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Abstract

The events of the last few years, such as the COVID-19 pandemic and the
geopolitical crisis which started in Eastern Europe in early 2022, have thrown
the natural gas and electricity European markets into an unprecedented crisis.
These circumstances have highlighted the need for structural and regulatory
measures to protect end-users from market fluctuations, while accelerating
the transition to more resilient and sustainable systems. At the same time,
the electricity sector is undergoing a profound transformation, with the rise
of distributed energy resources and the growing adoption of decentralized
solutions such as local solar and wind generation or individual storage systems.
The developments reflect a paradigm shift towards more participatory and
smart, consumer-centric energy models. In this context, renewable energy
communities are emerging as key actors in the energy transition, and have
received particular interest from economic, political and academic sectors in
recent years. They are organized entities, gathering consumers and prosumers
allowed to exchange renewable electricity produced locally without resorting to
the traditional wholesale/retail markets. Their purpose is to provide economic,
environmental or social benefits to the members and society, rather than to
make a financial profit.

The main objective of this thesis is to model renewable energy communities and
the various challenges surrounding them using noncooperative game theory. For
that purpose, this work is divided into two parts, exploring a specific problem
that can be modeled with a specific noncooperative game form.

In the first part of the thesis, we study local energy communities composed by
end-users connected to the public electricity distribution network and sharing
common resources such as the grid and their own local generation. We propose
two market designs for the optimal day-ahead scheduling of energy exchanges
within these communities. The first one implements a collaborative demand-
side management scheme inside a community where members objectives are
coupled through grid tariffs, the second allows the valuation of excess generation
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in the community and on the retail market. Two grid tariff structures are
tested, one academic and one which reflects the current Belgian regulations in
terms of grid tariffs. Individuals’ bills are obtained through 4 methods of cost
allocation. Both designs are formulated as optimization problems first, and
as noncooperative strategic games then. In the latter case, the existence and
efficiency of the corresponding (generalized) Nash equilibria are studied and
solution algorithms are proposed. The models are tested on a use-case made
of 55 members and compared with a benchmark situation where members act
individually. We compute the global renewable energy community and members’
individual costs, study the inefficiencies of the decentralized models compared to
social optima, and calculate technical indices such as self-consumption or peak-
to-average ratio. In addition, we investigate the influence of retail electricity
prices on the daily operation of the energy community. A sensitivity analysis is
performed on the retail electricity prices and we measure the impact on the
total community and members individuals costs and interest in joining/leaving
the community.

The second part focuses on the integration of a new member inside an existing
renewable energy community. We propose two distinct approaches. In the
first structure, we model the case of an external user interested in joining the
community, with our without investment contribution. The second approach
examines the situation where the community is the instigator of its own
expansion. This allows us to analyze how the flexibility or thoroughness of
integration processes can influence the community dynamics and its ability
to remain consistent with its objectives. Long-term (investments and tariff
adjustments) and short-term decisions (day-ahead resources scheduling) are
handled by an extensive-form game taking into account the uncertainty linked
to the evolution of the retail market price. In particular, we use the results
obtained in the first part to model and solve the short-term level. We also include
the case where potential candidates and the community present heterogeneous
preferences, reflecting varied objectives and priorities, such as minimizing costs
or CO2 emissions, maximizing return on investments, etc. In addition, we
compare the decision-making processes of candidate users and the community
under uncertainty. Our analysis is based on two distinct theoretical frameworks:
(1) expected utility theory, which assumes perfect rationality on the agents’ side,
and (2) prospect theory, which captures the bounded rationality of individuals
and their biases in risk perception. The models developed were tested on three
renewable energy communities with distinct energy profiles and a varied list of
candidates. Different combinations of preference criteria and parameters of the
decision functions are explored in order to analyze the interactions and impacts
of agents’ preferences and perceptions. The models developed in this part have
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a sufficiently general structure to be extended to other types of decisions and
problems, as well as to a variety of stakeholder profiles.
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CHAPTER 1.
Introduction

1.1. Context and motivation

The events of the last few years, such as the COVID-19 pandemic and the
geopolitical crisis, which started in Eastern Europe in early 2022, have thrown
the natural gas and electricity European markets into an unprecedented crisis
[1]. Retail electricity prices suffered from the same trend: the vast majority of
the contract offer in the retail markets moved from fixed-price to variable-price
contracts, for which the retail price is indexed on wholesale spot markets on a
monthly or quarterly basis. Each member state has taken their own measure to
protect end-users from the sharp increase in their energy costs, with significant
variations between countries, whereas the debate on the relevance of marginal
pricing for wholesale electricity markets resurfaced among policy-makers and
the scientific community (see e.g., [2]). These circumstances have highlighted
the necessity of establishing permanent structural and regulatory measures to
protect end-users from market fluctuations, while accelerating the transition to
more resilient and sustainable systems. Moreover, the growing global demand
for energy is intensifying, placing significant pressure on Europe’s energy
systems. Europe’s energy supply remains heavily dependent on imported fossil
fuels, with certain countries relying extensively on Russian resources. The
emergency to advance towards decarbonization has now gained an additional
critical dimension: ensuring energy security and independence.

At the same time, the electricity sector is undergoing a profound transformation,
with the rise of distributed energy resources (DERs) and the growing adoption
of decentralized solutions, such as local solar and wind generation or individual
storage systems. Technological advancements, combined with increasing envi-
ronmental and ecological awareness among citizens, have facilitated the rise of
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Chapter 1. Introduction

prosumers—individuals who both produce and consume electricity. Prosumers
have the ability to draw energy from or feed energy into the existing distri-
bution network, actively supporting grid operations while reducing reliance
on centralized power plants through self-consumption. Additionally, they can
participate in demand-response initiatives by lowering their energy usage during
peak periods. The European Union has widely acknowledged the critical role of
prosumers in achieving its ambitious environmental goals and emphasizes the
importance of empowering them to fully engage with the energy system. The
developments reflect a paradigm shift towards more participatory and smart,
prosumer-centric energy models.

In this context, energy communities [3, 4] are emerging as key actors in the
energy transition, and have received particular interest from economic, political
and academic sectors in recent years. We are especially focused on Renewable
Energy Communities (RECs) in this work [5]. They are organized entities,
gathering consumers and prosumers allowed to exchange renewable electricity
produced locally without resorting to the traditional wholesale/retail markets.
Their purpose is to provide economic, environmental or social benefits to
members and society, rather than to make a financial profit. Introduced by the
European Union (EU) Commission in its Directive 2018/2001 [6], they aim to
1) place the citizen at the center of the liberalized electricity supply chain, 2)
stimulate local joint investment in renewable generation and storage assets, 3)
unlock flexibility inherently present in Low and Medium Voltage (LV and MV)
distribution networks, and 4) create a stable local economic framework less
subject to wholesale price spikes. In this way, RECs are a promising alternative
mechanism for the transition to a more flexible and sustainable energy system.

Renewable energy communities may give rise to strategic interactions between
community members, who compete for common resources (e.g., the network,
local production surplus, etc.), which are not captured by centralized models.
In traditional optimization problems, decisions are made by a central operator,
such as a community manager, which aims to optimize a single global objective
function (e.g., the REC costs). In practice, community members may pursue
different objectives, sometimes conflicting. Furthermore, they make decisions
that primarily maximize their own interests. Another issue concerns the data
privacy: members may be reluctant to share their personal consumption or
production information at any time of the day. These information could provide
their time of presence at home. Game theory, especially noncooperative games,
offers a suitable framework for modeling these strategic interactions.

Game theory is a mathematical field that provides a set of analytical tools
designed to model and analyze strategic interactions between decision-makers
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Chapter 1. Introduction

[7]. It is based on the fundamental assumption that these decision-makers are
rational [8], in the sense that they seek to optimize their individual objectives
by considering the alternatives available to them, their expectations regarding
uncertainties, and the expected behavior of the other participants. Thanks to
their ability to model complex situations in an abstract way, game theory models
offer a powerful framework for analyzing a variety of phenomena, from economic
dynamics to social interactions and environmental challenges, considering the
sometimes divergent objectives of the players involved. In this context, a
game represents a framework defined in advance by rules, in which a set of
individuals (players) must choose a strategy (action) to follow from a set of
possible strategies. The situation resulting from the combination of decisions
made by all the players, and in some cases by chance, is called a game outcome,
and is associated with a payment or cost for each player. Game theory proposes
solution concepts for classes of games, that systematically describe the rational
behaviors of players and the resulting outcomes, while studying the properties
of these solutions [7].

In this thesis, we focus exclusively on noncooperative games, where each player
acts individually to optimize her own objective, without explicit coordination
with other players. We study two groups of game-theoretic models: strategic
games and extensive games. Strategic (or normal-form) games model a situation
in which all players choose their strategies independently and simultaneously.
Thus, each player chooses her action plan once and for all, and is not informed
of the strategies chosen by the other players. These games are said to be static.
The most popular solution concept for strategic games is the Nash equilibrium.
On the other hand, extensive-form games offer a convenient approach to model
sequential strategic interactions. These games specify the possible orders of
events, so each player considers her plan of action not only at the start of the
game, but also each time he makes a decision. For extensive games, we use the
subgame perfect equilibrium as solution concept.

We would like to emphasize that the application of game theory in the energy
sector is not a novelty in itself. Numerous studies have already demonstrated
its usefulness for modeling and analyzing various strategic interactions in this
field, see e.g., [9, 10, 11, 12, 13, 14, 15, 16, 17]. Therefore, this manuscript
is part of an established academic continuity, while exploring specific aspects
related to RECs and member behaviors.
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Chapter 1. Introduction

1.2. Objectives and contributions

The main objective of this thesis is to model renewable energy communities
and the various challenges surrounding them using noncooperative game theory.
For that purpose, this work is divided into two parts, exploring a specific
problem that can be modeled with a specific noncooperative game form. More
particularly, this thesis aims to develop and provide extensive analysis of
theoretical models that are flexible enough to be adapted to other configurations
or parameters, rather than offering tools that can be directly used as such.
When possible, our models are backed by numerical results.

The first part of the thesis explored the optimal day-ahead scheduling of energy
exchanges and members’ appliances inside renewable energy communities using
normal-form games.

• We extend the existing literature on local market designs for energy
communities by modeling the valuation of local excess generation in-
ternally, and we augment the grid cost structure by considering peak
tariffs and testing an academic and a realistic tariff reflecting Belgian
regulation. We formulated the mathematical problem in a centralized
fashion (i.e., optimization-based), and distributed the REC total costs
among community members ex-post using four allocation mechanisms.
We also developed decentralized models based on noncooperative game
theory, which endogenize cost distribution.

• We carried out an extensive theoretical and empirical study concerning
the existence of equilibria with the decentralized models. We also study
the efficiency of the obtained equilibria via the so-called price of anarchy
(PoA) [18], i.e., we compare theoretically and empirically the total REC
costs obtained at the worst equilibrium with the social optimum obtained
with the centralized formulation. We first show that there always exists
an equilibrium that is a social optimum. We also show that the computed
equilibrium induces a total bill equal to or slightly different from the
centralized solution, meaning that the faster optimization-based model can
be preferred for macroscopic, system-level studies in which communities
may be considered as single economic entities.

• We study and compare the members’ individual outcomes for the central-
ized and decentralized formulations, for each cost distribution. We show
empirically that replacing decentralization with ex-post allocation from
the faster centralized model essentially keeps the same individual invoices
for the three daily billing methods (non-negligible deviations occur for
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the continuous billing scheme with the academic grid tariffs), which is
important information for community managers for billing purposes.

• We perform a sensitivity analysis of retail electricity prices and measure
the impact on the total REC costs. We demonstrate the existence of a
threshold in the import retail price, depending on the difference between
the import/export community prices and the import/export retail prices,
for which the economic gains of operating as a REC increase significantly,
for both grid tariffs. Furthermore, we study the impact on members’
individual bills and interest in joining/leaving the community. We show
that, according to our hypotheses, the realistic grid tariff design is at
least neutral or beneficial in terms of individual costs for each user type,
provided certain cost allocation policies in place.

The second part of this work explores a fairly new topic: the integration of a
new member into an existing renewable energy community. Indeed, European
directives [6, 19] mandate that participation in an energy community be
open and voluntary, adhering to transparent and non-discriminatory criteria.
Likewise, members wishing to leave the community are entitled to a far and
non-discriminatory exit process. However, the lack of detailed guidelines on
these procedures creates ambiguities. This absence of standardized regulations
introduces uncertainties and potential challenges for energy communities. The
contributions made by this work to fill this gap can be listed as follows.

• We present an original approach of the new member integration problem
into an existing REC, modeled using extensive games. The problem con-
siders both long-term strategic decisions (investments, price adjustments)
and short-term decisions (day-ahead schedules). The theoretical models
developed, offer enough flexibility, and can be extended to encompass a
variety of scenarios and stakeholder preference criteria (economic and en-
vironmental). In addition, prospect theory is used to model the bounded
rationality of participants, more specifically on their perception of retail
import prices, providing a better understanding of their behavior under
uncertainty and risk.

