest of embedding the
market-clearing process of the balancing energy market within the robust
optimization model is challenged. To that end, the robust optimization model
is solved in the same conditions (based on the predictions given by the Seq2seq)
in a two-step approach. Practically, the lower-level (4.9) is firstly cleared
independently (disregarding the actions of the market player) for the pair
of q-quantiles [ŜI

(q)
, ŜI

(1−q)
] constituting the uncertainty set, which provides

two estimations of the future imbalance prices [λ̂SI
V1
, λ̂SI

V2
]. Then, the resulting

imbalance prices are treated as parameters (and not decision variables) in
the upper level optimization problem (4.9a)-(4.9b) (without considering the
lower-level problem). The expected and actual profits for both approaches are
shown in Table 4.4.

Results indicate that the price-taker assumption is not appropriate to model
the close-to-real-time participation of BRPs in the single price imbalance
settlement. Indeed, when the forecasted quantiles of the system imbalance are
of the same sign, the actor provides its full capacity (regardless of its impact on
the system imbalance), which often results in switching the system conditions.
The market actor then consumes at high prices, and produces energy for low
prices, which ultimately leads to negative profits (especially for aggressive
approaches). In this way, the price-taker assumption is systematically over-
optimistic, which tends to result in very inefficient strategies when the actual
outcome (ex-post profit) is revealed. The price-maker assumption, on the other
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Table 4.4.: Comparison of the profit generated by price-maker and price-taker
assumptions for different risk-attitudes

Aggregated expected profits

over the test set [k€]

Aggregated ex-post profits

over the test set [k€]
Price-taker Price-maker Price-taker Price-maker

Bounds 05-95 1468 574 773 1151
Bounds 15-85 3142 1213 -394 1429
Bounds 25-75 4370 1765 -1588 1391
Bounds 35-65 5458 2315 -2870 1251
Bounds 45-55 6598 2959 -4396 1023
Bound 50 7296 3315 -5147 847

hand, allows to better hedge against the real-time volatility of the power system
conditions, by properly considering the impact of the BRP decisions.

4.9. Economic Interest of Risk Awareness for
Providing the Real-Time Balancing Services

In this Section, the economic interest of including a financial risk
management in the stochastic decision-support tool of the BRP is studied.
Following the robust model (4.8), the financial risk can be adjusted by varying
the size of the uncertainty set. Note that Table 4.3 has already performed a
similar analysis, but this section goes further by extending the test set over the
entire year 2018. On the other hand, the financial risk in the scenario-based
stochastic programming model (4.11) is managed by including the conditional
value-at-risk (CVaR) in the objective function. This risk approach assigns
higher probabilities to the scenarios with lowest profits. The economic results
are computed over the year 2018 based on the probabilistic forecasts of the
Seq2seq model (which are also extended). The notation RO stands for the
robust optimization model, while SP-CVaR denotes the CVaR-based stochastic
optimization model.

The economic results in Table 4.5 of both risk-aware optimization methods
are differentiated according to their respective risk-aversion parameter ε. More
specifically, we consider 11 risk policies for the BRP corresponding to the
following ε ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.98} risk-aversion
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Table 4.5.: Average of the out-of-sample profits fOSε (.) for the different risk
policies over the 1-year period.

Model Unit Risk-aversion parameter (ε)
[€/∆t] 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.98

RO E(fOSε ) 124.1 185.1 227.4 251.8 263.4 270.6 275.4 281.2 280.5 221.2 100.5
SP-CVaR E(fOSε ) 338 335 331,9 327 315 300,1 292,1 283,2 244,2 175,7 129

parameters. This allows covering a wide range of possible risk policies, from
the most risk-seeking (ε = 0) to the most risk-averse (ε = 0.98) ones. As
a reminder, the risk-aversion parameter ε in the robust model is defined as
ε = 1 − 2q, which characterizes the size of the prediction interval associated
with the uncertainty set. Besides, the risk-aversion parameter ε in the
CVaR metric defines the (1− ε)× 100% of worst-case scenarios on which the
scenario-based stochastic program is optimized. Table 4.5 presents only the
out-of-sample performance of the two optimization models for all possible risk
policies (E = 11) over the entire test set.

For RO, the results of Table 4.5 confirms that the risk policy ε = 0.7, which
is described by an uncertainty set U = [ŜI

0.15
, ŜI

0.85
], is the most adequate risk

profile for the BRP. It is also worth mentioning that the SP-CVaR approach
yields the best performance for the risk-neutral strategy, which mainly stems
from two reasons: i) the Seq2seq forecaster provides ‘high-quality’ scenarios of
the system imbalance, and ii) this framework optimizes the profit in expectation,
which is efficient for decision-making procedure that occur very regularly in time.
In particular, the risk-neutral SP-CVaR outperforms the robust optimization
method, with a relative increase of the actual profits of around 20% on average
at their optimal risk-aversion parameter. The ex-post economic profits for the
SP-CVaR then decrease gradually with the rise of conservativeness of the CVaR
risk-aversion parameter.

4.10. Conclusion

In this Chapter, we present the market opportunities and risks associated
with the provision of real-time balancing services in the single price imbalance
settlement. A decision-support tool relying on the bi-level methodology is
firstly proposed for participating in such a mechanism, allowing to capture
the interaction between the real-time balancing service of the BRP and the
clearing of the balancing energy market. The resulting problem involves
an optimization problem constrained by another optimization problem.
Mathematical reformulation steps are thus exposed to convert the nested
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bi-level model into a mixed-integer linear programming (MILP) problem.
The final (deterministic) linearized model is used as a basis for developing
risk-aware stochastic decision-support tools.

Indeed, two different risk-aware stochastic decision-support tools are
provided: i) a robust optimization model, and ii) a scenario-based stochastic
programming, where the notion of financial risk management is included
via the conditional Value-at-Risk measure (CVaR). Both risk-aware decision
support tools are assessed and compared in extensive case studies using real-life
market data from the Belgian power systems.

Outcomes suggest that i) gains of accuracy in the probabilistic predictions
allow achieving better decisions, and thus, better ex-post economic profits, ii)
the bi-level structure is efficient for hedging against the inherent small volume
of system imbalances and the associated imbalance price regime switching
effect, iii) the determination of the uncertainty set is not straightforward for
the robust approach, as the ex-post economic profits vary widely depending the
size of the uncertainty set, and iv) the risk-aware stochastic program shows the
best ex-post economic profits for the risk-neutral approach, which decreases
gradually with the rise of conservativeness of the CVaR risk-aversion parameter.

Regarding risk awareness, the next chapter investigates whether an automatic
risk-adjusted approach can be designed for dynamically changing the risk profile
of the BRP between consecutive market periods.

Chapter Publication
• J. Bottieau, L. Hubert, Z. De Grève, F. Vallée and J-F. Toubeau, "Very-
Short-Term Probabilistic Forecasting for a Risk-Aware Participation in
the Single Price Imbalance Settlement, " in IEEE Trans. Power Syst.,
vol. 35, no. 2, pp. 1218-1230, 2020.
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CHAPTER 5.

Automatic Risk-Adjusted Provision of Real-Time
Balancing Services

Trading strategies in short-term electricity markets generally employ risk
awareness for reducing, inter alia, their exposure to the volatility of electricity
prices. To ensure an optimal balance between risk and profit, risk-aversion
parameters are traditionally fine-tuned via an offline out-of-sample analysis.
Such a computationally-intensive analysis is typically run once (e.g., the one
performed in Section 4.9), which yields time-invariant risk policies. Instead,
this Section proposes the use of Machine Learning to select, in an online
fashion, optimal risk-aversion parameters. This novel automatic risk-tuning
approach offers the benefit of continuously adjusting the risk policy based on
the dynamically changing market operating conditions. The proposed approach
is tested on two risk-aversion parameters, i.e., the budget of uncertainty and
the confidence level of the conditional value-at-risk, respectively considering
the robust optimization and CVaR-based stochastic programming frameworks.
Both automatic risk-adjusted decision-support tools are then assessed and
tested on real-world market data from the Belgian power system.

This Chapter is organized as follows. Section 5.1 provides an overview
about how financial risk is traditionally managed in electricity markets trading
strategies. Section 5.2 describes i) the goal of the automatic risk adjustment
tool, and how it fits in the risk-aware decision-support tools of Chapter 4,
ii) how the automatic risk-adjustment is trained and deployed, and iii) the
different machine learning models used. In Section 5.3, time-invariant and
automatic risk policies are assessed and compared in the Belgian case study.
Finally, conclusions are presented in Section 5.4.
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5.1. Risk Awareness in Electricity markets
Trading Strategies

While competing in liberalized electricity markets, actors adapt their
short-term dispatch decisions based on their expectations of future market
outcomes to maximize their profit [30]. These decisions are made while
facing market uncertainties stemming from, e.g., the prevailing market
prices, which expose the actor to financial risks [150]. In this context,
stochastic decision support tools, including financial risk management,
allow improved scheduling decisions in short-term electricity markets, giving
the possibility for actors to manage the risks associated with their positions [69].

Two distinct methodologies can be considered for trading strategies: i)
performance satisfying methods, such as information-gap theory decision
[151], [152], which ensure a minimum acceptable profit, and ii) performance
maximization methods, which, in contrast, maximize the expected profit of
the market actor given its representation of the uncertainty space. Typical
examples of performance maximization methods are robust optimization
[148], [153] and stochastic programming [154]–[156], which were used in
Chapter 4. In performance maximization methods, the market actors take
two successive decisions when employing risk awareness: i) the selection of
their risk attitude, i.e., the setting of their financial risk management (e.g.,
their own risk averseness level), which determines their risk policy, and ii) their
scheduling/dispatch decision, which maximizes their expected profit given their
risk policy.

Risk awareness in performance maximization methods has attracted a
high-level of interest within the power systems community, including several
studies on conventional electricity generation [157]–[159], energy storage
systems [160], [161], weather-dependent generation [154], [155], [162], [163],
demand-response [164]–[166], and hybrid power plants [148], [153], [156],
[167]–[170]. Overall, robust optimisation-based approaches allow to adjust
the conservativeness of the decisions by varying the budget of uncertainty,
i.e., the size and shape of the uncertainty set [148]. On the other hand,
following a scenario-based stochastic optimization framework, most authors
incorporate risk measures, e.g., the conditional value-at-risk (CVaR), in the ob-
jective function to assign higher weights to the scenarios with lowest profits [171].

Currently, existing research efforts in performance maximization methods
focus on evaluating the optimal risk policy through an offline process. This
process entails varying the risk-aversion parameters – e.g., the confidence level
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of the CVaR metric or the budget of uncertainty – on extensive out-of-sample
evaluations to select the optimal risk attitude – see e.g., [165], [166], [170],
[172]. Such a computationally-intensive analysis is typically run once, which
does not allow capturing the dependency of the optimal risk policy on the
dynamically changing market operating conditions. In this sense, in all the
aforementioned approaches, there is – to the best of the author knowledge
– no systematic way to autonomously and dynamically adjust the selection
of the risk-aversion parameters. Indeed, the out-of-sample analysis typically
yields only time-invariant risk policies, even though the real-time power system
conditions, and, as a result, the financial risk and the optimal risk policy, may
significantly vary over time.

This Chapter aims at addressing this limitation by leveraging Machine Learn-
ing (ML) techniques to adjust, at each decision step, the risk policy of an actor
based on the current state of expected market outcomes. More specifically,
an ML-based module is designed to estimate the time-specific out-of-sample
economic performance of different risk attitudes based on past trading sessions,
allowing to determine autonomously the most optimal online risk attitude. Prac-
tically, the proposed automatic risk-adjusted decision-support tool is applied
on the provision of real-time balancing services via the single price imbalance
settlement mechanism. The risk policy is crucial in this application since the
system conditions are highly volatile and difficult to predict. In addition, actors
are exposed to significant financial penalties in case of sub-optimal decisions.
In this regard, the risk-aware stochastic formulations proposed in Chapter 4
are extended to an automatic risk-adjusted framework, which considers both
CVaR-based stochastic and robust optimization frameworks.

5.2. Automatic Risk-Adjusted Decision-Support
Framework

The electricity market application is the one presented in Chapter 4, where
a Balance Responsible Party (BRP) has the ability to deviate from its energy
position to support the real-time system balancing within a single imbalance
pricing scheme. In Chapter 4, two risk-aware stochastic decision-support tools
were developed, namely the robust optimization model (4.9) and the CVaR-
based stochastic program (4.11), aiming at reducing the exposure of the BRP
to the significant variability and uncertainty exhibited by the system imbalance.

Hence, based on a risk attitude ε, the risk-aware decision-support tool aims
at providing an optimal imbalance position for the BRP, while indicating the
associated in-sample objective outcome f IS

ε for the next market period. In
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Automatic Risk-Adjusted Decision-support tool Ex-post analysisMarket period
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Automatic risk adjustment tool

Risk-aware stochastic optimization tool
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Optimal risk attitude a
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Out-of-sample objective outcome aaaa

Optimal imbalance

position at a risk 

attitude aaa

Actual realization of 
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with the associated in-sample objective outcome aaaa
aaaaaa 

Figure 5.1.: The integration of the proposed automatic risk adjustment tool
within the decision-making process of an actor participating in the
single price imbalance settlement. The automatic risk-adjusted
decision-support tool is run sequentially (96 times a day) at the
start of each 15 minutes imbalance settlement period.

this Section, as shown in Fig. 5.1, the decision-making process of the BRP is
further supported by adding an automatic risk adjustment tool. This tool relies
on a Machine Learning (ML)-based approach to adjust the risk attitude of
the BRP. The selected risk attitude is then used in the subsequent risk-aware
stochastic optimization tool to calculate its optimal position in the imbalance
settlement market. Once the imbalances of all BRPs are settled, an out-of-
sample objective outcome fOS

ε can be generated in an ex-post analysis by
confronting the optimised imbalance position of the market actor at a given risk
attitude ε with the actual realization of the system imbalance. This computation
can stem from real-life market outcomes or complex market simulators. The
latter option is used in the case studies.

5.2.1. Goal of the Automatic Risk Adjustment Tool

There exists inevitably a gap between an in-sample objective outcome (f IS
ε )

provided by a model, i.e., the optimal objective value of a risk-aware stochastic
optimization tool at a risk-aversion parameter ε, and the corresponding
out-of-sample objective outcome (fOS

ε ) obtained when the actual realization
of the uncertainty is revealed. The gap between in-sample and out-of-sample
objective outcomes can arise from either a misrepresentation of the uncertainty
or a simplified representation of the market environment. Indeed, a risk-aware
stochastic optimization tool is generally composed of two stages: i) an
uncertainty model, which allows identifying a probabilistic representation of the
future possible realizations of random variables (see Section 4.4 of Chapter 4),
and ii) a risk-aware stochastic optimization model, which mathematically
expresses the market environment in which the actor operates, and generates
optimal decision outcomes at a pre-defined risk attitude, based on the prior
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representation of uncertainties (see Sections 4.5-4.6 of Chapter 4). In our
market application, the misrepresentation of the uncertainty may come from i)
a bad probabilistic forecaster, or ii) the set-based or discrete characterization
of the uncertainty pertaining to the robust and scenario-based optimization
approaches, respectively. Besides, the market environment assumes that: i) the
imbalance price is constant over intervals of 100 MW, and ii) all balancing
energy bids are not included such as the ones from pumped hydro storage
units. However, it should be noted that our market simulator makes the same
market simplifications, which are thus not captured in the out-of-sample profits.

Hence, the in-sample objective value, provided by the risk-aware stochastic
optimization tool, channels the understanding of both the uncertainty and
risk-aware optimization models at a given risk-aversion parameter and at a
specific decision stage. The purpose of our proposed ML-based module is to add
an additional learning stage on top of the in-sample objective value to provide
an early estimate of the out-of-sample objective value. Practically, the module
is designed as a supervised ML-based regression model, which predicts online
approximations of the out-of-sample objective outcomes, based on which the
most suited risk-aversion parameter and, thus, the optimal risk-aware decision
variables are computed.

5.2.2. Training and Inference Stages of the Risk
Adjustment Tool

To capture the misspecification of the uncertainty and risk-aware optimiza-
tion models, the ML-based risk adjustment tool must be firstly trained on a
database D that maps the in-sample objective outcomes with the actual ones.
As shown in Fig. 5.2, this necessary learning stage is represented by Step
(A) which generates a database D, i.e., the inputs F IS

n = {f IS
ε,n, ∀ε ∈ E} and

outputs FOS
n = {fOS

ε,n , ∀ε ∈ E}, on the n = 1, ..., ND anterior time steps, whose
relationship must be learnt for different risk-aversion parameters ε ∈ E . The
out-of-sample objective outcomes FOS

n can be generated in an ex-post analysis
for each risk-aversion level ε. Then, in Step (B), the objective is to optimize
the parameters θ of the ML model gθ such that we accurately map the outputs
FOS
n to the given inputs F IS

n :

θ∗ = arg min
θ

ND∑
n=1

L(gθ(F IS
n ),FOS

n ), (5.1)

where L(., .) is a user-defined loss function that quantifies how well the model
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A. Construction of database D  (                               previous time steps)

B. Training of the ML module (ML parameters 𝜃 updated on a daily basis)

Figure 5.2.: The training procedure of the ML-based risk adjustment tool within
a supervised framework.

fits the data.

In the inference stage (after the model has been trained), the ML-based
module is used to predict approximations of the out-of-sample objective out-
comes F̂OS

new =
{
f̂OS
ε,new, ∀ε ∈ E

}
for different risk-aversion parameters ε ∈ E on

a new instance F IS
new =

{
f IS
ε,new, ∀ε ∈ E

}
. Then, the most suited risk-aversion

parameter, and, consequently, the most optimal risk-aware decision variables
can be selected based on the maximum value of the estimated out-of-sample
objective outcomes. This process is showcased in Fig. 5.3.

5.2.3. Machine-Learning Models

Five Machine-Learning (ML) models are assessed and compared, including
a linear model (LR), a shallow feed-forward neural network (FFNNs), random
forest (RF), gradient boosted decision trees (GBDT) and the k -nearest
neighbours (k -NN), for the E = |E| risk attitudes, where |E| stands for
the cardinality of the set E . The first four models, i.e., LR, FFNN, RF
and GBDT, represent a snapshot of well-established ML techniques, as
exemplified by their common use in contests such as the Global Energy
Forecasting Competition [173]. The k -NN method provides another simple
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Selection of the optimal risk attitude a

based on the maximum value of the estimated aafa
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Figure 5.3.: Illustration of the automatic risk adjustment approach. In the
inference stage, when a new decision stage is performed, the trained
ML-based module estimates the out-of-sample objective outcomes
F̂OS

new based on the new in-sample objective values F IS
new, provided

by the risk-aware optimization tool for different risk attitudes
ε ∈ E . Then, the optimal risk attitude ε∗ is selected based on the
maximum value of F̂OS

new.

109



Chapter 5. Automatic Risk-Adjusted Provision of Real-Time Balancing
Services

and yet competitive ML alternative, which differs from the four other
methods by the fact that no model parameters θ need to be trained. In
complement, the five ML models have already shown a high accuracy for ap-
proximating the objective outcomes of real-time operation processes [174], [175].

The LR model gθ is simply expressed as AF IS
new + b, where the model

parameters θ (to be optimized) are the slopes A(E×E) and intercepts b(E×1).
The loss function L(., .) is based on the least-squares criterion.

The FFNN model is the traditional architecture of neural networks, where
the input information F IS

new is propagated through a hidden layer containing H
processing units (neurons). Each neuron consists of the application of a non-
linear activation function kh(.), e.g., the rectified linear unit (ReLU) function,
on the weighted sum of the inputs:

yh = kh

(∑
ε∈E

win
hεf

IS
ε,new

)
∀h ∈ H. (5.2)

Then, the output vector F̂OS
new is given by the application of the linear function

ko(.) on the hidden units y.:

f̂OS
ε,new = ko

(
H∑
h=1

wout
εh yh

)
∀ε ∈ E . (5.3)

Using the mean square error as loss function L(., .), the backpropagation
algorithm can be used to optimize the network weights w{in,out}

· .

RF and GBDT are ensemble methods based on decision trees. A decision
tree T is a hierarchical model combining a sequence of simple logical tests, e.g.,
the comparison between a numeric input and a threshold value, that recursively
splits the paired dataset D into distinct (smaller) subsets. Hence, the parameter
θm of a binary decision tree at a node m is the split sm that yields locally the
sharpest partition of the subset Dm at the node m into a left and right nodes,
respectively noted ml and mr. The ‘sharpness’ of a split sm at a node m can
be measured by the decrease of an impurity function i(.):

∆i(sm) = i(m)− NDml

NDm
i (ml)−

NDmr

NDm
i (mr) , (5.4)

where ND{m,ml,mr} are the numbers of instances contained in D{m,ml,mr}, re-
spectively. In a regression-based framework, i(.) is usually derived from the
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variance:

i(m) =
1

NDm

∑
fOS
ε,n∈Dm

(
fOS
ε,n − f

OS,Dm
ε

)2

, (5.5)

where fOS,Dm
ε is the mean value of the outputs at the node m for a risk-aversion

parameter ε. Such a i(.) results, thus, in assigning, at each terminal node z,
the average value of the corresponding subset of outputs fOS

ε,n ∈ Dz. Hence, the
prediction of a new instance consists in (i) identifying the terminal node to which
it belongs and (ii) retrieving the forecast value assigned to the corresponding
node:

f̂OS
ε,new = Tε

(
Sε,F IS

new
)

∀ε ∈ E . (5.6)

where Sε define the splits of the decision tree Tε at a risk-aversion parameter ε.

In RF, an ensemble of NRF decision trees are independently grown using the
aforementioned approach, with the particularity that each split of each tree is
constructed based on a random subsample of the data set and a random subset
of features, allowing the reduction of the variance of the entire model. A new
prediction is obtained by averaging the outcomes of each decision tree:

f̂OS
ε,new =

1

NRF

NRF∑
i=1

Tε,i
(
Sε,i,F IS

new
)

∀ε ∈ E . (5.7)

As for the GBDT method, the trees are not built independently but rather
in an additive fashion. For the p-th iteration, the GBDT model gθ is written
as:

gpθ(F
IS
new) = gp−1

θ (F IS
new) + αT p

(
F IS

new
)
, (5.8)

where α is the learning rate. At each stage, the additional tree T p is updated
to minimize the residuals of the p− 1 previously generated trees:

T p = arg min
T

ND∑
n=1

L
(
fOS
ε,n , g

p−1
θ

(
F IS
n

)
+ T

(
F IS
n

))
, (5.9)

where L(., .) is the mean square error function, and ND is the number of
instances contained in the database D. The overall approach is similar to the
gradient descent algorithm in which the added tree T p is optimized to leverage
the prediction errors of its predecessors.
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The k -NN algorithm relies on the concept of learning by analogy: based on
the creation of a paired dataset, the prediction of a new instance is carried
out on the average value of the k nearest neighbours in the dataset where the
closeness condition is determined based on a distance metric (e.g., the euclidean
distance). For a new instance, the k -NN estimate is given by:

F̂OS
new = g(F IS

new) =
1

k

ND∑
n=1

xnFOS
n , (5.10)

where xn ∈ {0, 1} depending on whether or not F IS
n is among the k -nearest

neighbours of F IS
new and ND is the number of instances within the database D.

In practice, new information is continuously revealed and the training
procedure must be updated over time. In this context, an appealing feature
of k -NN is that it seamlessly supports online updates [176]. Its prediction
performance is simply improved by adding new instances to the dataset, while
the other ML models need the additional Step (B) to calculate their optimal
ML parameters θ∗. In our case study focusing on single price imbalance
settlement markets, the parameters θ∗ are updated on a daily basis resulting
in a balance between computational burden and model precision.

In general, each of the ML models are characterized by hyper-parameters,
which are (task-dependent) parameters reflecting the complexity of the model,
e.g., the number of hidden units of neural networks, the number of basic trees
in RF or the number of K neighbours. These values are estimated using the
hyperparametrization approach shown in Chapter 3.