• We applied our models to a detailed case study

– An analysis was carried out on the results of heuristic methods
from the literature [20]. Compared to the subgame perfect equilibria
obtained when the community initiates integration, these metrics can
effectively predict the selected profile when the REC has financial
criteria, such as the net present value maximization or the total cost
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minimization. However, their reliability decreases if the REC follows
criteria such as the minimization of carbon emissions or the price
per kWh.

– We conducted an extensive parametric study to demonstrate the
flexibility of our modeling framework. Simulations have revealed
that the outcomes at subgame perfect equilibria, and the behavior
of stakeholders are influenced by various aspects of the problem:
the order of decisions, preference criteria of the candidates and the
REC, as well as the prospect theory. The order of decisions and
stakeholders preference criteria thus modify the strategies adopted,
which can lead to solutions that are more focused on community
or individual objectives, sometimes to the detriment of the other
participant. Furthermore, the integration of prospect theory shows
that stakeholder choices introduce deviations from the behavior pre-
dicted by perfect rationality, thus impacting the final results. These
deviations are mainly due to the parameters of the PT functions
and, in particular, to the reference point selection method.

1.3. Thesis organization
The present thesis covers a wide range of interdisciplinary fields, such as the
energy sector, mathematics, operational research and economic. Thus, we
provided specific chapters dedicated to the contextualization and presentation
of fundamental concepts used in this report. This manuscript is structured as
follows.

• Chapter 2 establishes a general background for the context in which this
thesis is situated. It begins by describing the European electricity supply
chain, with its various system actors and associated markets. It then
introduces the energy communities and identifies the issues addressed in
the next chapters.

The next two chapters constitute the part: "Strategic Games for Day-ahead
Scheduling".

• Chapter 3 provides the necessary mathematical theory and tools for
modeling and solving the developed models in the first part of this thesis.
Hence, some notions and results of convex optimization, game theory and
variational inequality theory are covered.

• Chapter 4 develop two market designs bases that dictate the energy
exchanges inside RECs, taking into account the short-term energy resource
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planning. Two grid tariff structures are also proposed. Both designs are
formulated as optimization problems first, and as noncooperative games
then. The existence and efficiency of the decentralized equilibria are
studied theoretically and empirically. In addition, a sensitivity analysis
of retail electricity prices is applied.

The next two chapters constitute the part: "Extensive Games for New Member
Integration with Investment".

• Chapter 5 introduces the theoretical concepts of extensive games and
prospect theory, offering powerful analytical tools for modeling sequential
strategic behavior. It also presents the prospect theory, that can be used
to describe actual human behavior in decision-making processes.

• Chapter 6 explores the issues involved in integrating a new member
and her investments into an existing energy community, with a particular
focus on extensive game formulations. We analyze different preference
criteria (economic and environmental), as well as the consideration of
stakeholders’ bounded rationality by means of prospect theory.

• Chapter 7 summarizes the main contributions of the thesis and proposed
some perspectives for future research.

The developments underpinning the research contribution in this Ph.D. thesis
are related to mathematical convex optimization, game theory, variational
inequality theory and prospect theory. We use Python [21] and Julia Program-
ming Language [22] together with the modeling language JuMP. We use the
Gurobi solver [23] to optimize the resulting models.

1.4. List of publications
The following publications reflect the research contributions incorporated in
this thesis.

Chapter 4 is based on the three following papers:

• [24] L. Sadoine, M. Hupez, Z. De Grève and T. Brihaye, "Towards
Decentralized Models for Day-Ahead Scheduling of Energy Resources in
Renewable Energy Communities," in Operations Research Proceedings
2022, Springer International Publishing, 2023.

• [25] L. Sadoine, Z. De Grève and T. Brihaye, "Impact of retail electricity
prices and grid tariff structure on the operation of resources scheduling in
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Renewable Energy Communities," in 2023 IEEE PES Innovative Smart
Grid Technologies Europe (ISGT EUROPE), 2023.

• [26] L. Sadoine, Z. De Grève and T. Brihaye, "Valuing the Electricity Pro-
duced Locally in Renewable Energy Communities through Noncooperative
Resources Scheduling Games," under revision in Applied Energy.

Chapter 6 is based on the following paper, which is currently in preparation:

• [27] L. Sadoine, Z. De Grève and T. Brihaye, "New Member Integration
Problem in Renewable Energy Communities: An Extensive Game Study
with Prospect Theory," in preparation.

The following publications have been produced during the course of the PhD
thesis. Although their content is relevant to the overall research context, it is
not directly included in this manuscript:

• [28] J. Allard, A. Rosseel, L. Sadoine et al., "Technical impacts of the
deployment of renewable energy communities on electricity distribution
grids," 27th International Conference on Electricity Distribution (CIRED),
2023.

• [29] J. Allard, L. Sadoine, L. Liégeois, T. Brihaye, F. Vallée and Z. De
Grève, "Rule-based optimization for energy communities demand-side
scheduling and settlement," in preparation.
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CHAPTER 2.
European Electricity System: Towards a
Decentralized Prosumer-Centric System

This chapter provides an introduction to the European electric power system
and the electricity supply chain, a complex interconnected grid linking electricity
production and consumption centers that plays a crucial role in supplying energy
to millions of people [30, 31]. More specifically, it introduces the basic physical
characteristics of the European power grid, the dynamics of energy markets,
which aim at coordinating production and consumption activities, and the
emerging role of prosumers, i.e., consumers who produce and consume their
own energy. This presentation enables a better understanding of the factors
shaping the European power system and the need for the system to adapt to
face growing societal and environmental challenges.

The energy transition to a decarbonized, reliable and sustainable energy system
has become a priority. The massive integration of renewable energy sources (e.g.,
wind or solar) and electrification of end use, rapid technological development,
and growing climate change concerns are key factors in the energy transition,

Electricity System

Electricity Network,
illustrated by physical flows

Electricity Markets,
illustrated by financial flows̸=

Figure 2.1.: The electrical system with the electricity grid illustrated by physical
energy flows and electricity markets illustrated by virtual financial
flows.
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and are profoundly transforming the electricity sector. Indeed, one of the main
technical challenges in electricity systems consists of ensuring instantaneous
balance between production and consumption, so as to ensure frequency stability
and avoid cascade disconnections, which may ultimately lead to a blackout.
Large-scale storage could help in that respect, but is, however, currently beyond
reach, and is limited to specific landscape configurations in the case of the
pumped storage hydro technology (which is also often in conflict with other
land uses). In that context, it becomes essential to adopt the short-term
operational management procedures (e.g., day-ahead scheduling of production
and consumption assets, network reconfiguration, etc.) in electric power systems
to cope with the limited predictability and variability induced by weather-
dependent renewable energy sources, thereby ensuring the instantaneous system
balance and frequency stability. Flexibility, i.e., the ability of production and
consumption to adapt their energy output on short notice following a signal
sent by e.g., the system or market operator, will play a greater role in ensuring
that balance.
Challenges are not only technical but also relate to the economics of electricity.
Indeed, the liberalization of the electricity supply chain, which occurred in the
late 1990s, is now showing its limits more than ever: the events of the last
few years, such as the COVID-19 pandemic and the geopolitical situation in
Eastern Europe, have thrown the gas and electricity European markets into an
unprecedented crisis [1], with markets failing to prevent extra profits from some
producers, highlighting the necessity of new measures to protect end-users.
Although able to ensure coordination between production and consumption
at the European scale, liberalized electricity markets are furthermore failing
to provide stable price signals that stimulate sufficient investment in new
decarbonized generation assets, thereby calling for new market mechanisms,
such as capacity markets, whose efficiency is still open to debate [32, Ch 5].

In parallel, the growing share of decentralized production (e.g., photovoltaic
(PV) panels, wind turbines), affordable Energy Storage System (ESS) and flex-
ible systems like Electric Vehicles (EV) in the residential and industrial sectors,
is underlining the population’s greater sense of responsibility, who is willing to
play a more active role in the energy supply chain. These Distributed Energy
Resources (DERs) are usually connected to electricity distribution networks,
and call for new consumer-centric market mechanisms. These mechanisms must
be able to leverage the flexibility available on the end-user side through in-
creased coordination (e.g., Demand-Side Management (DSM) programs), while
partially protecting consumers against energy crises and creating a favorable
context for investment in local generation and flexibility assets. Among them,
Energy Communities, as formalized by the EU Commission in its Directive
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2018/2001 [6], appear to be a promising alternative, which is further developed
in this thesis.

In the remainder of this chapter, we assume that the electricity system is
European, unless explicitly stated otherwise. Section 2.1 discusses the liberal-
ization process of the electricity system. Section 2.2 provides an overview of the
physical infrastructure of the electricity system , the physics governing energy
flows, and an introduction to the various actors involved and their role in the
system. An overview of the market structures and mechanisms in the European
electricity system is presented in Section 2.3. Section 2.4 discusses some of
the current challenges faced by the system. Then, energy communities are
defined, and the challenges associated with their modeling and implementation
are discussed in Section 2.5. This last section also establishes the scope of this
thesis.

2.1. Liberalization of the electricity system

The liberalization of the electricity system in Europe has been driven by various
political, economic and technical factors. It was also part of a worldwide trend
towards deregulation of previously regulated sectors (e.g., telecommunications,
transport or banking) in the 1990s.

The components of the electricity system are grouped together in the elec-
tricity supply chain. This can be disentangled in the following five functions:
production or generation, transmission, distribution, metering and retailing,
and coordination (namely short-term scheduling of assets while ensuring a
safe operation of the system, long-term planning to anticipate future demand
trajectories, etc.). Since the 1920s, and more particularly after World War II,
the electricity system in many European countries has been organized as a
vertically integrated monopolistic structure where production, transmission,
distribution, electricity retail and coordination were ensured by the same entity
on a given area, as illustrated in Figure 2.2. End-users could only purchase
electricity from this national or regional operator, at prices controlled by the
State or the public utility. In order to break down such a monopoly, the
European Union (EU) decided to deregulate electricity markets to create an
unbundled structure open to competition.

In practice, the production and retail sectors are now open to competition,
whereas network operations (transmission and distribution, depending on the
voltage level) remain regulated natural monopolies (see Figure 2.3). A natural
monopoly corresponds to a situation in which the most efficient way to organize
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Figure 2.2.: The electricity system before the liberalization.

an activity is to entrust it to a single company, which is often the case in network
industries (railway, etc.). In the present case, the infrastructure of transmission
and distribution networks are so capital-intensive that a competition based
on the multiplication (and even simple duplication) of physical infrastructure
could only lead to destructive competition [32].

The overall coordination activity is therefore now shared between natural
monopolies, such as network operators, which do not own production and
consumption assets, and private actors, such as producers, retailers, and more
and more consumers/prosumers. Markets have been introduced at two levels to
ensure coordination between production and consumption: at the production
level first (i.e., wholesale markets with many different time maturities, in
which generators, large consumers and suppliers/retailers interact), and at the
retail level then (i.e., retail markets, in which retailers and small to medium
consumers and prosumers interact). Close to real time, the network operator
remains responsible for the safe physical operation of the overall system, and
rapidly adjusts the production and consumption levels of actors interacting
through markets of "last resort" (e.g., reserve and imbalance settlement) under
its supervision, in order to ensure system balance, voltage stability, etc. These
market structures will be further described later in the present chapter.

Opening up production and retail activities to competition aimed to stimulate
innovation, and improve the efficiency of electricity production and distribution,
thereby reducing costs for end-users. However, after approximately 30 years of
liberalization, the materialization of these benefits is still open to debate. An-
other consequence of market competition is the ease with which new electricity
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Figure 2.3.: Schematic representation of the current electricity system, consist-
ing of the physical network (to the left) and a simplified vision
of electricity markets limited to markets of energy, disregarding
reserve, capacity markets, etc. (to the right).

producers can be introduced. One of Europe’s objectives was to enable greater
diversification of energy sources and thus encourage investment, particularly
in renewable energy installations. Again, the right investments needed for the
energy transition are slow, and the ability of markets to trigger the needed
changes poses questions [33]. Furthermore, new actors have emerged, increasing
complexity and redefining the framework of the electricity system. Their roles
are described in Section 2.2.

National monopolies were largely closed to foreign operators, leading to a
fragmentation of Europe’s electricity markets. Each country operated almost
in isolation with little interconnection between power grids; thus some coun-
tries could be more vulnerable to energy shortages or price fluctuations. The
European Commission wanted to harmonize and integrate national electricity
markets by creating common guidelines and rules. This enables better coor-
dination between member countries, to promote fair competition and protect
final users while guaranteeing a stable and secure energy supply. The ACER
and ENTSO-E agencies were created, which correspond to the aggregation of,
respectively, European regulators and electricity transmission system operators.
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In 2019, the European Commission delivered the "Clean Energy for all Euro-
peans" package, which provides a crucial legislative framework for the European
Union to achieve its climate objectives for energy transition and carbon emis-
sion reduction, while pursuing the integration of competitive and sustainable
energy markets [34]. This package also places a strong emphasis on the rights
of electricity end-users. It introduces measures to enable them to participate
actively in the electricity supply chain, notably through dynamic contracts,
self-generation (e.g., PV, small wind turbines) of electricity and flexible man-
agement of their consumption (e.g., via smart metering technologies). It also
introduced the concept of energy communities in its legislation: we refer to
Section 2.5 for more details of this new mechanism. Consumers can choose their
supplier more easily and are better protected against abusive market behaviors.
Another package was released in 2021 with the aim of aligning the EU’s energy
targets with the new climate ambition for 2030 and 2050.