5.3. Case Study
Similarly to Section 4.9 in Chapter 4, the case study leverages the probabilis-

tic predictions of the system imbalance obtained via the Sequence-to-sequence
recurrent neural model. The prediction model is trained using historical
data from 2014 until end of December 2016, and is stabilized with early
stopping using the year 2017 as a validation set to avoid overfitting. Then,
the probabilistic predictions are inferred at the start of each quarter hour of
the test set, i.e., the year 2018. At each time step, the feasible region of the
market actor portfolio ΠUL is constrained by (upward and downward) 120
MW power limits. The cost parameters C+ and C− are respectively set to
50 and 30 €/MWh ensuring a consistent imbalance position regarding the
imbalance price. We consider 11 risk attitudes for the actor corresponding to
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the following ε ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.98} risk-aversion
parameters. It should be recalled that the risk-aversion parameters are i)
the prediction interval ε = 1 − 2q characterizing the size of the uncertainty
set in robust optimization (4.9), and ii) the confidence level ε defining the
(1− ε) × 100% worst-case scenarios in the CVaR-based stochastic program
(4.6). The case study investigates whether an automatic risk adjustment of the
risk-aware decision-support tools can provide an ex-post economic gain.

To emphasize the learning ability of the ML tools supporting the selection
of a risk policy, the models are trained only on the data available during the
year 2018. The first half of January is used to tune the hyperparameters of
the models using a random search embedded within a cross validation scheme,
and the latter are then recalibrated on a daily basis, using the new information
revealed over time. The final five ML regression models (along with their search
spaces) are:

• An LR model.

• An 1-MLP model with H = 20 neurons using early stopping, and rectified
linear units (ReLU) as activation functions. The search range of H was
{10, 20, 50, 100}.

• An RF model with NRF = 100 and a maximum depth of 5. We have varied
the maximum depth between {3, 5, 8}.

• An GBDT model, in which α = 0.05, the maximum depth is 3, and the
number of iterations is determined by using early stopping. The search range
of α was {0.3, 0.2, 0.1, 0.05}, and we also varied the maximum depth between
{3, 5, 8}.

• An k -NN model with k = 1000, where the search range of k was
{1,100,500,1000,1250}.

Interestingly, it should be noted that the hyperparameter k of the k-NN
model can be naturally interpreted. If k = 1, the selection of the risk policy
is only based on the ex-post economic performance of the closest instance
within the database (where the closeness condition is computed based on the
in-sample objective values using the euclidean distance). On the other hand,
if k is set to the number of instances within the database, the risk policy’s
selection of the k-NN method would coincide with the one obtained using the
traditional offline out-of-sample analysis (which is performed at this specific
time step).
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The results are computed over the period spanning from 15 January until the
end of December 2018. The notation RO-Q stands for the robust optimization,
while SP-CVaR denotes the CVaR-based stochastic optimization. The time
step ∆t is equal to an imbalance settlement period, i.e., 15 minutes. The
performance of the proposed methodology is principally evaluated through
one indicator, which is averaged over all the quarter hours of the test set: the
actual profit fOS(.) = (λSI − C+)eimb,+ − (λSI − C−)eimb,− obtained during
the ex-post analysis. All the experiments have been conducted on an Intel
Core i7-8850H CPU running at 2.60 GHz and with 16.0 GB of RAM, and
coded in Python 3.6. The probabilistic forecasting model and the 5 ML
models are implemented using the Scikit-learn and Keras packages. The MILP
formulations for the risk-aware optimization models are written using the Pulp
package and solved using the Gurobi 8.1.1 solver.

Table 5.1 shows the evolution of the ex-post profits achieved by the different
ML techniques over several time periods of the test set for RO-Q and SP-CVaR.
These results are put into perspective with i) Online: the ideal choice of
the risk attitude at each quarter hour which is determined ex-post when
the actual conditions are revealed and ii) Offline: the single choice of a
risk-aversion parameter ε based on the ex-post economic performance of
the different risk-aversion parameters E (from risk-seeking ε = 0 towards
risk-averse ε = 0.98) during the first half of January. Over the 1-year period,
the (omniscient) risk policies Online for each optimisation methodologies
allow to improve the real revenues by over 121% and 57 % compared to
their counterparts Offline, stressing the relevance of adopting a dynamic risk
attitude. As expected, the optimal risk policy Online for robust approach leads
to greater ex-post profits than the SP-CVaR. This gap can be explained by
the difference in the risk attitude at ε = 0. At this risk-aversion parameter,
the robust approach is purely deterministic and is extremely risk-seeking
which leads to huge rewards in case of perfect information, while SP-CVaR
is only risk-neutral and still takes into account extreme scenarios in its
decision-making, preventing to fully leverage the added value of a perfect
forecast.

Overall, the proposed online selection of the risk attitudes (guided by the
best ML models) respectively improves the ex-post economic performance by
12.3% and 4.8% for RO-Q and SP-CVaR in comparison with their counterparts
Offline over the 1-year period, which highlights the added value of better
informing stochastic optimization tools with tailored risk-aversion parameters.
In addition, the ability of ML to dynamically select the optimal risk parameter
is analyzed in Fig. 5.4, by showing the frequency at which each risk-aversion
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Table 5.1.: Rolling average of the out-of-sample profits fOS(.) over different
time periods. The percentage values indicate the variation of the
out-of-sample profit with respect to the Offline strategy.

[€/∆t] Offline LR FFNN RF GBDT k -NN Online

RO-Q ε = 0.7

1 day 127.6 107.8
(H15.5%)

51.1
(H60%)

99
(H22.4%)

102.4
(H19.7%)

124.6
(H2.3%)

317.8
(N149%)

1 week 255 247.9
(H2.8%)

271.6
(N6.5%)

282.4
(N10.7%)

255.9
(N0.3%)

234.6
(H8%)

633.6
(N148.5%)

1 month 198.2 205.5
(N3.7%)

202.1
(N2%)

223.1
(N12.6%)

201.8
(N5%)

208
(N5.1%)

528.4
(N166.6%)

3 months 340.5 362.4
(N6.4%)

349.2
(N2.6%)

377
(N10.7%)

367.5
(N7.9%)

360.9
(N6%)

696.4
(N104.5%)

6 months 343.1 343.1
(N0%)

341.5
(H0.5%)

366.5
(N6.8%)

360.4
(N5%)

361.6
(N5.4%)

693.3
(N102.1%)

1 year 281.2 288.3
(N2.5%)

294.1
(N4.6%)

312.9
(N11.3%)

312
(N11%)

315.7
(N12.3%)

622.4
(N121.3%)

SP-CVaR ε = 0.3

1 day 135.2 112.1
(H17%)

131
(H3.1%)

105.3
(H22.1%)

127.6
(H5.6%)

123.12
(H8.9%)

289
(N113.8%)

1 week 323.5 319.2
(H1.3%)

312.4
(H3.4%)

297.1
(H8.1%)

286.6
(H11.4%)

311.7
(H3.7%)

594.1
(N83.6%)

1 month 238.8 242
(N1.3%)

240
(N0.5%)

234.2
(H1.9%)

229
(H4.1%)

245.7
(N2.9%)

496.9
(N108.1%)

3 months 396.5 410.9
(N3.6%)

398.5
(N0.5%)

408.3
(N3%)

396.9
(N0.1%)

416.9
(N5.1%)

672.3
(N69.6%)

6 months 375.1 393.2
(N4.8%)

380
(N1.3%)

392.6
(N4.7%)

382.7
(N2%)

398.8
(N6.3%)

662.1
(N76.5%)

1 year 327 338.1
(N3.4%)

327.9
(N0.3%)

337.3
(N3.1%)

333.3
(N1.9%)

342.7
(N4.8%)

515.7
(N57.7%)
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Figure 5.4.: Histograms of the risk-aversion parameters selected over the 1-year
period.

parameter was chosen over the test set. For clarity, only the two best ML
models are represented, i.e., {k -NN, RF} for RO-Q, and {k -NN, LR} for
SP-CVaR.

Regarding RO approaches, the 1 year-based results in Table 5.1 show that
an online support in the construction of the uncertainty set is a key element
to fully leverage their potential. Indeed, we see that each ML model allows
outperforming the economic gains of the strategy Offline, emphasizing the
importance of the size of the uncertainty set and its effect on the economic
performance for robust-based optimization formulations. Logically, the simplest
model LR gives less insights about the selection of the risk-aversion parameter
than more advanced ML techniques. In particular, the models LR and FFNN
show lower economic performances than the ensemble methods (RF and
GBDT). Interestingly, the k -NN technique, which is simple and intuitive, shows
a high suitability for our application as it outperforms the other ML techniques
over the 1-year period. Additionally, Fig. 5.4a demonstrates that both ML
techniques i) select predominantly (45% and 89% of the time for respectively
k -NN and RF) the optimal risk policies Offline at ε = {0.7, 0.8} and ii) timely
deviate 16% (k -NN) and 7.5% (RF) of the time towards riskier strategies at
ε = {0, 0.1, 0.2, 0.3}. These distributions explain the gap in ex-post profit
with respect to the optimal (omniscient) strategy Online, which requires a
greedy approach that adopts more than 45% of the time the most risky strategy.

Concerning SP-CVaR, none of the ML-based strategies provide worse
ex-post profit than the offline one over the period of one year, but their
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added value in terms of ex-post profits is lower in comparison with the
robust case. Surprisingly, the simple LR model provides a better ex-post
performance than the other (more complex) parametric ML models (1-MLP,
RF and GBDT), while k -NN devises the most optimal online risk strategy.
Fig. 5.4b) gives a first rationale behind such results by showing the vision of
the risk strategies supported by ML: they adopt regularly the risk-neutral
strategy (more than 40% of the time), while sparsely selecting risk-averse
strategies at ε = {0.5, 0.6}. This kind of risk management, recommended by
the optimal one Online, appears to be more challenging to implement for the
more advanced ML models. Indeed, the latter are inclined to adopt a more
conservative behaviour, which penalize them more severely in the SP-CVaR case.

Regarding the evolution over time of the RO-Q and SP-CVaR ex-post profits,
it can be seen that the ML-based risk strategies have the ability to learn and
capture the adequate risk attitude rapidly, which is reflected by the positive
gains after only a day on the field. In the same vein, for both optimization
tools, the machine learning approaches exhibit better economic performance
than the offline one after only one month. However, the gap between ML-based
strategies and the approach Offline does not widen after the first month of use.
It tends to show that specific calibration methods for ML models have to be
developed to take full advantage of the new data that are constantly revealed
over time [177]. More particularly, the k -NN method is less affected by the
calibration method. The results of Table 1 indicate that the k-NN method is
emerging over time as the most suited method for supporting the automatic
risk adjustment strategy of a market player.

In this line, Fig. 5.5 compares the histograms of the out-of-sample profits
between the Offline, k -NN and Online strategies over the 1-year period.
It should be noted that the null out-of-sample profits are not represented
in both histograms. Concerning the RO-Q approach, the out-of-sample
profits are null in 43%, 31% and 30% of the time for Offline, k -NN and
Online, respectively. For the SP-CVaR approach, the out-of-sample profits
are null in 39%, 21% and 29% of the time for Offline, k -NN and Online,
respectively. In both histograms, the out-of-sample profits mostly lie between
-500€ and 500€. We can observe that the k -NN approach generates more
negative revenues than the Offline one between [-500,0], while it yields higher
gains compared to the Offline one in the range [0,500]. Hence, the k -NN
approach improves its average ex-post profit in comparison with the Offline
one by providing more regularly real-time balancing services, which allows
capturing higher opportunity profits but with an increased risk exposure. As
expected, the Online approach systematically results in null or positive revenues.
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Figure 5.5.: Histograms of the out-of-sample profits performed at each quarter
hour over the 1-year period.
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Table 5.2.: TSO Balancing actions and cost for different risk strategies (the
percentage values indicate the variation of the balancing actions
and cost with respect to the non-participation of a market player).