In short, the liberalization of electricity markets in Europe was aimed at
improving competitiveness, efficiency and market integration, while supporting
the energy transition and guaranteeing lower prices for consumers. Although
the materialization of these benefits raises questions is still open to debate, we
are currently undergoing a reform of the electricity system.

2.2. System structure and participants
The current electricity system is composed of physical infrastructure and of
organized electricity markets. In Europe, electricity flows under the form of
Alternate Current (AC) energy through a complex physical infrastructure,
wherein a wide range of components (e.g., alternators or generators, trans-
formers, protection devices, physical transmission and distribution lines, power
electronics converters such as inverters, decentralized generation, and industrial
and domestic consumption) are interconnected across a wide geographical area.
The physical infrastructure is commonly subdivided into two parts 1) the
transmission system and 2) distribution systems. Most electricity is produced
by large power plants connected to the transmission grid. The transmission
network is meshed and is composed of the high and very high-voltage (HV)
three-phase lines (400kV-30kV in Belgium), which carry the electricity gener-
ated over long distances at national and international levels, and then feeds
geographical zones through distribution grids. Note that large industries can
directly be connected to the transmission grid (see Figure 2.4). Distribution
grids are radial and include the medium (MV) and low-voltage (LV) lines (from
30kV to 230V) which supply industrial and residential consumers.
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Figure 2.4.: Simplified representation of the electrical grid.

The AC power system relies on a constant balance between production and con-
sumption, as any difference can affect grid stability. This is because electricity
is one of the few energies that cannot be stored efficiently at a large scale and
for long periods of time. Current solutions, such as batteries or pumped-storage
stations (whose deployment is restricted by the land and relief requirements
for installation), are still very expensive and limited in capacity, and raise their
own environmental concerns. Any imbalance between offer and demand affects
the grid frequency, which must remain stable (the nominal frequency is set at
50 Hz in Europe). A significant deviation in frequency can lead to malfunctions
of electrical appliances and cascade disconnections, which may ultimately lead
to the collapse of the network (or blackout). As a result, electricity must be
consumed immediately after it is produced, and a constant balance must be
maintained between production and consumption. This balance is monitored
and maintained physically by the transmission system operator and economi-
cally by balancing responsible parties, as described in the next sections. The
increasing share of renewable generation, such as wind and solar power, which
depend on the weather, makes production more intermittent and difficult to
predict, thus complicating the balancing task.

Electricity flows cannot be guided easily, although modern power electronics
converter systems, such as Flexible Alternating Current Transmission Systems or
FACTS, provide new, but still expensive, possibilities for controlling electricity
flows in high-voltage AC lines. Electricity follows naturally the path of least
impedance through Kirchhoff’s laws, which may cause technical issues such
as over/undervoltages or congestion when production and consumption are
dispatched though markets that do not endogenize all the grid constraints. In
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that case, the transmission network operator may handle the issues with its own
assets (e.g., on-load tap changers, etc.), but if not sufficient, may contract with
market actors to get the needed support, though ancillary services markets.

2.2.1. Producers
In liberalized electricity markets, producers are private companies. They
generate electricity by operating and owning large power plants or renewable
energy source farms, which are usually directly connected to the transmission
grid. Energy producers aim to maximize their profits by selling their generations
to the wholesale market, interacting with balance responsible parties. Note that
producers can also act as electricity retailers: we speak of vertical integration
of production and retail activity. Different production costs are possible,
depending on the level of technical complexity of energy generation. Some
examples of producers in Belgium: ENGIE (Electrabel), Luminus (EDF group)
or Eneco which focuses exclusively on solar energy, wind power and biomass.

2.2.2. Transmission system operator
The transmission grid is managed by the Transmission System Operator (TSO).
It owns, maintains, operates and builds the physical infrastructure of the
transmission network in order to integrate the development of new generation
facilities and interconnect the neighboring countries. It acts as a market
facilitator and ensures that all customers have equal (non-discriminatory)
access to all resources necessary for their trade. In exchange for being granted
a regional monopoly, the TSO must accept that the regulatory authorities will
determine its revenues by fixing for instance transmission grid tariffs paid by
end-users. The generation and consumption balance is ensured in last resort
by the TSO, which is legally prohibited from owning power generation units.
So, it is not able to ensure directly by itself the stability of its network and
operates dedicated markets (reserve and imbalance settlement, see later), but it
can monitor and coordinate the different actors of the system while preventing
voltage violations and line congestion. In Belgium, the company responsible of
the transmission system is Elia. The organization managing the coordination
among the different national TSOs is the European Network of Transmission
System Operators (ENTSO-E).

2.2.3. Distribution system operators
The safe operation and planning of the electricity distribution system is man-
aged by Distribution System Operators (DSOs). They own, maintain and invest
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in the distribution grid infrastructure, which connects most final end-users
(households, small and medium-sized enterprises (SME), and public infrastruc-
ture). They install electricity meters and communicate the metering to the
suppliers. Each DSO has a regulated monopoly on a defined area. End-users
are therefore dependent on a DSO based on the location of their point of
connection, and cannot choose their DSO. Similarly to the transmission system,
the costs associated with the management of the network, known as grid fees,
are passed on to the final end-users via regulated tariffs. Some regional DSOs
in Belgium: ORES (Wallonia), Fluvius (Flanders) or Sibelga (Brussels).

The roles and missions of distribution system operators (DSOs) are currently
evolving in the presence of increasing decentralized generation (e.g., PV farms,
biomass) and the emergence of prosumers. They now have to manage a network
where electricity flows are bidirectional: not only from large producers to
consumers, but also from small local producers to the upstream grid. This
means modernizing the distribution network to absorb these new local resources,
and implementing intelligent solutions to ensure network flexibility and stability.
They also have to adapt to an increasing electrification of end uses (e.g., mobility,
heat/cold), in line with the decarbonation of society. They play a crucial role
in the energy transition, facilitating the integration of renewable energies and
demand-side management systems.

2.2.4. End-users
End users are energy consumers of various sizes, spread throughout the system.
These include residential households (connected to the LV network and buying
energy on the retail market), small and medium-sized enterprises (SME) or the
tertiary sector (connected to the LV or MV network and buying energy on the
retail market), as well as large industrial actors (connected to the HV network,
which are able to participate directly in the wholesale market). They obtain
their energy from the main grid by contracting a supplier of their choice.

In recent years, with the development of decentralized production technologies,
the role of end-users in the electricity system has evolved with the emergence of
prosumers. A prosumer is an end-user who is both a consumer and a producer
of electricity. Prosumers produce part of their electricity locally using personal
generation installations, such as PV panels, mini wind turbines or cogeneration
systems. If their production exceeds their electricity needs, prosumers can
inject this surplus into the main grid and/or store part of it using domestic
storage technology. On the other hand, if their production does not meet their
consumption, they extract energy from the grid. This new role changes the
dynamics of the electricity market, making users more active and independent
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of centralized producers. It also has an impact on power grid management,
particularly in terms of flexibility and the balance between production and
consumption.

2.2.5. Retailers

Introduced during the liberalization, retailers are intermediate actors who
make the link between the wholesale and retail markets. Retailers or electricity
suppliers are companies that either own generation means and/or buy electricity
from the energy markets, and sell this energy to end-users. Suppliers compete
in the retail market on their electricity prices, which is considered a commodity.
End-users can freely choose their supplier based on the different pricing plan
offers. Suppliers can offer several types of contract to set themselves apart
from the competition; they can propose different durations (one or more years),
attractive prices or tariff formulas (fixed tariffs or based on real-time market
fluctuations), or provide electricity exclusively from renewable sources. They
also propose specific commercial contracts for prosumers, where the retailer
can buy the electricity surplus injected by the prosumers.

Retailers are also responsible for the billing, which compensates the other
implied parties (TSO, DSO, public authorities, etc.). This billing differentiates
into different components: energy commodity (subject to competition), grid
fees as well as taxes and levies (regulated).

2.2.6. Balancing responsible parties

Balance Responsible Parties (BRPs) are entities appointed by the TSO to help
maintain the balance between generation and consumption on the network.
It can be either a producer, an important industrial company, a retailer or a
trader. Each BRP must forecast and take all reasonable measures to preserve
the balance between injections, off-takes and commercial exchanges within
a portfolio of one or more access points. Thus, it has the responsibility of
composing a daily balancing schedule of its portfolio on a quarter-hourly basis.
BRPs are financially responsible for the potential imbalance. Producers and
large consumers can ensure this role, while residential end-users are usually
represented by suppliers, which act as a BRP.

2.2.7. Aggregators or flexibility service providers

An aggregator or a flexibility service provider is a third party that combines and
manages the flexibility of several consumers, prosumers and small decentralized
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generation units. Electrical flexibility is the ability to voluntarily increase or
decrease production or consumption compared to normal usage, in response to
external signals or local measures. Such portfolios have a significant volume,
capable of intervening in the markets. Aggregators provide balancing services
to the grid operator to compensate for the imbalances in the power grid during
consumption peaks (e.g., cold waves) or excess energy on the grid (too much
solar or wind power) by adjusting generation and consumption, or may provide
other types of flexibility services linked to voltage and congestion management,
etc.

2.2.8. Regulators
The liberalization introduced independent organizations called regulators to
monitor both regulated and market-related activities (which does not mean that
the system was not regulated nor monitored during the monopolistic era). Reg-
ulators are entrusted to ensure transparency and competitiveness in electricity
markets, with the driving goal of serving the public interest. They aim to pro-
tect end-users by monitoring energy prices and illegal market behaviors. They
also ensure that the regional, national and European regulations are correctly
integrated into the market operations. The federal Belgian organism in charge
of the regulation of the Belgian transmission system, of nuclear generation,
of offshore wind generation, etc. is the CREG (Commission of Regulation of
Electricity and Gas). The regional regulators (VREG, CWaPE and Brugel)
have local responsibilities pertaining to regions: distribution network tariffs,
renewable energy subsidies, new regulations on energy communities, etc. The
ACER is the entity gathering regulators at the European level.

Figure 2.5 provides an overview of the main interactions between the actors
and the main electricity markets (see Section 2.3).

2.3. Electricity markets
In contrast to conventional financial markets, where commodities or assets
exchanged are often intangible or easily stocked, the characteristics of electric-
ity strongly influence the way in which this commodity is traded. Demand
varies greatly throughout the year, but electricity cannot be economically (and
physically) stored on a large scale and must be produced, transported and
consumed in real time. It is also necessary to balance production and con-
sumption to maintain system security and stability. Another distinction lies
in the separation between economic and physical flows. In electricity markets,
financial exchanges are virtual. They take the form of contracts or transactions
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Figure 2.5.: The main actors and their interactions within the electricity mar-
kets.

between buyers and sellers, which establish the price and quantity exchanged.
These economic flows do not, however, directly influence the path taken by
electricity, which obeys complex physical lows.

These specific constraints make electricity markets fundamentally different from
other commodity or financial markets. Therefore, there are various markets to
answer different needs at different time horizons and ensure a proper operation
of the electricity supply chain. These markets are structured around three
fundamental elements: the nature of the product traded, the time of the trade
and the place of delivery. The general structure of electricity markets can be
summarized as in Figure 2.6.

Figure 2.6.: General structure of electricity markets.
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2.3.1. Wholesale electricity markets

The wholesale electricity markets are places where electricity is bought and sold
in large quantities, generally between producers, suppliers and large consumers
(e.g., industries). Two types of electrical energy exchange coexist in Europe:
1) over the counter (OTC) markets and power exchange (PX) markets. In
OTC markets, the participants negotiate one with another (bilateral contract)
without a central physical location. The main advantage of such contracts
is that they can be completely customized to fit a customer’s requirements
on electricity volume and prices, time horizons, without others knowing the
details of the transaction. Such exchanges have little transparency and are
less regulated. PX markets offer full electronic platforms for multilateral and
anonymous transactions. Markets are differentiated according to their time
horizon.

Long-term markets

The long-term markets enable participants to exchange electricity for future
delivery (from day-ahead up to a few years). These contracts guarantee a price
and quantity well in advance, limiting exposure to price fluctuations on the
spot markets. These are referred to as forward contracts on OTC markets and
futures contracts on power exchange markets.

Day-ahead markets

In the Day-Ahead (DA) markets, electricity is exchanged for next-day delivery
(D-1). Each day, BRPs submit their offers or bids on the platform for each hour
of the following day. For each time step of the horizon considered, prices and
volumes are cleared based on a merit order mechanism. The market price (π∗)
and volume (Q∗) (or the market equilibrium) are provided by the intersection
of the supply and demand curves as represented in Figure 2.7. The supply
curve represents the available electricity quantities that producers are willing
to sell at their minimum prices. The higher the price, the greater the supply.
Meanwhile, the demand curve shows the quantities demanded by consumers at
the maximum price they are willing to pay. The lower the price, the higher the
demand.

The market clearing process matches the offers and bids to obtain the market
prices and volumes for each hour of the next day, which corresponds to maxi-
mizing the social welfare of the market under perfect competition hypotheses.
Social welfare is equal to the difference between total utility demands and the
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Figure 2.7.: Market Equilibrium: the clearing price π∗ and volume Q∗ are set
by the intersection between demand and supply curves.

total cost of generators. It can also be seen as the sum of consumers’ and
producers’ surpluses.

Based on these prices, the BRPs will self-schedule the generation and flexible
consumption assets within their portfolio, so that the day-ahead spot market,
beyond setting prices for the upcoming day, is implicitly responsible for the
effective dispatch of generating units for the next day.

Prices can be influenced by several factors, such as demand forecasts, variable
power plant costs and weather, which affects renewable production. Further-
more, if renewable generation is abundant, its very low marginal costs tend
to drive down prices on the DA markets. On the other, when production is
limited, prices can rise quite a lot. The Belgian market operator is EPEX
SPOT (or Belpex). The day-ahead contracts can also be negotiated through
OTC markets.

Intraday markets

The intraday markets are continuous markets that enable electricity exchanges
for same-day delivery, with transactions closing up to five minutes before
actual delivery, in order for BRPs to balance their portfolio closer to real time.
These typically involve organized OTC transactions that are regularly settled
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through PXs. These markets are particularly important for managing potential
discrepancies between forecasts made in day-ahead and actual conditions (e.g.,
weather forecasts not as accurate as expected), or for reacting to sudden
unforeseen changes, such as power plant outages. BRPs can thus intervene
quickly to adjust their transactions to balance their portfolios.

2.3.2. Ancillary services and balancing markets

Since the liberalization of the electricity market, transmission system operators
(such as Elia in Belgium) no longer own the generation assets they need to
ensure the security of electrical system operations. Consequently, they procure
the services needed to maintain grid stability and balance via contracts with
specific providers. These ancillary or system services include mechanisms
such as frequency and voltage regulation, the provision of power reserves, and
black-start services.

We focus here, more particularly on balancing services settled through reserve
markets. Although BRPs take every precaution when participating in the spot
markets (i.e., day-ahead and intraday) to achieve the best possible balance in
their portfolio, real-time imbalances may remain. Real-time imbalances are
corrected by the TSO using balancing products purchased on the balancing (or
reserve) markets so as to ensure frequency stability. A range of products with
different response speeds are available (Figure 2.8):

• The Frequency Containment Reserve (FCR), or primary reserve, should
be active within the 30s to stabilize the network frequency in the case of
an imbalance between production and consumption. It is automatically
activated in response to a real-time frequency deviation.

• The automatic Frequency Restoration Reserve (aFRR), or secondary
reserve, corresponds to a type of reserve that must react in 5 minutes
in order to gradually restore the frequency to its constant level of 50 Hz
after the FCR response.

• The manual Frequency Restoration Reserve (mFRR), or tertiary reserve
should be activated by the TSO when facing a large and persistent
imbalance. This reserve typically engaged within 7 to 15 minutes.

Usually, reserve markets entail two payments to the service provider: a payment
for capacity procurement (whether it is activated or not), as well as a payment
for the effective activation of balancing resources.
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Figure 2.8.: Frequency restoration process. Source [35].

2.3.3. Imbalance settlement

The imbalance settlement is a real-time electricity market, in which BRPs
are financially penalized or rewarded. BRPs are penalized for their individual
imbalances that which worsen the overall balance of the electrical system,
whereas those which helped maintain system balance are rewarded. The cost
or gain received for each BRP is directly linked to the costs faced by the TSO
for procuring and activating balancing reserves (see [36]).

2.3.4. Capacity markets

The price signals sent by long-term and spot markets are not sufficient to trigger
investment in the generation assets needed to ensure coverage of demand, which
are particularly CAPEX-intensive. This is partly due to the extreme volatility
of electricity prices on spot markets, which do not reassure private investors
who seek stable profits and high returns on investment.

The second main explanatory factor is the so-called missing money problem.
Indeed, under perfect competition and additional (strong) hypotheses, it can
be shown that profits made by inframarginal producing units (i.e., units whose
marginal production costs are below the market equilibrium price) are just
sufficient for producers to compensate for their fixed costs (i.e., investment plus
operation and maintenance costs), and ensure the renewal of the electricity
generation mix. This is verified provided that the market price is authorized
to take extremely high values (usually assumed to be equal to the Value of
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Lost Load or VOLL, i.e., the value attached by large consumers to shed their
scheduled demand) for a few hours a year, corresponding to peak demand
situations. In practice, regulators and public authorities are reluctant to let
wholesale prices reach values of tens of thousands of euros per MWh, so that
they tend to impose caps on market prices (4000€/MWh in Belgium currently).
This leads to a situation where power plants, and especially peak units, which
are in-the-merit only a few hours a year, do not recover their fixed costs, leading
to the missing money problem.

Capacity markets have been introduced to mitigate that phenomenon, i.e., to
provide an additional stable source of revenue for actors so as to trigger invest-
ment in generation assets. In Belgium, Capacity Remuneration Mechanisms
(CRM), which are based on an auction system, have been introduced in 2021
(more information on [37]). Scarcity pricing, which can coexist with capacity
markets, is another option investigated in [38].

2.3.5. Market coupling

We review briefly here the market coupling mechanisms in application in Europe.
The EU is divided into different market zones, corresponding to countries (or
regions depending on the case). The Belgian market zone is implicitly coupled
with other European market zones through a mechanism known as market
coupling.

The principle in day-ahead markets is to match the highest purchase bids
with the lowest sales offers, regardless of the bidding zone in which they have
been introduced (i.e., demand in Belgium ’sees’ cheap production in Spain,
which would not have been possible without coupling), while accounting for the
available cross-border transmission capacities through the so-called Flow-Based
Market coupling. The EU day-ahead market is currently cleared with a single
complex optimization algorithm called EUPHEMIA. This results in clearing
prices for each market zone, which are identical in the absence of cross-border
congestion and may differ in case of congestion. The energy and interconnection
capacities are thus traded together.

2.3.6. Retail electricity markets

The retail markets are supposed to allow consumers and prosumers to benefit
from advantageous prices thanks to a certain number of competing suppliers.
With deregulation, customers can now choose their supplier contract, which
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varies according to the commodity rate (fixed, variable or dynamic) proposed
over a period of time, the energy origin and the services offered.

In fact, the electricity price per se is the only aspect of the energy bill that
is subject to competition. The rest of the costs are regulated and uniform
regardless of the supplier chosen. Under normal conditions (i.e., no energy
crisis like the Ukrainian crisis), around 50% to 70% of the final bill comes from
grid fees set by the TSO and the DSO, and various taxes and contributions
imposed by the state (e.g., taxes to support renewable energies).

The current electricity bill for a domestic user in the Belgian framework is
composed of several components:

1. Commodity costs. The energy cost depends on the end-user’s consumption
and the commodity price defined by the supplier. This price represents
the electron price and is subject to competition.

2. Distribution costs. These costs may be divided into three portions,
depending on the country and region: 1) the energy (or volumetric)
part, which is proportional to the kWh consumed by the end-user over
a given period; 2) the power (or capacity) part, which depends on the
peak consumption of the consumer over a given period (e.g., the last 12
months); and 3) fixed costs depending on the max contracted power at
the point of connection, including the metering and other management
fees of the distribution network by the DSO.

3. Transmission costs. The transmission costs pertain to the electricity
transmission grid and are regulated, and may follow the same structure
than the distribution tariffs, although with different unit prices.

4. VAT and taxes. These costs are collected by public authorities and
include energy policy enforcement, subsidies to renewable energies, public
lighting, and other taxes.

All these costs are collected by the supplier or retailer, and grid components are
passed to TSOs and DSOs, whereas taxes are passed to the public authority.
The DSO is in charge of the metering of electricity.

An estimation of the electricity bill components of the Belgian invoice for a
Walloon residential consumer in August 2024 is provided by CREG [39].

Energy Communities, which will be detailed later on, consist of new market
mechanisms that occur at the retail level.
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2.4. Some current challenges for the electrical
system

The electrical system is undergoing a profound transformation as it faces chal-
lenges posed by climate change, technological advances and evolving regulatory
frameworks. This section displays two key dimensions of these challenges: the
decarbonization of society and the changing roles of actors within the energy
system.

2.4.1. Decarbonization of society

The events of the last few years (the COVID-19 pandemic and the geographical
situation in Eastern Europe in early 2022) have significantly stressed natural
gas markets in the EU, which has in turn driven wholesale electricity prices to
unprecedented peaks and volatility in most EU countries [1]. In addition, the
global demand for energy is becoming even more pressing, meaning therefore
that Europe is facing considerable energy pressure. Europe’s energy supply
still relies heavily on imported fossil fuels. What’s more, some countries have
been relying heavily on Russian supplies. The need to make rapid progress
towards decarbonization has taken on an entirely new dimension, namely that
of energy security and independence. In response to the energy crisis, the EU
launched the REPowerEU plan in 2022 to reduce its dependence on Russian
fossil fuels and accelerate again the transition to renewable energies. The
solutions are similar to those proposed to address climate change: promote
renewable energies, encourage innovation in new energy sources and vectors
and optimize energy use, minimizing consumption through gains in energy
efficiency and/or better energy sufficiency.

Challenges emerging from the production side

Massive integration of renewable energies, such as wind and solar, brings some
challenges due to their intermittent nature and decentralization. The intrinsic
uncertain nature of wind and sun raises the issue of availability. The wind
speed and the solar radiance fluctuate along with the meteorological events,
whereas classic power plants are fully or partially controllable. This drop
in controllability creates a greater need for flexibility in the power system to
maintain the balance between production and consumption at any time. Several
solutions are emerging to deal with this intermittency at different levels.

Intermittency of renewable generation. The intermittency of renewable
generation can be counteracted by leveraging flexibility on the demand-side
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at a local level. Consumer flexibility means adjusting their loads according
to production availability, rather than just modulating generation to meet
demand. It is based on several mechanisms and programs; these latter are
referred to as Demand-Side Management (DSM) [40], which enable electricity
consumers’ demand to be adapted in real times by giving them particular
incentives. These techniques encourage consumers to reduce or shift their
consumption during periods of high demand or low renewable production. They
receive financial compensation or benefit from more advantageous tariffs in
exchange. End-users can also modulate their loads according to market signals
via dynamic tariffs. As mentioned in the subsection 2.2.7, aggregators pool the
flexibility capacities of several end-users to create a significant flexibility offer
on the electricity markets. An appropriate regulatory framework is needed to
ensure fair remuneration for services rendered to the power system and there
develop consumer flexibility to its full potential. Flexibility consumption has
the potential to flatten consumption peaks and manage RES variability. It is
an important lever for reducing capacity needs.

Another solution is to develop storage technologies connected to the power grid
to smooth out renewable production fluctuations. Electricity can be stored
by electrochemical means or by coupling electricity with other energy vectors.
Energy storage provides flexibility to balance supply and demand on the grid,
by storing excess electricity produced during periods of high generation and
releasing it during periods of low production. They are deployed in a centralized
way, notably through large installations coupled with PV or wind turbine parks.
Pumped-storage hydropower is the most widely used. At the same time, there
is growing development of domestic or industrial storage systems, mainly via
batteries with the lithium-ion battery currently the most common in these
applications. Although the cost of batteries has fallen considerably in recent
years thanks to the increasing production of electrical vehicles (EV), market
disruption and competition between manufacturers of these vehicles have led to
higher prices for the key minerals used in battery fabrication, notably lithium.
Therefore, further cost reduction depends not only on technological innovations,
but also on the evolution of the prices of these minerals [41].

Decentralization of generation. The increase in small-scale production
units, such as PV panels on households and local wind turbines, is revolutioniz-
ing grid management. Once centralized, the system is becoming a decentralized
paradigm more complex to manage at the distribution grid level. The distribu-
tion networks were indeed originally designed for the transit of unidirectional
power flows from the transmission grid to end-users. They now interconnect
an ever-growing number of decentralized production units, storage units, and
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consumers and prosumers increasingly able to modulate their consumption
based on signals and market prices. This development goes along with an
ever-increasing need for coordinated active network management of these units
to handle bidirectional flows, guaranteed grid service quality and optimized
use of generation and storage resources. Indeed, the distribution grid has to
manage local injections of electricity, which can lead to congestion or power
surges if left unchecked. Furthermore, if not effectively monitored, this can
lead to "PV tripping", i.e., the forced reduction of solar production when the
grid can no longer absorb the energy surplus. Active network management
helps limit these losses by integrating solutions such as DSM, local storage
and microgrids. This requires investment in digitization and real-time network
monitoring.