E (V act) [MW/∆t] E(Cos) [€/∆t]
No Participation 24.36 1350.11

RO-Q with k -NN 19.22
(H21.1%)

782.34
(H42%)

SP-CVaR with k -NN 19.39
(H20.4%)

717.83
(H46.8%)

The ML-based approach is more computational intensive than Offline
strategies as it requires the prior computations of the in-sample profits
F IS = {f IS

ε ,∀ε} as inputs. In our case study, the averaged computation time of
an in-sample profit f IS

ε is 0.02s for the robust optimization framework and 1.1s
for the CVaR-based stochastic optimization framework with a duality gap of
1% imposed. Concerning the inference time of the LR, 1-MLP, RF, GBDT
and k -NN methods, their averaged time for outputting the most optimal
risk attitude are around 0.05ms, 27ms, 112ms, 5ms and 1ms, respectively.
Overall, the prior computations of the in-sample profits F IS are the most
time consuming, but this issue can be alleviated through parallel computing.
However, there still exists a gap in computation times between RO-Q and
SP-CVaR, e.g., RO-Q is 50 times faster than SP-CVaR in our application. If
the computation time is a hard constraint, the RO-Q approach guided by the
k -NN model provides a viable alternative to the Offline SP-CVaR approach.
This allows reducing the ex-post profits differential between RO-Q and Offline
SP-CVaR from 16.3% (Offline RO-Q) to 3.6% (RO-Q with k -NN model) over
the entire year.

Finally, the impact of the imbalances of the Balance Responsible Party (BRP)
on the performance of the TSO balancing dispatch procedure is studied in
Table 5.2. To that end, the cost Cos =

∑
r+∈R+

Λr+sr+ +
∑

r−∈R−
Λr−sr− and the

activated energy V act =
∑

r+∈R+

sr+ +
∑

r−∈R−
sr− of each quarter hour are retrieved

from the ex-post analysis and are averaged over the test set. Results show
an average drop of 20% and 40% for, respectively, the averaged activation of
balancing energy and the costs, thereby reducing the TSO’s corrective actions
at the real-time balancing stage.
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5.4. Conclusion
This Chapter leverages the self-learning abilities of ML techniques to

dynamically and preemptively adjust the risk policy of a Balance Responsible
Party (BRP) based on the current state of its expected market outcomes.
Its risk policy is progressively updated and improved based on past trading
sessions. The effectiveness of the proposed automatic risk-adjustment tool is
illustrated in a detailed case study using data from the Belgian power system
with a wide range of competitive ML-based techniques (i.e., linear regression,
neural networks, tree-based ensemble methods and k-nearest neighbours).
The automatic risk-adjusted policies, considering both robust optimization
and CVaR-based stochastic programs, are then compared with traditional
time-invariant risk policies, highlighting the economic potential of adopting a
dynamic risk policy.

Indeed, extensive numerical analyses using real-world market data from the
Belgian power system over one year demonstrate the ability of the proposed
approach to achieve efficient online risk-adjusted strategies for robust-based
and CVaR-based stochastic optimizations. More particularly, the k -NN
technique has been identified as a suited ML candidate to support these
risk-aware optimization methods for preemptively devising the risk attitude. In
this line, both RO-Q and SP-CVaR approaches guided by the k -NN model have
presented promising results as this had led to a respective increase of 12.3%
and 4.8% in the ex-post profits compared with their offline risk policy-based
counterparts. Besides, the implementation of our theoretical models on
actual electricity market settings corroborate the key goal of the single price
imbalance settlement mechanism, by reducing the system imbalance, and
consequently limiting corrective actions at the real-time balancing stage.
Indeed, the obtained results show that the BRP increases its operating profit,
while the imbalance of the power system is reduced.

In that research direction of improving the interaction of the user with
automated data-driven decision-support tool, the following Chapter is devoted
on combining the predictive power of neural models with interpretability. The
analysis of interpretable forecasting outcomes may allow to deliver sanity checks
for the designer and/or user for increasing its confidence on the associated
forecaster.

Chapter Publication
• J. Bottieau, K. Bruninx, A. Sanjab, Z. De Grève, F. Vallée and J-
F. Toubeau, "Automatic Risk Adjustment for Profit Maximization in
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Renewable Dominated Short-Term Electricity Markets," in ITEES, vol.
3, issue 12, 2021
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CHAPTER 6.
Towards Interpretable Probabilistic Forecasting

Using Neural Networks

Chapter 3 is essentially focused on i) better capturing the non-linear
and uncertain behavior of the system imbalance, and ii) fully exploiting the
temporal information contained in both past observed and future known input
data. This has led to the attention-based sequence-to-sequence recurrent
neural model, which has demonstrated high-quality performance compared
to other competitive time series forecasting models. However, even an highly
accurate predictive model may face barriers in terms of acceptability among
the users’ community if it behaves as a black box, where its inner prediction
process is hardly understandable. The neural models are particularly prone
to that phenomenon, as their underlying reasoning is more complex to
extract than simpler, readily interpretable models (such as the AutoRegressive
moving-average (ARMA) model). In this line, combining the predictive power
of deep neural models with interpretable features has attracted a high interest
within the machine learning community, especially in the computer vision and
natural language processing fields [178], [179]. However, there is still a lack of
dedicated research for time series applications [180].

This Chapter falls within this research line for deep learning-based time
series forecasting methods, aiming at outputting accurate predictions, while
identifying the most important input features of the model and their interaction.
In this Chapter, we focus on directly forecasting the imbalance prices, without
passing through the system imbalance prediction and the balancing energy
market-clearing stages. Indeed, being a signal characterized by sharp regime
switching, predicting directly the imbalance prices would allow to bring to light
distinct temporal patterns of the input signals depending on the predicted price
regime. The structure of this Chapter is organized as follows. A brief status of
interpretability in neural models is presented in Section 6.1, while Section 6.2

123



Chapter 6. Towards Interpretable Probabilistic Forecasting Using Neural
Networks

presents a review on imbalance price forecasting. In Section 6.4, the benchmark
methods are presented. Then, the case study and the evaluation of the pro-
posed forecasting strategy, both in terms of performance and interpretability
perspectives, are discussed in Section 6.5. Finally, Section 6.6 concludes the
Chapter.

6.1. Interpretability in Neural Models

The notion of interpretability have received a great resurgence of interest
lately for opening black-box deep neural models. Although this notion
has been intensively explored in the literature, no clear consensus on the
definition of interpretability has been reached [181], [182]. Following [183],
interpretability is the ability to provide explanations in understandable
terms to a human, where: i) explanations, ideally, should be logical decision
rules (if-then rules). However, in practice, the explanations are usually
reduced to only highlight some key input drivers of the model [179]. ii)
Understandable terms, which indicates that the explanations should rely
on accepted knowledge related to the task. Based on this definition,
this Chapter aims at developing an interpretable neural model able to pro-
vide insights of its inner input-output mappings to the designer and/or end-user.

In the same vein, measuring interpretability for time series models is also
not straightforward, and is still under research since no ground truth can be
used for benchmarking purposes. One way for bypassing that is to generate
synthetic time series data, where multiple feature-time interactions of gradual
complexity can be artificially designed – see, e.g., [180]. On the other hand,
for measuring interpretability on real-life time series, two different aspects
are commonly benchmarked: i) precision (whether all the identified features
are relevant), and ii) recall (whether all the relevant features are correctly
identified). In this Chapter, interpretability is rather used as a tool for checking
whether the model has captured a meaningful causality between the labeled
important input features and the predicted outputs based on human knowledge.

Interpretability is challenging for energy forecasting as it is characterized by a
high space-time input domain (e.g., the weather conditions at different locations
of the grid). Besides, the visualization of raw time series contains less expressive
power than images or texts for the non-expert user. Both aspects have rendered
the development of interpretable energy forecasting models to be lagging
behind compared to other fields such as computer vision or natural language
processing. Indeed, energy forecasting models are essentially benchmarked
based on accuracy metrics, which favors the trend towards overly complex
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Figure 6.1.: Interpretability methods for neural models

black-box models. Yet, developing an interpretable model can be beneficial for
i) the designer, who can check that the model does not exploit artifacts in the
data, and ii) the decision maker, who will be better equipped for making its
decision. Indeed, interpretability may mitigate the risk of adoption of machine
learning models for a reluctant decision maker. Besides, the decision maker
can confront its own business logic and intuitions with the inner prediction
process of the model, which may provide novel insights about the forecasting
application. Finally, an increasing number of legal requirements on machine
learning models (e.g., the General Data Protection Regulation 2016/679,
GDPR) push the business entities towards the adoption of interpretable models.

Two distinct methods can be applied for interpretability in neural models
(see Fig. 6.1): i) post-hoc methods, which consist in analyzing an already
trained (black-box) model (e.g., interpretable local surrogates or gradient-based
methods) [184]. However, such methods are limited when applied to multivari-
ate time series as they typically do not consider the temporal dependencies
between features [180]. ii) Intrinsic methods, in which the architecture of
the neural model is directly designed with interpretable components [185], [186].

In post-hoc methods, the surrogate-based approach provides local inter-
pretable insights of an outcome (of a black-box model) by learning a simpler
model based on crafted instances close to the associated input (i.e., small
perturbations are added to the input, which are then labeled by the original
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model). The most well-known method is Local Interpretable Model-Agnostic
Explanations (LIME) developed in [187], which learns a linear model on top of
these perturbed samples for locally attributing an importance value at each
input feature. In the same vein, the Shapley additive explanation method is
developed in [188], which calculates the average contribution of each feature by
comparing the model outcome for different permutations of input feature. On
the other hand, gradient-based methods can also be used to provide insights
of the inner working of neural models. Hence, by computing the gradients
of the network outcome with respect to the input, the obtained values can
represent the sensitivity of the model output with respect to each specific
feature [189]. For instance, in computer vision, the so-called ‘saliency’ maps
(i.e., a 2-dimensional map attributing an importance value for each pixel of an
input picture) rely on gradient-based methods, and allow checking if the model
vision agree with human intuition [183].

Besides post-hoc methods, research efforts have also covered intrinsic
methods, which attempts at imposing interpretability pathways during the
network training process. First, regularization terms can be directly added
to the loss function, for imposing, e.g., sparsity in the neural model (where
only a few input features can interact jointly) [190]. Beyond tweaking the loss
function, the attention mechanism can be viewed as an architectural pathway,
guiding the neural model on how it should process temporal information.
Hence, the attention weights that are computed internally by the model can
thus present some inherent interpretable characteristics. In addition to the
attention mechanism, this Chapter augments the neural model by adding
feed-forward neural layers that are designed to endogenously quantify the
relative importance between input features at each time step before being
processed by the model.

6.2. Probabilistic Forecasting of Imbalance Prices

So far in the report, the (real-time) imbalance prices were obtained by i)
forecasting the system imbalance (Chapter 3), followed by ii) the computation
of the market-clearing proxy of the balancing energy market (Chapter 4).
One drawback of this two-step approach is the implicit adoption of the
simplifying market hypotheses made by the Transmission System Operator
(TSO) when computing the merit order proxies of the balancing energy bids.
This inevitably limits the accuracy of the predicted imbalance prices. In this
context, this Chapter proposes a more straightforward approach, where the
(real-time) imbalance prices are directly predicted. Yet, the prediction of

126



Chapter 6. Towards Interpretable Probabilistic Forecasting Using Neural
Networks

such real-time prices is challenging mainly due to two fundamental causes:
i) the signal exhibits a regime-switching behavior, where it flips from low-
and high-price regimes depending on whether the power system is in surplus
or shortage of generation [191], and ii) price spikes occur more frequently
due to the market’s small size and vulnerability to unexpected changes in
operating conditions, e.g., outages or congestion of transmission lines [40]. It
should be recalled that, in European markets, the term ‘real-time electricity
prices’ may refer to either imbalance or balancing prices, which arises from
the intrinsic segmentation between the energy and balancing markets (see
Chapter 2). Hence, balancing prices remunerate the Balancing Service
Providers (BSPs) for the actual activation of balancing reserves (e.g., an
automatic frequency restoration product), whereas imbalance prices monetize
any real-time energy deviations of Balance Responsible Parties (BRPs)
from their position in energy markets. Both prices are connected since the
imbalance price is based on the marginal price of the activated balancing energy.
In contrast, the real-time electricity prices in US-styled pools are defined
using a locational marginal pricing market, wherein energy deviations and
operating reserves are settled at a unique price for each electrical node. In this
Chapter, without loss of generality and for consistency reason with the rest of
the report, we focus on the probabilistic prediction of (Belgian) imbalance prices.