Given the low energy density of renewable energy sources, such facilities usually
have much smaller power capacities and require more space, but they have the
advantage of being able to be installed closer to the load they serve through
the distribution grid. Energy density refers to the amount of energy produced
per unit area. This leads to offshore developments and can pose challenges in
terms of cohabitation with other land uses (fishing, shipping). For instance,
in the Ostend declaration, a coalition of nine countries (including Belgium)
pledged to turn the North Seas into a Green Power Plant in Europe, and
together aim for at least 120 GW of offshore wind power by 2030, and over 300
GW by 2050. Land-based projects can meet with local resistance. Neighbors
may express concerns about landscape degradation, noise pollution, declining
property values and impact on local biodiversity.

Challenges emerging from the consumption side

Aside from local renewable production sources, other DERs (such as distributed
storage), installation of smart meters and associated communication technolo-
gies have emerged in modern households. As technology advances, there is a
trend towards replacing technologies or processes using carbon-intensive fossil
fuels with electrically-powered equivalents. We are witnessing the electrification
of the loads in several sectors, such as

• Heat sector through massive deployment of domestic heat pumps (HPs).
However, HPs provide only around 10% of the world’s building heating
needs. If we want to achieve carbon neutrality by 2050, the global heat
pump stock will have to almost triple by 2030 to cover at least 20% of
heating needs. This will require not only technical advances, but also
stronger political support [42].
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• Mobility sector with the switch from combustion engine cars to elec-
tric vehicles (EVs). They can also contribute to flexibility management
through solutions such as vehicle-to-grid (V2G), where vehicles act as tem-
porary batteries for the grid. The last few years have seen improvements
in EVs autonomy, greater model availability and enhanced performance.
The share of electric cars in total sales is around 18% for 2023 and is
expected to continue strongly through 2024 [43]. Sales in some countries
have been slow due to typically higher purchase costs compared to con-
ventional vehicles and a lack of charging infrastructure. The EU recently
adopted emissions standard for heavy-duty vehicles, which will support
electric truck and bus adoption in the coming years.

• Industry sector as some industrial processes can be electrified, such as
those using low or medium-temperature heat. Heavy industries can resort
to solutions such as the use of green hydrogen produced by electrolysis.

The electrification of the loads has major impacts on electricity demand. In
particular, an increase in overall demand, as residential, industrial and transport
levels become more electrified. Another consequence is the change in end-users
consumption profiles. Indeed, the introduction of equipment such as HPs
and EVs, is modifying peaks in demand for electricity. For example, electric
vehicle charging may be concentrated in the evening or overnight, and electric
heating could lead to consumption peaks in winter. This poses a challenge for
power grid management, which will have to adapt to these new profiles. Note
that equipment such as EVs can help provide flexibility. For instance, EVs
could be recharged during periods of high renewable generation, thus avoiding
overloading the grid at times of peak demand. This process is spreading across
society both earlier and at a faster speed, creating additional capacity needs.

2.4.2. Role of the actors in the energy transition
In a liberalized context, the transition towards a decarbonized electricity system
relies on the coordinated commitment of various system actors.

Suppliers and generators

An important issue with the current liberalized model lies in the lack of incen-
tives for generators and suppliers to invest in new generation capacity, especially
flexible generation resources (such as gas-fired power plants or storage facilities).
This is partly due to the fact that these actors are profit maximizers seeking
(overly) high and guaranteed returns on investments, and to a phenomenon
often referred to as "missing money": as electricity market prices are too
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volatile or too low in overcapacity periods (since capped by the regulator), the
profitability of the necessary investments is not necessarily ensured. This can
lead to a risk of under-investment, resulting in a shortage of capacity in the
long-term, especially in periods when renewable energies are not producing
sufficient power. Producers may also choose to close unprofitable power plants,
increasing the risk of electricity shortages. Many countries are introducing
capacity remuneration mechanisms (CRM) to overcome this problematic, with
more or less success. These systems do not remunerate energy production, but
rather the availability to produce or reduce demand when needed, thus guaran-
teeing long-term security of supply. CRMs are often financed via electricity
tariffs or specific taxes levied on consumers. Hence, these mechanisms offer a
solution to ensure that sufficient generation capacity is available when needed,
but they require rigorous management to avoid excessive costs for consumers
and to avoid disrupting market signals.

End-users

End-users are taking on an increasingly central role in the energy transition.
Their engagement and investment in more decentralized, responsible and flexible
forms of electricity consumption are crucial. Solutions such as smart meters and
energy management systems enable users to better control their consumption.
In addition, prosumers can generate their own electricity from renewable sources,
while helping to stabilize the grid thanks to domestic storage systems. The
regulatory framework around technologies such as batteries, needs therefore
to be strengthened. Currently, new modes of exchanges of electricity tend to
appear at the local level, which question the market structure. The literature
speaks generally of consumer-centric electric systems, for which the end-user
is placed at the center of the electrical energy supply chain. In recent years,
new market mechanisms that have received considerable interest are the energy
communities, which are more detailed in the next section.

2.5. Energy communities

The European energy and climate targets imply that fossil fuels will have to
be replaced by renewable and other low-carbon sources in the next decades
[5]. This transition requires a new organization and modernization of the
power system, in order to efficiently and reliably manage rising electricity
demand, while integrating intermittent renewable energy production and its
wide geographic dispersion at all levels of the electricity network. The system
is actually facing a massive development of technologies related to distributed
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energy resources (DERs) (decentralized energy production and storage) and
systems for load management and control at the local level. These technological
advancements, coupled with a growing environmental awareness of citizens,
have led to the emergence of prosumers who are both producers and consumers
of electricity. Prosumers can therefore extract or inject electricity into the
existing distribution network, allowing them to contribute actively to the grid
while also benefiting from self-consumption to reduce dependency on centralized
power plants. They can also provide demand-response services by reducing
demand during peak times.

The prosumers’ involvement is unanimously recognized by the EU as a key to
achieve its ambitious environmental targets, and must enable prosumers to
fully engage with the system. The reform of electricity markets must therefore
involve the integration of prosumers, and enable them to fully engage with the
system, so moving towards prosumer-centric markets. To this end, the EU
introduced the Clean Energy for all Europeans package in 2019 [34], which
proposes new rules to enhance the flexibility of the electricity system, reduce
carbon emissions and recognize consumer rights on self-generation and to play
an active and central role in the electricity markets and the decarbonization of
the energy system. The prosumer integration into the energy grid contributes to
decentralization and system stability by managing energy flows on a more local
scale, which is crucial for absorbing variations linked to intermittent renewable
energies. Furthermore, the system benefits from more flexibility and resilience.

Different market mechanisms for increasing the involvement of end-users in
the electricity supply chain have been investigated. Some studies propose for
instance to keep a centralized market structure, while adapting the wholesale
markets to extend their conditions of access to medium and small end-users
[44, 45]. Other studies propose a fully decentralized market design involving
peer-to-peer trading platforms, such as in [46, 47, 48]. The aim of this approach
is to enable local consumers and producers to exchange energy bilaterally,
without a centralized supervisory body. An intermediate solution has been
formalized by the EU, namely Energy Communities, which are discussed below.

2.5.1. Definitions and goals
Through the Clean Energy for all Europeans Package [34], the EU has defined
two official entities that formalize energy communities: Citizen Energy Com-
munities (CECs), which are described in Directive (EU) 2019/944 [19], and
Renewable Energy Communities (REC) in Directive (EU) 2018/2001 [6]. They
have specific membership criteria, governance requirements and purposes, which
focus on the interests of members or the local community rather than financial
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profit. With communities, the European commission intents to empower citi-
zens and allow them to play an active and central role in the electricity supply
chain. More specifically, communities aim at (adapted from [3, 5]):

• Mobilizing private capital for investment in long-lived physical assets
needed for the energy transition: actors who do not have the space to
invest in renewables can inject their capital into local, collective renewable
projects if they engage in a community.

• Unlock LV and MV flexibility provision (e.g., by implementing DSM
schemes coordinated at the community level), in order to help the other
system actors to ensure the balance and safe operation of the electricity
system. Furthermore, it can improve the self-consumption and self-
sufficiency of the members. In that way, communities intend to promote
a better use of energy resources, in particular those at the distribution
level.

• Creating a local stable economic framework, less subject to wholesale
price spikes (due e.g., to geopolitical crises).

• Addressing the growing problem of local opposition to the construction
of new plants, in particular those based on renewable energy sources.

General definition

Energy communities are new collective actors of the energy system, which gather
local consumers, producers and prosumers (i.e., consumers who own their gen-
eration assets, and can also produce energy themselves) into organized entities.
The directives state that energy communities may engage in activities such as
electricity generation, consumption, supply, storage, aggregation, commercial
energy services, sharing and selling the energy produced from members’ private
or community-owned plants. They allow their members to gather their energy
resources and exchange locally generated electricity between participants. In
this way, members do not depend solely on traditional wholesale/retail markets
structure. However, members are free to choose their electricity suppliers for
consumption not covered locally and can sell production on conventional mar-
kets. Then, energy communities have access to all suitable energy markets both
directly and through aggregation in a nondiscriminatory manner, and may have
imbalanced responsibility too (although the way the imbalance risk is shared
between BRPs and Communities is still subject to debate). Participation in
energy communities must be open and voluntary based on transparent and
nondiscriminatory criteria, while the effective control can be carried out solely
by members that are natural individuals, local authorities and/or small and
medium enterprises (SMEs) that are not already active in the energy sector.
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All members should enjoy similar governance rights and should have the right
to a fair exit procedure if they wish to leave the community [4].

Energy communities can take many forms and be engaged in different activities.
Hence, they can face different barriers and provide a wide range of benefits for
their members, the local area where it operates, and society in general. Note
that they do not have a purely commercial nature, i.e., they do not necessarily
provide financial profits for their members. In fact, their primary purpose is to
provide environmental (renewable energy promotion, greenhouse gas emission
reduction, etc.), economic (energy bill reduction, partial protection to wholesale
and retail markets prices spike, etc.) and/or social (enhanced social inclusion,
energy poverty reduction, etc.) community benefits to its members or to the
local areas where it operates. Furthermore, energy communities with local
energy exchanges may bring benefits to the distribution network provided that
collective demand-side management schemes, implicitly or explicitly aware of
grid technical constraints (lines losses and congestion, voltage management
to avoid PV tripping, lower peaks at the substation transformers, etc.), and
appropriate regulation (e.g., grid tariffs), are implemented.

Comparing RECs and CECS

The two official entities that formalize energy communities, namely CECs
and RECs, are closely related and refer to a way of organizing citizens who
want to cooperate together in an electricity supply activity, based on open
and democratic participation and governance, while providing (potentially)
non-profit benefits to the members or the local community. They have, however,
important differences.

The RECs criteria are more stringent than CECs. Renewable Energy Commu-
nities membership is forbidden to large enterprises for instance. Furthermore,
the REC should be effectively controlled by members located in the proximity
(e.g., from an electrical point of view [49] or from a geographical one [50]) of
the renewable projects that are owned or are developed by the REC [5]. The
RECs must restrict their local energy production and sharing to renewable
energies. They can engage with various energy carriers, such as heat or biogas,
in parallel with electricity.

Unlike RECs, the CECs membership is not restricted to specific types, but
any large member company, including those interacting directly with markets,
cannot exercise control over the community. On the other hand, controlling
members of CECs can be dispersed over vast areas with no geographical
restrictions. Additionally, CECs are limited to electricity activities, but they
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REC

Figure 2.9.: Example of a Renewable Energy Community.

can involve non-renewable energy sources. Furthermore, they can provide
energy efficiency services and charging services.
In this thesis, we focus on Renewable Energy Communities as presented in
Figure 2.9.

Implementation in member states

The EU legislation only sets the direction that national laws and regulations
must follow. Member states benefit from freedom to implement the framework
practically; therefore the development path of energy communities differs across
countries, extending the heterogeneous situation that is currently visible in
Europe [5]. Member states have to clarify in their specific legal and regulatory
framework what legal form a CEC and REC can take. More particularly,
they shall define: 1) the purpose of the community; 2) market access to avoid
discrimination of energy communities and other new players in the energy
system; 3) electricity sharing rules within the community that are transparent;
4) financially sustainable network tariffs; 5) what proximity of the community’s
renewable project means and 6) a democratic governance system [4].

Some countries have already transposed the directive, or are currently in the
process of transposition into regional or national decrees, legal frameworks,
etc [51]. Germany defines energy cooperatives and citizen energy cooperatives
in the 2017 Renewable Energy Act [52]. The French law on Collective Self-
Consumption dates back to 2017 [53], while Italy tackled the issue with its law
08/2020 in February 2020 and later evolutions (Law 199/2021). The Greek law
on energy communities was published in 2018 [54]. The Netherlands provides
the legal definition of RECs, and Spain defined local energy communities in
2019 Royal Decree 244/2019. In Wallonia in Belgium, a decree first published in
2019, reviewed in 2022, and a government edict was released in March 2023 [55].
The science and technology sectors have, in parallel, launched many initiatives
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to implement pilot projects of energy communities, such as for instance the
E-Cloud project led by ORES (one of the main Walloon DSO) [56]. We refer
to [57] for many other examples of projects in Europe.

More specifically, the EU let the freedom to the member states to impose or
not specific energy exchange mechanisms (or set of rules) within the energy
community. This led to many propositions from the public, private and academic
sides, which are discussed below.

2.5.2. Market designs

Among all the potential energy exchange mechanisms, two main frameworks
stand out: the organization of a local energy market (see e.g., [58, 59]), and
the rule-based dispatch of energy community surplus (see e.g., [29, 60, 61]), in
application in Wallonia and France for instance.

The principle of a local energy market within energy communities is similar
to the traditional market structures, where participants make demand and
offer bids based on their expected net load [58, 59]. The literature provides a
classification of these local energy markets. A community-based market is an
internal market where the trading activities are managed by a central operator,
called a community manager (CM) [62, 63, 64, 65] which clears the markets
based on member bids. In addition, the community manager is an intermediate
between the community and the rest of the system and could provide potential
new services for the upstream networks. These markets enhance members’
involvement and cooperation to share common good, but are accompanied by
difficulties such as managing the expectations and preferences of participants
at all times and ensuring fair and impartial sharing of energy between them.
A distributed peer-to-peer (P2P) market design allows peer-to-peer energy
exchanges inside between members of the community [66, 67, 68, 69, 70]. Two
members can agree on a transaction for a certain amount of energy and a
price without centralized supervision [48]; furthermore, energy is treated as
a heterogeneous product with some characteristics, in which participants can
express their preferences [67]. This approach increases the empowerment of
active consumers and provides energy use aligned with each agent’s preferences.
However, this brings requirement issues in terms of communication infrastruc-
ture and maintenance to achieve scalability. We can expect a potentially slow
convergence to reach consensus on the final supply of energy and the lack of
centralized control can result in difficult predictions of system behavior.

However, the main assumptions of perfect competition are hardly met in
communities with local markets. For instance, the limited size of RECs with
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(a) (b)

Figure 2.10.: Internal market designs: (a) community-based, and (b) peer-to-
peer.

internal markets tends to inherently provide market power to some participants.
In [71], the authors propose an alternative design of energy communities that
leverages prosumer empowerment and mutualization of excess resources to
optimize a better reflection of the true electricity total cost. It implements
a collaborative demand-side management scheme inside a community that
aims to optimize the use of resources and energy exchanges by unlocking
some flexibility, in order to achieve the best objective. This approach avoids
issues related to market-based transactions and provides communities in which
cooperation prevails over competition [72]. The present thesis focuses on this
specific category of market design, and we provide a full description of the REC
framework in Chapter 4.

2.5.3. Research challenges and scope of the thesis
Different time horizons must be considered for favoring the uptake of energy
communities, ranging from long-term (with investment and sizing problems)
to short-term (operational management: collective demand-side management,
deviations settlement, etc.) as presented in Figure 2.11. In fact, implementing
renewable energy communities poses a variety of challenges, described below.

The first challenge we address in this thesis lies in the explicit modeling of the
strategic interactions between members, which may lead to different equilibrium
situations. Also, we focus on the preferences of community members, which
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. . .

Figure 2.11.: Diagram of the different time horizons in the operations of a
renewable energy community.

may be different within a single community: for instance, a member A may
use her energy assets in order to minimize her own energy bill only, whereas a
member B will act to reduce the GHG emissions of the whole community, even
if her energy bill is slightly increased. A third member C may also be ready
to pay more for ensuring the availability of the electricity supply one hundred
percent of the time, which can be important in regions and countries subject to
reliability issues and/or for activities involving uninterruptible processes). To
that end, in this thesis, we resort to game theory while studying more specifically
the (day-ahead) energy scheduling horizon, as well as the investment planning
horizon.

Energy exchange scheduling aims to coordinate the energy assets of community
members, providing optimal recommendations on energy consumption and
exchanges. This process uses the temporal flexibility (such as flexible appliances
and ESS) of the members to adjust demand to production in order to achieve
the best objective of the community. The most relevant problems are long-term
investment planning and day-ahead scheduling. We call day-ahead energy
resources scheduling, the energy exchange scheduling for one-day ahead horizon.
This horizon corresponds to day-ahead electricity markets, where the essential
adjustments for balancing demand and production are made (see subsection
2.3.1). Besides, end-users generally have a good idea of their energy requirements
for the following day, which makes it easier to forecast consumption. Scheduling
one day in advance is then highly relevant and practical.

In general the implementation of energy planning depends on how the costs
are distributed among the members’ individual bills. It is crucial to define a
fair and efficient allocation method to ensure the highest possible commitment
from all members. This has already been investigated in the literature, whether
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in terms of fairness, user incentives according to their profile, self-consumption
and flexibility reward or the efficiency [29, 73, 74, 61]. The cost-based billing
design distinguishes three main frameworks: an endogenous approach via non-
cooperative games (Nash [75, 76] or Stackelberg games [12, 13]), coalition games
[16, 61, 69] and ex-post allocation [29, 74, 61].

In the first part of the present work, we focus on electricity-only Renewable
Energy Communities established on the public electricity distribution network.
The members of the community are equipped with bi-directional metering
devices, or smart meters, which monitor energy flows and ICT systems for
implementing intelligent algorithms managing resources. Furthermore, each
member can own flexible appliances, local renewable generation and electricity
storage assets (typically battery energy storage systems). Chapter 4 mathe-
matically models the interdependence between community members who share
common resources, and allocates costs between members via four distribution
methods already mentioned in [76].
Secondly, we address the problem of investments in assets within a community
by tackling a subject that is still largely unexplored in European directives and
in scientific literature: the RECs management if users decide to join or leave
the community during the life of the community with potential investments.
We augment the energy exchange scheduling problem developed in Chapter 4
to address this issue in Chapter 6.

The second challenge we address in the present thesis is the bounded rationality
of community members. Most of the literature adopts, indeed, the hypothesis
of the rationality of economic agents, and relies more generally on the Expected
Utility Theory (EUT) [8]. The rationality of an individual designates her ability
to make coherent decisions to optimize her objectives, preferences or utility,
based on available relevant information and unlimited processing capacity.
However, there are many experimental evidence that people are not rational
in uncertain and risky situations [77, 78, 79]. In particular, people are bad to
estimate probabilities. Thus rational models, such as EUT, are not adequate
for modeling real decision-making processes under uncertainty, such as DSM or
investment planning problem [80]. As a consequence, Prospect Theory (PT), a
theory of behavioral economics that questions the traditional EUT and was
introduced by Kahneman and Tversky in 1979 [77, 81], has been proposed as
a promising framework for modeling the non-rational energy preferences of
end-users. It has recently been employed in the energy sector in [13], where
the authors used PT to model the risk behavior of prosumers who face future
uncertain energy prices. This research challenge is addressed in the second part
of this thesis, dealing with the long-term investment horizon.
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Other research challenges in the context of energy communities are also en-
countered in the literature. The most significant in our opinion are exposed
below:

• Investment models and strategies (collective investment, individual in-
vestment with sharing of individual surplus, etc.) in communities [82, 83,
28].

• Multi-energy communities, e.g., also involving the heat vector [65].
• Interaction with market actors outside the community (e.g., Balance

Responsible Parties, Flexibility Service Providers, etc.) [84, 13].
• Techno-economic impacts on the distribution grid: energy communities

with local energy exchanges can bring benefits to the distribution networks
[28], provided that grid tariffs are carefully designed. A study of how
inadequate energy community network tariffs can lead to an excess of
energy community adoption and non-desirable outcomes for the grid, can
be found in [15].

• Multi-objective communities: some communities may indeed combine
multiple objectives [85], such as reducing the global electricity bill and
the carbon footprint of the REC as much as possible, and/or reduce their
dependency on the external system by efficiently using their production
and consumption means, so as to reach optimal collective self-consumption
and/or self-sufficiency.

• Dealing with uncertainty (of local generation, consumption, of asset
parameters, of members’ behaviors, etc.) in communities [86, 87, 88]

• Social acceptance [89, 90, 91, 92].
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CHAPTER 3.
Mathematical Fundamentals

In Chapter 2, we have introduced the concept of renewable energy communities,
whose implementation poses a variety of challenges. This thesis focuses on
communities built around a collaborative demand-side management scheme. In
the first part of this work, we address the day-ahead energy exchange scheduling
problem. This short-term horizon allows for the determination of an operational
plan for the next day while also providing a foundation for evaluating long-term
operational costs in investment planning, which are investigated in the second
part of the work (see Chapter 6).

The day-ahead energy resources scheduling problem can be treated from dif-
ferent perspectives. An intuitive approach is to consider the problem as a
centralized model, where a single central operator (e.g., a community manager)
is empowered to optimize an objective function representing the REC’s global
interests (e.g., minimizing the total cost). In practice, however, communities
bring together consumers and prosumers who are more likely to pursue self-
ish optimization of their individual goals. Furthermore, strategic interaction
can emerge between members sharing common resources (e.g., competing for
network usage, energy pool, limited energy storage capacity, etc.). These
interdependence in objective functions and possibly available member actions,
directly influence operational decisions and scheduling outcomes of the en-
ergy exchange scheduling problem. These observations lead to decentralized
formulations of the problem. Then, complex interactions between rational
members are modeled through noncooperative game theory. These models
can be analyzed and solved using various mathematical tools, such as convex
optimization, variational inequality theory and potential games. In particular,
potential games present a framework for identifying equilibria that align indi-
vidual incentives with community objectives, thus establishing a connection
between decentralized decision-making and community efficiency.
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This chapter aims to cover only definitions and concepts essential for the com-
prehension of the models’ development in this thesis. Section 3.1 introduces
the principles of convex optimization problems, which are a basis for analyzing
and solving centralized formulations. Section 3.2 defines normal-form games
and Nash equilibrium, alongside measures for evaluating Nash equilibria effi-
ciency. These two sections are fundamental to understanding the various model
formulations presented in Chapter 4. Whereas, the subsequent sections provide
advanced tools for in-depth analysis and resolution of the problems. Then,
variational inequality theory and potential games are presented in Section 3.3.
Finally, Section 3.4 presents the algorithms used in this work and discusses
their convergence properties.

3.1. Convex optimization problems
Mathematical optimization is a discipline that studies problems involving the
optimization of a given function in a specified space. Convex optimization
problems are a subclass of such problems, characterized by the minimization
of a convex objective function (or the maximization of a concave function)
over a convex set. This framework guarantees that any local solution is also
global, making these problems more accessible to analyze and to be solved
using well-developed algorithms. It can be used to model problems in a wide
range of disciplines: economics, engineering, machine learning, etc. Convex
optimization, therefore, relies on convex analysis [93]. In this section, we
introduce the concepts of convex optimization problems, which serve as a basis
for the various models presented throughout this thesis. This section is based
on [94, 95].

3.1.1. Basic definitions

We respectively denote by N, Z, Q, and R the sets of natural numbers, integers,
rational numbers, and real numbers. We define by Rn, the Euclidean n-
dimensional space, n ∈ N. We identify Rn with Rn×1. For every x ∈ Rn, we
denote by x⊤ the corresponding element in R1×n. The usual inner product of
two vectors x, y ∈ Rn is then denoted by ⟨x, y⟩ = x⊤y =

∑n
i=1 xiyi. The norm

associated with the scalar product is defined by ∥x∥ =
√
x⊤x for all x ∈ Rn.

Convexity

We introduce definitions of convexity for sets and functions, which are typically
required for the optimization solvers used in this work. We start with the
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Figure 3.1.: Graphical interpretation of convex sets.

definition of a convex set.

Definition 3.1. A set Ω ⊆ Rn is convex if the line segment between any
two points x, y in Ω, belongs to Ω, i.e.

∀x, y ∈ Ω ∀α ∈ [0, 1], αx+ (1− α)y ∈ Ω. (3.1)

The Figure 3.1 shows illustrative examples of the definition. The intersection
of any collection of convex sets is a convex set.

We now define three concepts of convex function.