Despite the inherent difficulty in predicting real-time electricity prices, the
literature is still scarce compared to, e.g., the day-ahead electricity prices – see,
e.g., [192], [193] and references therein. Markov regime-switching models have
been proposed as natural candidates for capturing the real-time prices [191],
[194], [195]. More specifically, Olsson and Söder present a Markov-switching
seasonal auto-regressive moving average model (M-SARIMA) in [194], while
they investigate the introduction of exogenous variables using non-linear time
series models in [196]. In the same vein, Dimoulkas et al. apply a hidden
Markov model for modeling Nordic balancing prices [195], while Bunn et al.
analyze the predictability of British balancing prices using Markov switching
dynamic regression models [191]. Although these models have proved good
properties, one issue arises with the computation of the transition probabilities,
which relies on the well-known Markov property stating that the expected
future state of the process depends only on its present state. To avoid this issue,
Klaeboe et al. perform a benchmark analysis of time-series based forecasting
models for Nordic balancing prices, which tends to show that embedding the
balancing state information (i.e., actual imbalance volumes in the system) in
the forecasting models provide sharper interval forecasts [197]. In that way,
a SARIMA model based on the activated balancing volume is proposed in
[198], and a Holt-Winters model conditioned by the sign of the net imbalance

127



Chapter 6. Towards Interpretable Probabilistic Forecasting Using Neural
Networks

volume is developed in [199]. The importance of the net system imbalance
volume is further highlighted in [200], which shows that this covariate has
the highest explanatory power when used with tree-based ensemble methods.
Overall, the literature shows that capturing both the price-regime switching
behavior and spikes of real-time electricity prices is a non-trivial task [201], [202].

In this Chapter, we propose to use a Transformer model [203] for forecasting
the real-time electricity prices, whose architecture is augmented for fostering its
intrinsic interpretability. Transformers tend to become the novel state-of-the-art
neural model in various tasks such as, e.g., natural language processing [204].
By relying on attention mechanisms solely computed via feed-forward neural
networks, the proposed model is here designed to capture distinct temporal
patterns of the input signal depending on the predicted price regime. In addition,
the model is augmented with subnetworks able to provide direct insights on
the relative importance of each individual input feature [186]. Finally, as deep
learning models are known to be difficult to optimize and require careful tuning
of hyper-parameters, new regularization techniques are leveraged to improve
both the convergence and performance of the proposed model [205].

6.3. Interpretable Transformer Model
The model is designed for generating multi-horizon probabilistic forecasts of

the real-time price λRT for each imbalance settlement period (ISP):

p
(
λRT
t0+1, ..., λ

RT
t0+τmax

|xht0−lmax
, ...,xht0 ,x

f
t0+1, ...,x

f
t0+τmax

)
(6.1)

where t0 is the forecast creation time, lmax, τmax are respectively indices
determining the number of look-back and look-ahead ISP, xh. ∈ Rmh are time
series observed, and xf. ∈ Rmf are future information, e.g., the prices cleared at
the day-ahead stage or calendar information, already known over the prediction
horizon.

From the literature review in [206] and insights of Chapter 3, three major
trends can be identified in the development of neural models: i) deeper
architectures, when adequately designed, increase the ability of the network
to extract meaningful representation from the raw data, ii) convolutional
neural networks or recurrent neural networks – especially, the Long Short
Term Memory (LSTM) – are efficient in learning local spatio-temporal
relationships, and iii) attention mechanisms, which grant the model direct
access to information on specific time steps, enable an improved representation
of long-term dependencies.
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Figure 6.2.: The transformer-based model.

In light of these recent advances, we propose a transformer-based model,
which pursues high-quality probabilistic predictions of real-time electricity
prices, while attaining interpretable insights. The overall model is depicted
in Fig. 6.2. Note that layers in the same color share the same weights. In
addition, the notations FF-NL and FF-L stand for feed-forward networks
using respectively non-linear and linear activation functions, while BLSTM
refers to a bi-directional LSTM network. At the early stage, the mh look-
back observed inputs and the mf look-ahead known inputs are respectively
processed by two distinct variable selection subnetworks, which act as an
interpretable filter that allows the model to disregard any irrelevant inputs
(Subsection 6.3.2). The selected inputs are then handled by bi-directional
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long short-term memory networks, where both backward and forward time
correlations are locally captured (Subsection 6.3.3), followed by a feed-forward
network that computes an additional non-linear mapping if required. For each
time step of the prediction horizon, the Transformer-specific attention layer
selectively identifies the most salient past and future contextual information
over the conditioning range [t0− lmax, t0 +τmax] in a single vector representation
(Subsection 6.3.4). Finally, based on this condensed representation, a direct
multi-horizon strategy is applied, which consists in outputting in one pass the
real-time price’s q-quantiles {λ̂RT

t0+τ,q,∀q ∈ Q} through two successive non-linear
and linear mappings. This strategy avoids error accumulation (which is common
in fully recurrent models) by alleviating the need of recursively feeding the
previously predicted target, while fully making use of the parallel abilities of
hardware such as GPUs. In addition, throughout the model, we repeatedly
used regularization layers and skip connections (Subsection 6.3.5) to control the
complexity of the model and facilitating its training. All the layers are trained
in an end-to-end fashion, i.e., all layers are jointly trained, which guarantees
the consistency of the framework.

6.3.1. Feed-Forward Networks

Feed-forward networks are used for either transforming a n-dimensional
input vector into a d-dimensional vector or applying additional linear and
non-linear mappings. Let xin ∈ Rn be the input vector. The linear mapping of
an FF-L layer is defined as:

xout = xinW1 + b1 (6.2)

where xout ∈ Rd is the d-dimensional output vector, and W1 ∈ Rn×d and
b1 ∈ Rd are parameters to be trained.

An FF-NL layer consists of two linear transformations, with a non-linear
activation function in between:

xout = fELU(xinW2 + b2)W3 + b3 (6.3)

where W2 ∈ Rn×d, W3 ∈ Rd×d, b2 ∈ Rd and b3 ∈ Rd are parameters to be
trained, and f elu is the exponential linear unit (ELU) activation function, which
acts as an identity function for positive values and gets saturated for negative
ones [207].
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6.3.2. Variable Selection Layer
Similarly to Chapter 3, besides calendar information, we have at our disposal

mh = 14 historical covariates xh:t0+1 and mf = 15 known future information
xft0+1:. These inputs are:

• the imbalance price (λh,RT ∈ R1).

• the net activated volume of balancing reserves (NRVh ∈ R1).

• the upward and downward balancing prices (λh,bal. ∈ R2).

• the physical cross-border energy flows with France and Netherlands (φh ∈ R2).

• the produced and forecasted wind and photovoltaic powers with their associ-
ated installed capacities (P {h,f},renew. ∈ R4).

• the produced and scheduled powers of conventional generators (P {h,f},conv. ∈
R3), composed of pump-hydro, gas and nuclear units.

• the measured and forecasted electrical load of the grid (L{h,f} ∈ R1).

• the day-ahead electricity prices (λf,DA ∈ R1).

• the merit order proxies of operational balancing prices, i.e., the TSO expected
prices corresponding to different volumes of activated reserves {−600, −300,
−100, 100, 300, 600} MW (λf,bal. ∈ R6).

It should be noted that all the continuous inputs are firstly min-max
normalized between [−1, 1]. The calendar information (x{h,f},cal. ∈ R6) are
categorical variables characterizing working days, the day of the week, the
hour, the quarter hour, the month and the absolute position of the time
step. Overall, the set of historical covariates xh:t0+1 is composed of {λh,RT,
NRVh, λh,bal., φh, Lh, P h,renew., P h,conv., xh,cal.}, while the set of future known
information xft0+1: contains {Lf , P f,renew., P f,conv., λf,DA, λf,bal., xf,cal.}.

The level of relevance of input variables for predicting a target can be hardly
anticipated. Hence, we train dedicated subnetworks, i.e., the variable selection
layers, jointly with the model to filter out any irrelevant input. This process is
showcased in Fig. 6.3 for the past observed inputs xht0−1 at time step t0 − l.
First, each group within the inputs xht0−l is mapped into a d-dimensional vector,
either linearly for the continuous variables or through entity embeddings for the
calendar information [208]. The entity embeddings learn to map each calendar
information to numerical features in a d-dimensional space. In contrast to the
one-hot encoding methodology, this continuous representation identifies and
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Figure 6.3.: Variable selection layer for the time step t0 − l.

leverages similarities between time steps. Then, all the embedding vectors are
averaged in a unique d-dimensional vector that condenses all the calendar
information. Using a common representation space Rd throughout the model
enables skip connections, which facilitates the training (see Subsection 6.3.5).

The vector Ξh
t0−l ∈ Rgh·d in Fig. 6.3 represents the concatenation of all

the transformed inputs. Once non-linearly transformed, this vector is used
as a basis to compute the feature importance variables ϑht0−l, framed in red
in Fig. 6.3. They are obtained via a feed-forward network with a softmax
function that outputs a vector of gh-dimension. The softmax function ensures
that the values of the output vector sum up to 1 and be positive. The final
d-dimensional input χh

t0−l for the time step t0− l is then obtained by combining
each transformed group of inputs, weighted by their corresponding value in
ϑht0−l. Hence, the elements of the vector ϑht0−l yield a probability distribution of
the relative importance of each group in χh

t0−l, thereby providing interpretable
outcomes (see Table 6.2 of Subsection 6.5.3).

6.3.3. Local Temporal Processing Layer
The input sequences χh,χf are then respectively processed by two distinct

BLSTM networks, whose internal representations are exchanged at the forecast
creation time t0. The BLSTM is composed of two LSTM networks that process
the input sequence in both positive and negative time directions, which allows
to capture both forward and backward local time dependencies. Without loss
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of generality, the output of the BLSTM for the time step t0− l is expressed as:

hforward
t0−l = Hh,LSTM(χht0−l,h

forward
t0−l−1 ), (6.4a)

hbackward
t0−l = Hh,LSTM(χht0−l,h

backward
t0−l+1 ) (6.4b)

υht0−l =
hforward
t0−l + hbackward

t0−l

2
(6.4c)

where HLSTM is the composite LSTM function [121] and {hforward
t ,hbackward

t }
are the internal states of the LSTMs. The output υht0−l is an average of both
forward and backward internal states for keeping the same d-dimensional
representation throughout the model.

Overall, the roles of the BLSTMs are to provide i) an appropriate information
concerning the time ordering of the input sequence, and ii) awareness of the
surrounding elements in the input sequence. Leveraging both time position
and local context have proved to be key elements for computing the attention
scores in the Transformer-specific attention layer [209].

6.3.4. Transformer-Specific Attention Layer

Attention mechanisms are computing layers that provide an abstract rep-
resentation of an input sequence by dynamically weighting its different time
steps. The process is showcased in Fig. (6.4) for the time step t0 + τ , where the
sequence φ{h,f} ∈ RT×d (with T = lmax + τmax) is obtained from υ{h,f} using
FF-NL layers. The sequence φ{h,f} is linearly transformed in three different
vectors, i.e., a query Qt0+τ ∈ Rd, keys K ∈ RT×d and values V ∈ RT×d, via FF-
L layers. The abstract representation At0+τ ∈ Rd is then obtained by weighting
the values V with attention scores αt0+τ ∈ RT , obtained by quantifying the
level of matching between the query Qt0+τ and the keys K:

At0+τ = a(Qt0+τ ,K)V (6.5)

where a(.) is the matching function.

Following [203], we use the scaled dot-product attention as the matching
function a(.):

a(Qt0+τ ,K) = softmax
(Qt0+τK√

d

)
(6.6)

The dot-product yields the similarity of vector Qt0+τ with regard to
the keys K. Higher values of the dot-product correspond to higher rele-
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Figure 6.4.: The transformer-specific attention layer for the time step t0 + τ .

vance between the given key and the proposed query. The scaling factor√
dk is introduced to reduce the magnitude of the dot-product. Then,

the softmax function renders the attention scores αt0+τ as a probability
distribution over all keys K with regards to Qt0+τ . The magnitude of
the attention scores αt0+τ provides direct insights on the contributions of
each element of the input sequence φ{h,f} to predict the real-time price at t0 +τ .

The attention mechanism provides two keys benefits: i) the model is able to
directly access to the most salient contextual information for each time step
of the prediction horizon, and ii) it allows to learn regime-specific temporal
dynamics by using distinct attention score patterns for each regime. These two
benefits are respectively showcased in Fig. 6.10 and Fig. 6.11 of Subsection 6.5.3.

6.3.5. Regularization layer

To control the complexity and facilitate the training of the model, we use a
regularization layer whenever a non-linear transformation is performed. This is
illustrated in Fig. 6.5 for the time step t0 − l when using the BLSTM. The
regularization layer is composed of three modules, i.e., a layer normalization
[205], a gating mechanism [186] and a skip connection [210].

Layer normalization aims at speeding-up the training of the model by
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Figure 6.5.: Illustration of the regularization layer applied to the BLSTM for
the time step t0 − l.

normalizing the inputs at each layer. For this example, the output vector of
the layer normalization is computed as χLNorm,h

t0−l = γ
χht0−l

−µ
σ

+ β, in which µ, σ
are the mean and standard deviation of the elements in χht0−l , and γ, β are
the gain and bias parameters to be trained, respectively.

The gating mechanism allows the model to control the magnitude of the
non-linear transformation of the previous layer. The gating mechanism, which
takes as input χNL,h

t0−l , yields:

χGL,h
t0−l = fσ(W 4χNL,h

t0−l + b4)� (W 5χNL,h
t0−l + b5) (6.7)

where fσ is the sigmoid function, W {4,5} ∈ Rd×d, b{4,5} ∈ Rd are weights and
biases, � is the element-wise Hadamard product and d is the dimension of
the model. If necessary, the gating mechanism could suppress the non-linear
transformation by outputting values all close to 0.

Skip connections allow the model to learn residual functions, which have been
proved to be easier to optimize in deeper architecture [210]. The skip connection
simply performs an identity mapping, which is added to the output of the
gating mechanism (neither extra parameters nor computational complexity is
added). Overall, the gain of performance of using the regularization layers is
analyzed in Fig. 6.9 of Subsection 6.5.2.
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6.3.6. Output layer

The simultaneous prediction of the q-quantiles {λ̂RT,∀q ∈ Q}, with Q
the set of quantiles to predict, are achieved by a FF-L layer at each time
step. To produce these quantiles, the model is trained using the smooth
approximation of the pinball loss [143], where the Huber normH(.) is introduced
for differentiability issues at the origin. The loss function is computed as:

EQ
τ =

∑
q∈Q

{
q ·H(λRT

t0+τ , λ̂
RT
t0+τ,q) λ̂RT

t0+τ,q < λRT
t0+τ

(1− q) ·H(λRT
t0+τ , λ̂

RT
t0+τ,q) λ̂RT

t0+τ,q ≥ λRT
t0+τ

(6.8)

As in Chapter 3, naive rearrangement of the predicted q-quantiles is
conducted in ex-post, i.e., we sort in ascending order the q-quantiles at each
time step of the prediction horizon after they are predicted [129]. This
procedure is also performed for the benchmark.

The learning procedure is carried out with the Adam optimizer, with β1 = 0.9,
β2 = 0.98 and ε = 10−9 [203]. The learning rate δ varies over the number n of
mini-batches (a mini-batch is here composed of 96 sequences, and n = 920 is
equals to one pass over the entire training set), according to the formula:

fLR(.) =
δ√
d

min

(
1√
n
,

n

n1.5
warmup

)
(6.9)

where d is the dimension of the model, while δ = 0.001 and nwarmup = 4000 are
hyperparameters that determine the highest learning rate achieved and the
number of steps to reach it, respectively.

This function-based learning rate is shown in Fig. 6.6, which firstly shows a
linear warmup followed by an inverse square root decay. The warmup phase
allows the model to gradually learn weight parameters without triggering
gradient explosion/vanishing issues. Then, higher learning rate values help to
regularize the model during training by escaping, e.g., saddle points (but too
large values may cause the training to diverge). Finally, the decay policy allows
converging towards a minimum [205].

6.4. Benchmark

The proposed model is compared with the same time series forecasting
models presented in Chapter 3, at the exception that only the two best neural
networks are included. They are recalled below for the reader convenience:
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Figure 6.6.: The function-based learning rate scheduler fLR(.).

• The step-wise averaging model (Step-Avg).

• The probabilistic generalization of persistence (Persistence).

• The Auto-Regressive Moving Average (ARMA) model.

• The quantile regression forest (QRF).

• The gradient boosting regression tree (QGBRT).

• The traditional sequence-to-sequence model (Seq2Seq).

• The Bahdanau-based sequence-to-sequence model (Bahd-Seq2Seq).

The ARMA model is only fed with past imbalance price observations,
while other machine learning models, i.e., QRF, QGBRT, Seq2Seq, and
Bahd-Seq2Seq, have access to the same input data as the proposed transformer
model. Similarly to Chapter 3, we conduct a hyperparameter optimization to
identify the most suited model complexity of each forecaster. This is achieved
through a random search, where the same number of iterations is used across
all benchmarks.

Besides, we also perform an ablation study, in which we investigate the loss in
performance of the proposed model (denoted by Ref) when removing important
parts of its architecture.

• Ref-Att is the Ref model without the transformer-specific attention layer.
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• Ref-VarSel is the Ref model where the variable selection networks are
removed.

• Ref-Bidir is the Ref model where the sequential information fed to the
attention mechanism is injected via sinusoidal functions of different fre-
quencies [203] instead of the BLSTM networks.

• Ref-Reg is the Ref model without the regularization layers.

6.5. Case Studies
We conduct the case study on publicly available data obtained from the

website of Elia Elia_web, i.e., the Belgian Transmission System Operator,
on an Intel® Core™ i7-3770 CPU @ 3.4 GHz with 16 Gb of RAM. The
variable of interest is the Belgian imbalance price λRT. The twelve forecasting
models are implemented using the scikit-learn package, statsmodels package,
and TensorFlow package in Python 3.6. The data spans from 2016-1-1 to
2019-12-31, for a total of four years of data. Specifically, the first three years
of data are used to train and validate the models with a ratio of 85%-15%,
while the fourth year is used for testing. Each quarter-hourly step of the
database is used as a forecast creation time t0. A prediction horizon of 4 hours
is selected, which corresponds to τmax = 16 time steps, and we compute the
5th, 15th, 25th, 35th, 45th, 50th, 55th, 65th,75th, 85th, 95th percentiles of the
target distribution (i.e., |Q| = 11) for each of these time periods. The past
conditioning range lmax is set to 24.

6.5.1. Forecast Evaluation
Fig. 6.7 illustrates the probabilistic forecasts obtained using the proposed

model for the 14th April 2019 at 06H00 and the 14th September at 16H00. It
can be observed that the real-time price signal is properly embedded by the
prediction intervals. Interestingly, larger prediction intervals encompass both
price regimes, while narrower intervals, e.g., {λ̂RT

t0+τ,0.35,λ̂RT
t0+τ,0.65}, attempt to

focus on the accurate future price regime.

Table 6.1 provides the average continuous ranked probability score (CRPS)
scores (defined in Section 3.8 of Chapter 3) of the different models for the
entire forecasting horizon, where the best individual scores are denoted in
bold figures. We observe that the proposed model (Ref) provides the lowest
CRPS scores over the entire prediction horizon, while the other Machine
Learning (ML) methods, i.e., Bahd-Seq2Seq, Seq2Seq, RF and GBDT, are
the second-best models. One reason explaining the gap between ML methods
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(a) 14th April 2019 at 06:00

(b) 14th September 2019 at 16:00

Figure 6.7.: Multi-horizon probabilistic forecasts of λRT on the 14th April 2019
at 06:00 (Fig. 6.7a) and on the 14th September 2019 at 16:00 (Fig.
6.7b).
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Table 6.1.: Evolution of the CRPS score over the entire forecasting horizon for
all the models, where Tot. is the aggregation of the CRPS scores.

Models Tot. t0 + 1 t0 + 2 t0 + 3 t0 + 4 t0 + 5 t0 + 6 t0 + 7
Step-Avg 18.2 18.2 18.2 18.2 18.2 18.2 18.2 18.2
Persistence 23.2 18.47 20.93 21.61 21.4 22.59 23.43 23.74
ARMA 20.92 17.17 19.22 19.86 20.24 20.84 21.18 21.35
RF 18.67 15.69 17.27 17.75 18.02 18.67 18.92 19.01

GBDT 16.82 13.07 15.18 15.86 16.37 16.89 17.24 17.32
Seq2Seq 16.81 15.39 16.36 16.71 16.9 16.98 17.05 17.06

Bahd-Seq2Seq 16.34 14.7 15.88 16.14 16.25 16.42 16.51 16.53
Ref 15.6 12.88 14.5 15.2 15.54 15.79 15.98 16.05

t0 + 8 t0 + 9 t0 + 10 t0 + 11 t0 + 12 t0 + 13 t0 + 16
Step-Avg 18.2 18.2 18.2 18.2 18.2 18.2 18.2
Persistence 23.74 24.24 24.43 24.41 24.34 24.34 24.72
ARMA 21.44 21.59 21.62 21.63 21.66 21.67 21.79
RF 19.08 19.16 19.17 19.23 19.27 19.35 19.43

GBDT 17.45 17.5 17.4 17.36 17.47 17.57 17.47
Seq2Seq 17 16.96 16.94 16.91 16.94 16.93 16.98

Bahd-Seq2Seq 16.52 16.49 16.48 16.46 16.52 16.54 16.74
Ref 16.04 16.02 15.95 15.97 15.95 15.9 15.98

and the other naive and econometrics methods is that only ML methods
fully leverage all the available input information. This tends to indicate that
including exogenous variables in the forecasting models has a positive impact
on accuracy. Interestingly, the naive Step-Avg model achieves an overall better
performance than the autoregressive models, i.e., the Persistence and ARMA
models. It is aligned with the observations in Chapter 3, where naive forecasts
can be hard to beat for real-time market variables. The Persistence model
has the worst performance within the benchmark. By simply propagating
the most recent past realization, the model does not have the ability to infer
the most likely future price-regime of the real-time prices. Even if it includes
a larger look-back window of past realizations, the ARMA model is unable
to perform better than the naive Step-Avg model. Overall, it can also be
observed that the CRPS scores for all models (except for the Persistence) satu-
rate when the prediction horizon is longer than one hour and a half, i.e., for t0+6.

Concerning the ML models, we can see that the neural models, i.e., the Ref,
Bahd-Seq2Seq, and Seq2Seq, outperform consistently the tree-based ensemble
methods (RF and GBDT) over the last time steps {t0 + 6, ..., t0 + 16}. This
can be explained by the fact that different models are defined independently
for each time step t0 + τ for tree-based ensemble methods, whereas the
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neural models are composed of a single model that is iterated over the entire
forecasting horizon. By sharing the parameters in their output layer, the
neural models are able to provide superior performance for longer horizon
forecasts. However, it can be observed that the tree-based ensemble methods
remain very competitive over the first five time steps and that the GBDT
model performs even better than the Bahd-Seq2Seq. We also observe that
RF performs worse than GBDT, which can be explained by the fact that RF
gives an estimate of the conditional distribution from which quantiles are
extracted, whereas the quantiles of GBDT are directly computed through the
minimization of the quantile loss. Finally, both attention-based neural models,
i.e., Ref and Bahd-Seq2Seq, provide the best averaged scores, which suggests
that adding interpretable components within their architecture do not hinder
their prediction performance.