Definition 3.2. Let Ω ⊆ Rn a convex set, a function f : Rn → R, with
domf = Ω, is said to be

• convex on Ω if, for all x, y ∈ Ω and α ∈ [0, 1],

f(αx+ (1− α)y) ⩽ αf(x) + (1− α)f(y) (3.2)

• strictly convex on Ω if, for all x, y ∈ Ω such as x ̸= y and α ∈ ]0, 1[,

f(αx+ (1− α)y) < αf(x) + (1− α)f(y) (3.3)

• strongly convex on Ω with parameter m > 0 if, for all x, y ∈ Ω and
α ∈ [0, 1],

f(αx+ (1− α)y) ⩽ αf(x) + (1− α)f(y)− m

2
α(1− α)∥x− y∥2. (3.4)

The inequality (3.2) requires that the line segment between any two points
(x, f(x)) and (y, f(y)), lies above the graph of f . A function f is concave if
−f is convex and strictly concave if −f is strictly convex. Obviously, an affine
function always holds equality in 3.2, so all affine and linear functions are both
convex and concave. Strict convexity means that the graph of f lies below
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x

f(x)
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Figure 3.2.: Some examples of convex functions: (a) f(x) = |x| is a convex
function (without being strictly convex), (b) f(x) = exp(x) is a
strictly convex function (without being strongly convex) and (c)
f(x) = (x− 3/2)2 + 1/4 is a strongly convex function.

the segment, while strong convexity implies the graph of f to lie "sufficiently"
below the line segment. The Figure 3.2 shows illustrative examples of these
definitions.
It is easy to see from the definitions 3.2 that the following relations hold:

Let Ω ⊆ Rn a convex set, a function f : Rn → R, with domf = Ω.

strongly convex⇒ strictly convex⇒ convex

The converse of neither implication is true. It can be observed on Figure 3.2 that
f(x) = |x| is convex but not strictly convex, and f(x) = ex is strictly convex
but it is not strongly convex, since the second derivative can be arbitrarily
close to zero.

Hyperplanes and half-spaces

Definition 3.3. A hyperplane in Rn is a set of the form

H = {x | a⊤x = b}, (3.5)

with a ∈ Rn, a ̸= 0 and b ∈ R.

Analytically, it is the solution set of a linear equation among the components
of x. Geometrically, the hyperplane H can be interpreted as the translation,
along direction a of the set of points that are orthogonal to a, the constant b
determines the offset from the origin.

If x0 ∈ H, then for any other element x ∈ H, we have a⊤x0 = a⊤x = b. Hence
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the hyperplane can be characterized as the set of vectors x such that x− x0 is
orthogonal to vector a :

H = {x | a⊤(x− x0) = 0}.

A hyperplane divides Rn into two half-spaces.

Definition 3.4. A half-space is the solution set of one linear inequality

D = {x | a⊤x ⩽ b}, (3.6)

a ∈ Rn, a ̸= 0, and b ∈ R.

The half-space can also be expressed as

D = {x | a⊤(x− x0) ⩽ 0},

where x0 is any point on the associated hyperplane, then a⊤x0 = b. Geometri-
cally, a half-space is the set of points that form an obtuse angle with the vector
a. The boundary of a half-space is the associated hyperplane.

Polyhedra

Definition 3.5. A polyhedron is the intersection of a finite number of half-
spaces and hyperplanes, so it is defined as the solution set of a finite number
of linear (or affine) equalities and inequalities :

P = {x | a⊤i x ⩽ bi, c
⊤
j x = dj, i = 1, . . . ,m, j = 1, . . . , p},

=
k⋂

i=1

Di ∩
l⋂

j=1

Hj,
(3.7)

where D1, . . . , Dk ⊆ Rn are half-spaces, and H1, . . . , Hl ⊆ Rn are hyperplanes.

A polyhedron is the intersection of half-spaces and hyperplanes, which are
convex, and convexity is preserved under the intersection, so polyhedra are
convex sets. A polytope is a bounded polyhedron, but some authors use the
opposite convention.

Polyhedra are essential elements in the formalization of convex optimization
problems. They allow us to describe the admissible sets on which these problems
are defined, and to characterize the properties of optimal solutions.
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3.1.2. Optimization problems

An optimization problem is a mathematical entity that enables the minimization
(or maximization) of a specific objective or preference, subject to diverse
physical, financial, or other limitations. A variety of practical problems involving
decision making, system design, analysis and operation can be cast in the
form of a mathematical optimization problem. We present the definition of a
constrained optimization problem.

Definition 3.6. Let f : Rn → R with gi : Rn → R, for i = 1, . . . ,m and
hj : Rn → R, for j = 1, . . . , p.
A constrained optimization problem, noted (f, (gi)

m
i=1, (hj)

p
j=1), has the stan-

dard form written as

min
x∈Rn

f(x)

s.t. gi(x) ⩽ 0, i = 1, . . . ,m

hj(x) = 0, j = 1, . . . , p.

(3.8)

The vector x = (x1, . . . , xn) is the set of decision variables of the problem,
the function f is the objective function to be minimized. The inequalities
gi(x) ⩽ 0 are called inequality constraints and the equations hj(x) = 0 are the
equality constraints. The functions gi and hj are respectively the inequality
and equality constraints functions.

Example 3.1 (Electricity-production problem [96]). An electricity producer
has two generation plants that have capacities of 12 and 16 units per hour,
respectively. These plants share a common thermal management system, which
imposes some operational constraints. Specifically, the sum of the hourly output
of plant 2, and twice the one from plant 1, must be at least 8 units. In addition,
the sum of the hourly production of plant 2 and two thirds of the one from
plant 1 must be no more than 18 units. The generator charges 1e per unit
per hour for the electricity produced. He seeks to determine the optimum
production level total for both plants, in order to maximize hourly revenues.
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The optimization problem formulation can be written as

min
x1,x2

− x1 − x2

s.t. − 2x1 − x2 + 8 ⩽ 0

2

3
x1 + x2 − 18 ⩽ 0

x1 − 12 ⩽ 0

x2 − 16 ⩽ 0

− x1 ⩽ 0

− x2 ⩽ 0.

Note that minimizing a function f is equivalent to maximizing −f .

We define Ω a feasible set as the set of decision variables that are feasible, i.e.,
that satisfy the optimization problem’s constraints

Ω := {x | g1(x) ⩽ 0, . . . gm(x) ⩽ 0, h1(x) = 0, . . . , hp(x) = 0}. (3.9)

If the feasible set is empty, the problem is said to be infeasible. When we solve an
optimization problem, we want to find a global minimum, but for most problems,
we can only find some local minima. Let B(x, r) = {y ∈ Rn : ∥x− y∥ ⩽ r} be
a ball centered at point x with radius r. A feasible point x∗ is a local minimum
if there exists ρ > 0 such that f(x∗) ⩽ f(x) for all x ∈ Ω ∩B(x∗, ρ). A feasible
point x∗ ∈ Ω is a global minimum if f(x∗) ⩽ f(x) for all x ∈ Ω. Then, a local
optimum minimizes the objective function’s value among neighboring feasible
points, but is not guaranteed to have a lower objective value than all other
points in the feasible set as a global minimum. Clearly, a global minimum is
also a local minimum, but the opposite may not be true. We define the optimal
set Xopt as the set of all global optimal points of the optimization problem.

This thesis considers a subfield of optimization problems called convex opti-
mization problems.

Definition 3.7. An optimization problem (f, (gi)
m
i=1, (hj)

p
j=1) (3.8) is a convex

optimization problem if the objective function f and inequality constraints
functions gi are convex and equality constraint functions hj are affine.

The feasible set Ω of a convex optimization problem is convex, since it is
an intersection of convex sets. Then, in a convex optimization problem, we
minimize a convex objective function over a convex set. Convex optimization
problems have the fundamental property that any local optimum is also a global
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optimum. Furthermore, their advantageous mathematical structure and the
availability of efficient solution methods make these problems tractable [94].

Two classes of convex problems are considered in this work.

Definition 3.8. The optimization problem (f, (gi)
m
i=1, (hj)

p
j=1) (3.8) is called

a Linear Programming Problem (LP) if the functions involved are all affine.

Hence, a LP minimizes an affine function over a polyhedron. The two most
well-known solution algorithms are the simplex algorithm and the interior-point
method [96, 94].

Definition 3.9. The optimization problem (f, (gi)
m
i=1, (hj)

p
j=1) (3.8) is called

a Quadratic Programming Problem (QP) if the objective function is convex
quadratic and the constraint functions are all affine.

Then, a QP minimizes a convex quadratic function over a polyhedron. Most
solvers use an extension of the simplex algorithm or an extension of the interior-
point method [97, 94].

3.1.3. Optimality conditions
We remind the reader that we do not assume that the problem (3.8) is convex,
unless explicitly stated. The optimality conditions provide rigorous criteria that
a solution to an optimization problem needs to check to be optimal (usually
necessary but not sufficient). These conditions are powerful theoretical tools
for guiding the design (e.g., stopping criterion) and analysis (e.g., convergence)
of solutions algorithms, and for grasping the solutions structure. They can also
be used in the evaluation process of the optimal solutions (sensitivity analysis).

This section is limited to optimality conditions for finite-dimensional differen-
tiable optimization problems (in Fréchet’s sense). We recall the definition for
the gradient of a differentiable function at a point.

Definition 3.10. Let a ∈ Rn and f : Rn → R differentiable in a, the gradient
of the function f at the point a is

∇f(a) :=
(
∂f

∂x1
(a), . . . ,

∂f

∂xn
(a)

)
.

The minimum principle

The central optimality condition is called the minimum principle.
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Theorem 3.1. Consider an optimization problem (3.8) with f : Rn → R
differentiable, and the feasible set Ω is convex.

• if x∗ is a local minimum of f over Ω, then

(x− x∗)⊤∇f(x∗) ⩾ 0, ∀x ∈ Ω. (3.10)

• if f is convex, then the condition is sufficient for x∗ to be a global
minimum.

This condition states that the directional derivative of the objective function,
the left term of (3.10), should be nonnegative for all feasible directions. The
minimum principle is illustrated in Figure 3.3.

x∗

∇f(x∗)x
d = x− x∗

Feasible set Ω

Surface of equal cost f(x)

(a)

x′

∇f(x′)

x

d = x− x′

Feasible set Ω

(b)

Figure 3.3.: Geometric interpretation of the minimum principle: (a) a feasible
point x∗ that satisfies the minimum principle, ∇f(x∗) form a non-
obtuse angle with all feasible vector d originating from x∗; and (b)
a feasible point x′ that does not, there exists other feasible point
x ̸= x′ such that f(x) < f(x′).

If the feasible set Ω is defined by inequalities and equalities, other optimality
conditions deserve to be discussed, the Karush-Kuhn-Tucker (KKT) conditions
[98].

Karush-Kuhn-Tucker conditions

The Karush-Kuhn-Tucker conditions is a system of equations and inequalities
forming what is known as a Mixed Complementary Problem (MCP) [99, 100].
Generally used to analyze solutions, they can even, in some cases, be solved to
obtain a closed-form analytical solution. Furthermore, they are the foundation

51



Chapter 3. Mathematical Fundamentals

of numerical techniques for resolving optimization problems. To formulate the
KKT conditions, it is convenient to define a Lagrangian function.

The Lagrangian function of an optimization problem (f, (gi)
m
i=1, (hj)

p
j=1) in (3.8)

is

L(x, λ, µ) = f(x) +
m∑
i=1

λi.gi(x) +

p∑
j=1

µj.hj(x), (3.11)

where functions f, gi and hj are continuously differentiable in the feasible region.
The scalars λi and µi are called Lagrange multipliers. The KKT conditions
of problem (3.8) allows us to find decision variables (primal variables) x ∈ Rn

and Lagrange multipliers (dual variables) λ ∈ Rm, and µ ∈ Rp, such that

∇xf(x) +
m∑
i=1

λi∇gi(x) +
p∑

j=1

µj∇hj(x) = 0 (3.12a)

hj(x) = 0, ∀j ∈ {1, . . . , p} (3.12b)
gi(x) ⩽ 0, ∀i ∈ {1, . . . ,m} (3.12c)
λi ⩾ 0, ∀i ∈ {1, . . . ,m} (3.12d)
λi.gi(x) = 0, ∀i ∈ {1, . . . ,m}. (3.12e)

where ∇x defines the gradient with respect to x. Condition (3.12a) requires
that the gradient of the Lagrangian function (3.11) is equal to zero for an
optimal solution x. Conditions (3.12c)-(3.12e) can be compactly written as
0 ⩽ λ ⊥ g(x) ⩽ 0, where the "perp" operator ⊥ means the inner product of
two vectors equal to zero. We often use this notation in the thesis.

Theorem 3.2. Let an optimization problem (3.8) where functions f, gi and
hj are continuously differentiable.

• If x∗ is a local minimum of this problem and satisfies some regularity
conditions a, then there exist Lagrange multipliers λ∗ ∈ Rm and µ∗ ∈ Rp

such that (x∗, λ∗, µ∗) satisfies KKT conditions (3.12).
• If the optimization problem is convex and there exists (x∗, λ∗, µ∗) which

satisfies (3.12), then x∗ is a global optimal solution.
ae.g., LICQ or SQ

The first implication states that KKT conditions are necessary, providing the
conditions that a regular local optimum must fulfill. They are also sufficient
to be a global optimum if the optimization problem is convex, translated
by the second implication. This theorem shows that, under some additional
conditions, the minimum principle is equivalent to the KKT conditions for
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convex optimization problems.