To complement these results, we differentiate the performance of the
models over the prediction intervals {λ̂RT

t0+τ,0.05,λ̂RT
t0+τ,0.95}, {λ̂RT

t0+τ,0.25,λ̂RT
t0+τ,0.75},

{λ̂RT
t0+τ,0.45 , λ̂RT

t0+τ,0.55} using the Winkler score, which respectively correspond
to β = {0.1, 0.5, 0.9}. The results are showcased in Fig. 6.8 for the entire
prediction horizon. For a larger interval at β = 0.1, the metrics of the ML
models are very close to each other, and are significantly below the other
models’ metrics, which indicate that the ML models provide a sharper interval
{λ̂RT

t0+τ,0.05,λ̂RT
t0+τ,0.95}. For such a large interval, the models provide predictions

encompassing both the low- and high-price regimes (in a narrower fashion for
the ML models), but none of the models are able to differentiate the price
regime. Fig. 6.8b shows the Winkler score at β = 0.5. In this case, the metrics
of Ref and GBDT are practically equal, while the Bahd-Seq2Seq and Seq2Seq
perform worse over the first time steps. We observe that the performance of the
RF model starts to deteriorate for narrower prediction intervals. Concerning
the narrowest interval at β = 0.9 (Fig. 6.8c), the metrics of the models are
more stratified. The Ref model clearly outperforms all other models, which is
highly valuable since the 45th and 55th quantiles provide direct information on
the price-regime of the real-time prices. This tends to demonstrate that the
proposed model is able to better detect the likely future regime of real-time
prices.

6.5.2. Ablation Analysis

Fig. 6.9 shows the average CRPS scores over the entire forecasting horizon
resulting from the ablation analysis. First, we can see the importance of the
regularization layers in training our proposed model to facilitate the convergence
of the model. Indeed, the Ref-Reg model achieves the worst performance. The
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Step-Avg Persistence ARMA RF GBDT Seq2Seq Bahd-Seq2Seq Ref

(a) EWt0+τ at β = 0.1 (b) EWt0+τ at β = 0.5

(c) EWt0+τ at β = 0.9

Figure 6.8.: Winkler score EW
t0+τ of all models for β = {0.1, 0.5, 0.9} over the

entire prediction horizon.
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Figure 6.9.: CRPS scores for the ablation analysis over the entire prediction
horizon.

non-attentional model, denoted Ref-Attn, is the second-worst model in terms
of accuracy, which highlights the benefits of the alignment procedure that
provides direct connections with relevant time steps of the surrounding horizon.
This observation tends to reflect the importance of the attention mechanism
to capture different temporal patterns for differentiating the different regimes
of price. Interestingly, we see that injecting the sequential information with
sinusoidal functions of different frequencies (instead of the BLSTM) also worsens
the results during the first quarter hours, but provides better forecasts for the
remaining prediction horizon. Finally, the metrics of the models Ref-Varsel
and Ref are comparable over the entire forecasting horizon. This suggests that
the main interest of adding the variable selection layers consists in providing
more interpretable outcomes.

6.5.3. Interpretability

The interpretable outcomes of the variable selection layers are shown in
Table 6.2. Practically, {ϑh, ϑf} are selection variables that are aggregated for
each feature across the entire test set. Results show that the proposed model
extracts only a subset of key inputs (highlighted in bold) that intuitively play
a significant role in the predictions. Regarding the past available information,
the lagged values of the real-time prices are critical as expected. In addition,
the net activated regulation volume and the calendar information also emerge
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Table 6.2.: Averaged representation of variable selection weights over both past
(left column) and future (right column) data.

ϑ
h

ϑ
f

λRT 0.27 /

NRV 0.26 /

λbal. 0.05 /

φ 0.03 /

L{h,f} 0.01 0.03

P {h,f},renew. 0.11 0.04

P {h,f},conv. 0.05 < 0.01

xcal. 0.22 0.02

λDA / 0.86

λf,bal. / 0.05

as important drivers for the model. Remarkably, the lagged values of renewable
generation bring an additional explanation power to the model. For the known
inputs in xft0+1:, the most dominant driver is the day-ahead electricity price.
However, in our experimental set-up, the merit order proxies of operational
balancing reserves provided by the TSO, i.e., λf,bal., play only a minor role in
the proposed model.

Next, we analyze persistent temporal patterns, which are often key to
understanding the time-dependent relationships between inputs-outputs. To
do so, we average the attention weights over the entire test set, which produces
the averaged attention patterns αt0+τ depicted in Fig 6.10. In this plot, each
contour line perpendicular to the ‘conditioning range’ axis represents the
intensity of the model’s temporal attention for each time step of the prediction
horizon. Over the whole prediction horizon, it can be seen that the model is
mostly focused on the time steps between t0 − 7 and t0 + 16. Such outcomes
can be expected since the real-time price is a signal which includes quick and
abrupt changes. It should be noted that Table 6.2 and Fig. 6.10 are also useful
for model designers, which can use these interpretable outcomes for improving
the model. Indeed, based on Table 6.2, some irrelevant covariates could be
removed from the model, e.g., the variable P f,conv.. Furthermore, the outcomes
of Fig. 6.10 can be used for fine-tuning the length of the past conditionning
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Figure 6.10.: Averaged temporal attention of the model over the entire predic-
tion horizon for both past and future conditionning ranges

range, i.e., a 2-hour look-back window seems already sufficient for our case study.

Finally, we conduct a case-specific interpretable analysis in Fig. 6.11 for the
prediction time steps {t0 +1, t0 +5, t0 +13} of the probabilistic forecasts on 14th
April 2019 at 06H00. Recalling Fig. 6.7a, the forecaster predicts a low-price
regime at t0 + 1, then, it introduces a regime switch at t0 + 5 in order, finally, to
output a high-price regime distribution at t0+13. Fig. 6.11 clearly demonstrates
the dependency between the predicted regimes and the different temporal
importance patterns of the most dominant drivers. Concretely, the temporal
importance of each dominant driver is computed as %it0+j = ϑit0+j · αt0+j, ∀i ∈
{λh,RT,NRVh,P h,renew,xh,cal.,λf,DA}, ∀j ∈ {−lmax, ..., τmax}. It can be observed
that the proposed model tends to rely on the day-ahead prices for predicting a
low imbalance price, while it focuses on past information for predicting a high-
price regime. These observations are further corroborated by the importance
spikes occurring on the conditioning steps {t0, t0−7, t0−21} in Fig. 6.11b and
6.11c, which correspond to past time steps characterized by a high-price regime
(see Fig. 6.7a).
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(a) Prediction time step t0 + 1 (b) Prediction time step t0 + 5

(c) Prediction time step t0 + 13

Figure 6.11.: The attention-weighted importances of the most dominant drivers
over both past and future conditionning ranges, i.e., %it0+j = ϑit0+j ·
αt0+j, ∀i ∈ {λRT,NRV,P h,renew,xcal.,λDA}, ∀j ∈ {−lmax, ..., τmax},
when performing the probabilistic forecasts on the 14th April
2019 at 06H00 for the prediction time steps {t0 + 1, t0 + 5, t0 + 13}
(which respectively corresponds to Fig. 6.11a, 6.11b, and 6.11c).
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6.6. Conclusion
This Chapter proposes a novel Transformer-based model for interpretable,

high-performance multi-horizon probabilistic forecasting of real-time electricity
prices. Such prices are important market signals for market players aiming at
reducing their imbalance costs or maximizing balancing actions. However, their
predictions are highly complex since the prices are characterized by regime
switching behavior and spikes.

In this context, we leverage recent advances in deep neural networks to
provide a new, well-suited approach for predicting real-time electricity prices.
In a detailed case study, we illustrate that the proposed model is able to
outperform state-of-the-art forecasting methods, with a respective decrease
of 4.5% in the CRPS metrics compared with the first benchmark methods,
i.e., Bahd-Seq2Seq. Results suggest that performance and accuracy in deep
learning-based time series forecasting model can be jointly improved. In par-
ticular, the ablation analysis show that enriching the model with attributes
dedicated to yield more interpretable outcomes do not come at the expense of
performance in our case study. In addition, a global analysis of the interpretable
outcomes allow highlighting both the most important features, i.e., the set
{λh,RT,NRVh,P h,renew,xh,cal.,λf,DA}, and the features’ temporal window of the
proposed model (from t0 − 7 to t0 + 16). Finally, a case-specific interpretable
analysis demonstrates the ability of the proposed model to capture different
temporal attention patterns of each input according to the price-regime pre-
dicted. Such an interpretable analysis, based on a purely data-driven approach,
could be replicated in another market framework in order to investigate different
real-time market dynamics.

Chapter Publications
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https://ieeexplore.ieee.org/abstract/document/9464660.
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CHAPTER 7.
Conclusions and Perspectives

This final chapter summarizes the main contributions and findings of this
report, and gives suggestions for further research.

7.1. Conclusions
In this dissertation, novel forecast-driven strategies were developed for

fostering the provision of real-time balancing services in European electricity
markets. Practically, these strategies are studied using an integrated approach,
where the entire value chain, i.e., from forecasting to the decision-making
processes, is modeled for optimizing close-to-real-time the imbalance position
of a Balance Responsible Party (BRP) within the single price imbalance
settlement. Firstly, probabilistic neural models of gradual complexity have
been proposed for forecasting the system imbalance, aiming at better capturing
the temporal dependencies between past observed and future known inputs. In
this line, a sequence-to-sequence Long Short Term Memory neural architecture
augmented with attention mechanisms has showcased high-quality predictions
compared to other competitive prediction models (e.g., tree-based ensemble
methods, feed-forward neural networks or sequence-to-sequence neural models).
Then, for exploiting at best the predicted uncertain market signal, stochastic
decision-support tools, i.e., stochastic programming and robust optimization
model, have been formulated for guiding the imbalance strategy of the BRP.
Results suggest that i) owning high-quality probabilistic forecasts of the
system imbalance, ii) including the impact of the BRP on the balancing
energy market-clearing process, and iii) modeling the uncertainty in the
decision-support tool, improve the economic gains of the BRP. Indeed,
the single price imbalance settlement is not a market per se, but rather a
mechanism aiming at supporting the real-time balancing of the system, and,
consequently, may lead to financial penalties for the unbalanced BRPs. In
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that direction, for a better provision of real-time balancing services, a new
data-driven approach was designed for continuously adjusting the risk policy of
the BRP decision-support tool. The resulting automatic risk-adjusted policy
shows promising economic benefits in comparison with a static (determined
once and for all) risk policy. In all case studies based on real-world market
data of the Belgian power system, the implementation of these forecast-driven
strategies corroborates the key goal of the single price imbalance settlement,
by showing that the BRP can increase its operating profit by optimizing its
imbalance position, while reducing the total net system imbalance. Finally,
research efforts are devoted to improve the designer and/or user confidence in
probabilistic forecasts based on deep neural models, by adding interpretability
pathways within their architecture.

Recalling Chapter 1, this PhD thesis sets the following four research objec-
tives:

1. Attaining high-quality probabilistic forecasts. High-quality prob-
abilistic forecasts of the total net system imbalance are a mandatory
condition for a well-informed out-of-balance position of the market actor.
We therefore investigate novel deep learning-based time series forecasting
tools for generating improved predictions.

2. Developing tailored risk-aware stochastic decision-support tool.
Based on the predicted probabilistic information, novel mathematical
formulations are developed for accommodating i) the small energy volumes
exchanged in real time, and ii) the high uncertainty and risk associated
with these real-time opportunities.

3. Adjusting continuously the risk policy of a market actor. In this
objective, machine learning techniques are leveraged for adjusting, at
each decision step, the risk policy of the Balancing Responsible Party
based on the current state of its expected market outcomes.

4. Adding interpretability in probabilistic forecasts. This objective
aims at incorporating notions of interpretability (i.e., the identification of
the most important input features over time) in deep learning-based time
series forecasters for improving the user confidence in their outcomes.

Chapter 2 proposes a global presentation of the current status of the
European electricity markets, while presenting our market application, i.e.,
the real-time provision of balancing services. Then, each of the following
Chapters follows a one-to-one mapping in relation with each research objective.
Short highlights of each Chapter are given below, providing an overview of the
proposed research contributions.
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Chapter 3 - High-quality Probabilistic Forecasts

Chapter 3 generates multi-horizon probabilistic forecasting of the system
imbalances based on neural networks of gradual complexity. The system
imbalance is a highly variable and uncertain signal, which directly results from
the real-time operating conditions of the system. The anticipation of this
market signal is essential for Balancing Responsible Parties (BRPs) that aim
at providing real-time balancing services. Indeed, the direction of the system
imbalance is in direct relation with the imbalance price regime (either low
via the Marginal Decremental balancing energy Price (MDP) or high via the
Marginal Incremental balancing energy Price (MIP)). The following neural
architectures are assessed and compared: i) shallow (i.e., 1-layer) and stacked
feed-forward neural networks, ii) Long Short Memory recurrent neural networks
and their bidrectional counterpart, and iii) the sequence-to-sequence with
and without attention mechanisms. All these neural architectures have been
detailed, and are sequentially suggested for better capturing the specificities
pertaining to time series forecasting (whose inputs can be composed of past
observed and future known inputs). The outcomes show that advancements in
terms of neural architecture are accompanied with an increase of forecasting
performance. Practically, the sequence-to-sequence Long Short Term Memory
neural networks augmented with attention mechanisms shows the highest
accuracy compared to other benchmark outcomes. This suggests that tailoring
the neural architectures to the temporal specificities of time series forecasting
allows to generate more accurate (tightened) quantiles.

Chapter 4 - Risk-aware Stochastic Decision-Support Tool.

For fostering the provision of real-time balancing services, Chapter 4 proposes
a risk-aware stochastic decision-support tool, which i) is based on a bi-level
structure, that allows mathematically capturing the interaction of the BRP with
the real-time system balancing, ii) includes the system imbalance uncertainty
via robust-based or stochastic programming optimization formulations, and
iii) proposes to manage the financial risk in both optimization formulations,
i.e., by adjusting the uncertainty set for robust-based optimization, and by
including the conditional Value-at-Risk (CVaR) within the objective function
of the stochastic programming. Combining these three mathematical aspects
allows responding to three challenges pertaining to our market application:
i) the committed energy volumes in real-time are inherently small, ii) the
system imbalance is highly uncertain , and iii) real-time balancing services
aggravating the system imbalance incur financial losses. Based on extensive case
studies using real-life market data from the Belgian power systems, outcomes
suggest that i) the bi-level structure is efficient for hedging against the inherent
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small volume of system imbalances and the associated imbalance price regime
switching effect, ii) gains of accuracy in the probabilistic predictions allow
achieving better decisions, and thus, better ex-post economic profits, and
iii) a financial risk management (for conservative risk policies) achieves less
economic losses when the market conditions are unsure, but at the expense of
opportunities costs in favorable situations. This trade-off is more pronounced
for the robust-based optimization, in comparison with the CVaR stochastic
programming, whose ex-post economic profits decrease gradually with more
conservative policies.

Chapter 5 - Automatic Risk Adjustment.
Chapter 5 uses Machine Learning techniques (i.e., linear regression, feed-

forward neural networks, tree-based ensemble methods and k -nearest neigh-
bours) to dynamically and preemptively adjust the risk policy of a Balanc-
ing Responsible Party (BRP) when providing real-time balancing services.
This automatic risk-adjusted approach differs from the commonly proposed
risk policies in the literature, which are time-invariant as based on a single
computationally-intensive out-of-sample analysis. The proposed risk-adjusted
approach is well-adapted for our market application as the real-time system
operating conditions are changing between each decision step (e.g., via the
ramping trajectories due to the hourly time resolution of the day-ahead market).
This approach is tested on two risk-aversion parameters, i.e., the confidence
level of the conditional Value-at-Risk (CVaR) and the budget of uncertainty,
respectively considering both the CVaR-based stochastic programming and
robust optimization frameworks. Both automatic risk-adjusted decision-support
tools are then assessed and tested on extensive numerical analyses, using real-
world market data from the Belgian power system over one year. Overall,
the outcomes highlight the economic potential of adopting a time-dependent
risk policy for both robust-based and CVaR-based stochastic optimizations
in comparison with traditional time-invariant risk policies. More particularly,
regarding robust-based formulation, a dynamic support for defining the uncer-
tainty set is a key element for fostering its ex-post profits, with an increase of
12.3% (when guided by the k -NN technique) compared to the optimal time-
invariant risk policy. In the same vein, the CVaR stochastic program adjusted
by the k -NN model has presented a moderate increase of 4.8% in the ex-post
profits compared with the optimal time-invariant risk policy.

Chapter 6 - Towards Interpretable Probabilistic Forecasts.
Chapter 6 falls within the research line of combining the predictive power of

deep neural models with interpretable features applied to time series. In short,

152



Chapter 7. Conclusions and Perspectives

this Chapter aims at outputting accurate predictions, while identifying the most
important input features of the associated neural model and their interaction.
Developing an interpretable model can be beneficial for i) the end-user, who
will be better equipped for making a decision, and ii) the designer, who can
check that the model does not exploit artifacts in the data. This Chapter
focuses on probabilistic imbalance price forecasting (instead of the system
imbalance), which allows highlighting distinct temporal patterns of the input
signals depending on the predicted price regime. The proposed interpretable
model is based on Transformer, which tends to become the novel state-of-the-art
neural model in various applications such as, e.g., natural language processing.
By relying on attention mechanisms solely computed via feed-forward neural
networks, the proposed model is designed to capture distinct temporal patterns
of the input signal depending on the predicted price regime. In addition, the
model is augmented with subnetworks able to provide direct insights on the
relative importance of each individual input feature. A detailed case study
based on Belgian data over 2016-2019 illustrates that the proposed model
is able to outperform state-of-the-art forecasting methods, with a respective
decrease of 4.5% in the continuous ranked probability score (CRPS) metric
compared with the first benchmark method, i.e., the sequence-to-sequence Long
Short Term Memory neural network augmented with attention mechanisms.
In addition, a global analysis of the interpretable outcomes allow highlighting
both the most important features and the features’ temporal window of the
proposed model. Finally, a case-specific interpretable analysis demonstrates the
ability of the proposed model to capture different temporal attention patterns
of each input according to the price-regime predicted.

7.2. Perspectives

Based on the current limitations of the proposed research work, this Sec-
tion suggests several perspectives for future research. Firstly, three axes of
progression are proposed concerning the decision-support tool providing the
real-time balancing services. Then, different research gaps and perspectives are
presented in regards with energy forecasting based on neural models.

On the Provision of Real-Time Balancing Services

The following three gaps and proposals are identified concerning the provision
of real-time balancing services:

• Perspective 1 - on the temporality of the decision-support tool.
The proposed decision-support tool only considers a single look-ahead
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time step in its formulation, thereby neglecting the fact that here-and-now
decisions are affecting potential future rewards, and, consequently, may
jeopardize future opportunities. Hence, a first natural extension of this
formulation consists in enlarging the look-ahead horizon of the decision-
support tool, which could provide valuable insights regarding temporal
arbitraging opportunities. Indeed, by having a longer view on the market
dynamics, the decision-support tool might anticipate future high reward
- low risk opportunities, and timely secure larger margins of flexibility
for those time steps. In complement, the current decision-support tool
could also be integrated in a more global market optimization framework.
For instance, the provision of real-time balancing services could be also
combined with the continuous intraday market opportunities, which will
permit the flexible Balance Responsible Party to diversify its streams of
revenue with less riskier market opportunities.

• Perspective 2 - on the techno-economic constraints of the
BRP portfolio and intra-period operational scheduling (e.g., with
minute-wise granularity in decisions). In the proposed decision-support
tool, the techno-economic constraints of the BRP portfolio are reduced to
their simplest expression, with only upward and downward 120 MW power
limits. In that direction, a more accurate modeling of the techno-economic
constraints of the BRP portfolio could provide interesting insights on
their practical impact on the provision of real-time balancing services.
Indeed, for instance, a lithium-ion battery energy storage system, facing
higher degradation cost in extreme state-of-charge regimes, may limit its
provision strategy (e.g., by not going deep in its state-of-charge regime)
for extending its service life. In addition, for increasing the total volume
of its balancing services, a BRP may diversify its portfolio technologies,
where i) fast response technologies (e.g., the lithium-ion battery) exploit
their fast ramping capabilities at the initial response, which can then
be relieved by ii) slower power technologies (e.g., thermal units), which
are characterized by higher ramping constraints, for a longer activation
duration. Such a strategy is associated with the development of a multi-
time scale approach, where i) a very-short-time scale formulation (e.g.,
a 1-minute granularity) will model the bridging between fast and slower
response technologies, and ii) a short-time scale (e.g., a 15-minute res-
olution) will take into account the profit opportunities that could be
achieved in the following time steps.

• Perspective 3 - on the automatic risk-adjusted approach. There is
always a gap between expected (in-sample) objective outcomes at different
risk-aversion parameters and the corresponding out-of-sample objective
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outcomes, i.e., their actual realizations, which has been highlighted in the
case studies in Chapter 4. Such a gap can result from a mis-representation
of the decision-support tool (e.g., inaccurate representation of the portfolio
constraints or the market-clearing process) or a mis-modeling of the
uncertainty. For closing this gap, Chapter 5 proposes a Machine Learning-
based supervised framework trained on past trading sessions, which
provides early estimates of the out-of-sample objective outcomes. This
allows selecting the most adequate risk-aversion parameter based on the
maximum value of the early estimates. Instead of a supervised framework,
a Reinforcement Learning approach could be investigated for learning
an optimal risk trading strategy. In this approach, fully data-driven
decisions are given to the BRP, wherein the optimal trading policy is
learned by directly interacting with a market simulator and/or the physical
environment. This framework shows potential for reducing the two-step
automatic risk-adjusted decision-support tool of Chapter 5 into a single
decision-making problem, as the BRP reward would be directly computed
based on the out-of-sample objective outcomes.

On Energy Forecasting
Beyond solely improving the model accuracy, research efforts are still required

for improving the user interaction with deep learning-based solutions. In this
line, three research perspectives are suggested for fostering their practical
adoption in energy industries:

• Perspective 1 - on interpretability in neural forecasters. Although
some notions of interpretability have been touched in Chapter 6, this
research line in time series forecasting deserves more in-depth studies.
For instance, an extensive benchmark study investigating both post-hoc
and inherent interpretable methods could provide interesting insights
on their usefulness for providing human interpretable outcomes in time
series forecasting applications. Besides, interpretability in time series
forecasting may suffer from low intelligibility, i.e., their interpretations
are not easily apprehended by non-expert users. This makes them mainly
beneficial for experts rather than end-users. For leveraging intelligibility,
natural language interpretations based on, e.g., a template approach,
could be researched for directly mapping causal interpretations of the
prediction outcomes into a linguistic structure, where gaps are filled from
the raw interpretation. A simplistic example commenting a wind power
forecast would be: the wind production will be [state]: e.g., high in
afternoon, because we expect [observation]: e.g., a high wind speed.

• Perspective 2 - on adaptability in neural forecasters. In this
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dissertation, forecasting models employ (mini-)batch learning, which re-
sults in estimating the model parameters once and for all on a training
dataset. The predictions models are then deployed online to infer predic-
tions. However, with a changing climate and energy policy frameworks,
new patterns may progressively appear in the data related to the energy
sector, which can lead to a deterioration of the model accuracy over
time. In this setting, one of the key challenges is to correctly balance
the trade-off between plasticity (i.e., the ability of the model to adapt to
new knowledge) and stability (i.e., the ability of the model to retain prior
knowledge). An excessive plasticity can cause catastrophic forgetting of
persistent patterns, while an extreme stability may delay the learning of
new temporal dynamics. For preventing catastrophic forgetting of the
neural models, which can lead to a deterioration of the model accuracy
over time, novel (online) training solutions can be envisaged. Promising
alternatives can be i) the elastic weight consolidation algorithm, which
constrains the most contributing parameters to stay close to their old val-
ues via a quadratic penalty, and ii) an episodic memory-based approach,
where previous knowledge is consolidated by enforcing at least an equal
performance of the model on a representative subset of previous data
samples during the update.

• Perspective 3 - on robustness in neural forecasters. Outputting
probabilistic predictions instead of deterministic ones certainly increases
the robustness of the neural models by quantifying the uncertainty dis-
tribution around the predicted variable. However, several empirical
observations show that neural models can be vulnerable to small pertur-
bations in input data, which rises severe security concerns when applied
in the field. A promising research approach for mitigating such per-
turbations (that can be intentional or not) could be provided by using
an adversarial training scheme, which formulates a min-max regression
problem when training the neural forecaster. This two-step approach
minimizes the neural model in the outer loop, based on firstly crafted
worst-case perturbations that are optimized the inner loop for hurting
the model performance.
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