To guarantee the validity of the first point of the theorem, an additional
assumption must be made at an optimum x∗ for it to be a stationary point in
the Lagrangian. This assumption is that a constraint qualification must be
held at x∗. There exist many mathematical conditions that ensure this. We
introduce two of them. One of the most widely used and well-known constraint
qualifications is the linear independence constraint.

Linear Independence Constraint Qualification (LICQ) is held for x if ∇gi(x)
for all i ∈ I(x) and ∇hj(x) for all j ∈ {1, . . . , p} are linearly independent,
with I(x) := {i | gi(x) = 0} the set of constrained active inequality indices.

Note that if a local minimum satisfies LICQ, then Lagrange multipliers are
unique.

If (3.8) is a convex optimization problem, then Slater’s condition is generally
used.

Slater’s Constraint Qualification (SQ) holds for a convex optimization prob-
lem if there exists a point x in the relative interior of the convex set Ω for
which gi(x) < 0 for all i ∈ {1, . . . ,m} and hj(x) = 0 for all j ∈ {1, . . . , p}.

Remark 3.1. The existence of multipliers under affine constraints in a local min-
imum does not require any additional assumptions. Then, the KKT conditions
are necessary and sufficient for LP and QP problems.

3.2. Normal-form games

The centralized problems, such as global optimizations, are based on a single
objective function and do not take into account the fact that stakeholders
may potentially be strategic. In this case, stakeholders act as selfish rational
agents, choosing actions to optimize their individual objectives, which could
conflict with the other agents’ objectives. So, to model these essential strategic
interactions, we can formalize energy exchange scheduling inside a REC, in the
game theory framework.

Game theory is a mathematical field that studies strategic interactions between
rational stakeholders. Based on the expected utility theory of Von Neumann
and Morgenstern [8], this theory has many applications in economics, social
sciences, biology, politics, computer sciences and energy systems. In this thesis,
we focus on noncooperative games, which model situations where players move
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independently to optimize their individual outcomes. This section introduces
the theoretical concepts used in this work, based on [7].

3.2.1. Strategic games and Nash equilibrium

In the first part of this thesis, we study a strategic interaction model called
strategic game. This model includes a set of players and specifies for each of
them a set of possible strategies (actions) and the costs (or payoffs) associated
with each possible outcome. We provide a formal definition of a normal-form
game [7].

Definition 3.11. A strategic (or normal-form) game is defined by the tuple
G = (N , (Si)i∈N , (ui)i∈N ) where:

• N = {1, . . . , N} is a finite set of N players.
• S =

∏
i∈N Si is the set of all game strategy profiles with Si the player

i’s strategy set, for all i ∈ N .
• The function u : S → RN is composed of N -functions ui : S → R,

where ui is the player i’s cost (or payoff) function for all i ∈ N .

A vector of strategies s = (s1, . . . , sN) ∈ S =
∏

i∈N Si is referred to as a
strategy profile, and as an outcome of the game. Given a player i ∈ N , we note
the set of other players’ strategies as S−i :=

∏N
j ̸=i Sj. Then s−i ∈ S−i, such

as s−i = (s1, . . . , si−1, si+1, . . . , sN). To emphasize the i-th player’s variables
within s ∈ S, we write (si, s−i). If the strategic set Si of every player is finite,
then the normal-form game is finite.

A normal-form game represents an interaction between selfish players, in which
each player i ∈ N chooses a strategy from her set si ∈ Si, simultaneously
without communicating. This gives a strategy profile s = (si)i∈N and each
player i receives the cost ui(si, s−i). All players know the rules of the games,
but there is no information about the choices made by the other players. The
player i’s only goal is to minimize her cost function, and he is not interested in
minimizing or maximizing her opponents’ costs. However, the cost of each player
depends not only on her own actions, but also on the strategies taken by the
other players, which explains that the function of each decision-maker i ∈ N is
defined over S rather than Si. In summary, a strategic game models a situation
where all players choose their strategies independently and simultaneously, once
and for all.

We can represent a finite strategic game as an N -dimensional matrix of payoffs,
as illustrated by the famous prisoner’s dilemma in Example 3.2 with Table 3.1.
However, if the set of actions is not finite, then the strategic game is continuous,
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which is not presentable via matrices, see Example 3.4.

Example 3.2 (Prisoner’s dilemma). Two suspects in a crime are put into
separate cells and want to minimize their jail term. If they both confess (C),
they will be sentenced to two years in prison. If only one of them confesses,
he will be free, while the other will receive a sentence of three years. If both
remain silent (S), they will both spend one year in prison. There are two players
N = {1, 2} and each player has only two actions available: S1 = S2 = {C, S}.
We have the following game representation.

Suspect 2
C S

Suspect 1 C (2, 2) (0, 3)

S (3, 0) (1, 1)

Table 3.1.: The prisoner’s dilemma.

Example 3.3 (Battle of Sexes (BoS)). A couple wants to go out tonight.
Caroline would like to see a movie, while Eric is more interested in attending
a football match. Both would rather go out together than alone, but each
prefers her own activity to that of her partner. The players’ preferences are
expressed via payoffs as follows. In this context, the players want to maximize
their payoffs.

Eric
Movie Football

Caroline Movie (2, 1) (0, 0)

Football (0, 0) (1, 2)

Table 3.2.: Battle of sexes game.

Example 3.4 (Cournot duopoly). Two energy producers N = {1, 2} are
economically rational and compete with each other and choose qi the amount of
electricity generated to maximize their profits. The selling price is a decreasing
function of the total market production p(q1, q2) = α−β.(q1+q2), with α, β > 0.
A production cost is given by ci(qi) = γi.qi, with γi > 0.

Game theory is based on the fundamental assumption that players are rational
[8]. A rational agent takes the actions that will be most profitable for her,
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and to do this he has constant access to relevant information and knowledge,
as well as unlimited processing capacity. The agent is aware of the available
options and has clear preferences. A more detailed discussion of the notions of
rationality is provided in Section 5.3, Chapter 5. We now seek to determine a
solution to a normal-form game, i.e., to determine the optimal decisions that a
rational player should make to minimize her costs, while taking into account
the choices made by other players.

The central solution concept of noncooperative games is the notorious Nash
Equilibrium (NE) defined in 1950 by the mathematician John Nash [101].

Definition 3.12. Let G = (N ,S, u). A strategy profile s∗ ∈ S is a Nash
equilibrium (NE) if and only if

∀i ∈ N ∀s′i ∈ Si, ui(s∗i , s∗−i) ⩽ ui(s
′
i, s

∗
−i). (3.13)

Hence, a NE of the game is a feasible strategy profile such that no player can
benefit from a unilateral deviation from his current strategy. Nash equilibrium
captures the notion of a stable solution, from which no player can decrease her
cost function by changing strategy. Therefore, a NE may not lead to optimal
costs. In the prisoner’s dilemma (Example 3.2), the best outcome for the
criminals is that neither confesses (S, S). However, each player has an incentive
to betray his companion, so the unique NE of the game is (C, C). Note that
Definition 3.12 is expressed in case of minimization. Thereby, the inequality is
reversed if rational players maximize their payoff.

A Nash equilibrium can also be defined as a strategy profile for which every
player’s strategy is a best response to the other players’ strategies.

Definition 3.13. Let G = (N ,S, u) a strategic game. We denote the set of
player i’s best responses (BR) against s−i ∈ S−i :

Bi(s−i) :=
{
si ∈ Si

∣∣ ui(si, s−i) ⩽ ui(s
′
i, s−i) ∀s′i ∈ Si

}
. (3.14)

The best response set-valued function of the game is the application B : S →
2S defined by B(s) :=

∏N
i=1 Bi(s−i) for all s ∈ S.

The notation 2X stands for the set of all subsets of X. A useful way to see a
NE is as a fixed point of the best response mapping for each player. Thus, a
strategy profile s∗ is a NE if and only if it is a fixed point of B, i.e., if and only
if s∗ ∈ B(s∗).

Nash equilibria search is usually a tedious task, and not every normal-form
game has one, see Example 3.5.
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Example 3.5 (Matching Pennies). Two players independently choose either
Head or Tail. Player 1 pays player 2 one dollar if their choices differ, otherwise
player 2 pays the first player one dollar. The Matching pennies game is shown
in Table 3.3. The game has no Nash equilibrium.

Player 2
Head Tail

Player 1 Head (1,−1) (−1, 1)
Tail (−1, 1) (1,−1)

Table 3.3.: Matching pennies.

Therefore, we are interested in the assumptions necessary to ensure the exis-
tence of a NE. It is interesting to formulate energy exchange scheduling as a
noncooperative game and find a Nash equilibrium. In this context, the strategic
games used throughout multiple chapters of this thesis are continuous. So, we
present an existence result for the continuous game family.

Theorem 3.3 (Debreu, Glicksberg, Fan). Let G = (N ,S, u) a strategic
game such that for each i ∈ N

• Si is a nonempty compact convex subset of a Euclidean space,
• ui is continuous in s ∈ S and quasi-convex in si ∈ Si.

Then G possesses a Nash equilibrium.

The proof is based on Kakutani’s fixed-point theorem [102]. Note that if
rational players maximize their payoff function, then Theorem 3.3 requires that
the bi functions must be quasi-concave. This result guarantees the existence of
at least one NE in a strategic game. Hence, we can consider the properties of
the equilibria in this game, without finding them explicitly and without taking
the risk of studying the empty set.

Uniqueness of NE is a desirable property, but often rare in practice due to the
complexity of strategic interactions and the multitude of player preferences.

Example 3.3 (continued). The NEs of the BoS game are (Movie, Movie) and
(Football, Football). Note that this game is an example of a coordination game.

3.2.2. Nash equilibrium problem
Researching the Nash equilibria of a problem formulated as a normal-form
game is an interesting target in itself. At this stage, we do not know how to
solve this problem in a general way. However, it lies at the center of the issues
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that concern this thesis, particularly in the context of the day-ahead energy
resources scheduling inside a REC. This framework may give rise to strategic
interactions between community members, who compete for common resources
(e.g., the grid) to minimize their bill. These interactions play a crucial role in
collective behavior, although centralized approaches like global optimization
fail to capture them. In such situations, it can be relevant to model the problem
as a Nash equilibrium problem.

In a Nash Equilibrium Problem (NEP), each selfish player i ∈ N competes
against each other by choosing her strategy xi ∈ Ωi ⊆ Rni in order to minimize
her objective function bi : Ω = Ω1 × . . . × ΩN → R, which depends itself on
other players’ strategies x−i := (xj)j∈N\{i}.

Definition 3.14. The Nash equilibrium problem (NEP) is a normal-form
game G = (N ,Ω, (bi)i∈N ) in which each player i ∈ N solves the following
optimization problem, given x−i ∈ Ω−i:

G :=

{
min
xi

bi(xi, x−i) ∀i ∈ N

s.t. xi ∈ Ωi

(3.15)

where Ωi ⊆ Rni is the strategy set constituted by the player i’s individual
constraints. The n-dimensional joint strategy set is expressed as Ω :=∏

i∈N Ωi, with n :=
∑

i∈N ni.

A NEP can be seen as a set of coupled optimization problems. Note that
interactions take place only at the level of the players’ objective functions.

A solution of the game is a Nash equilibrium (NE), which is a feasible strategy
profile such that no single player can benefit by unilaterally deviating from her
strategy. The set of NEs of the game G is denoted NE(G).

Example 3.4 (continued). The NEP of the Cournot duopoly is modeled as

max
qi

bi(qi, q−i) = qi(α− β(q1 + q2))− γiqi

s.t. qi ⩾ 0.

A Nash equilibrium q∗ = (q∗1, q
∗
2) is obtained by representing the best response

mapping of the two producers. The profile strategy q∗ is a point for which q∗1
is producer 1’s best response to q∗2, and q∗2 is one for producer 2 to q∗1. The set
of points at which the best response functions intersect is, in fact, the NEs set.
In this case, there is only one intersection point and therefore, a unique NE
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given by

q∗ =
(α− 2γ1 + γ2

3β
,
α− 2γ2 + γ1

3β

)
.

As a reminder, a Nash equilibrium is a fixed point of the best response mapping
B in Definition 3.13, the fixed-point approach is therefore a standard method
for the study of NEPs. However, the applicability of this analysis is strongly
limited, as it may be difficult to have a closed form calculation of the best
response mapping. To overcome this limitation, we can study NEPs through two
alternatives, depending on the properties of the problem. These alternatives are
further detailed in the subsequent sections of this chapter. First, through the
reduction of a NEP to a variational inequality problem. The advantage of this
approach lies in the well-developed variational inequality theory, allowing easy
derivation of numerous results concerning solution analysis (see Section 3.3.1)
and implementable solution algorithms and their convergence properties (see
Section 3.4 and [99]). The second approach takes advantage of the particular
structures that some games hold, such as potential games (see Section 3.3.2) or
supermodular games [103] (which are not covered in this work).

3.2.3. Equilibrium efficiency

It is well known that in a NEP, the supposedly rational players make their
decisions individually to optimize their own objectives. The selfish behavior of
the players means that a NE outcome does not necessarily correspond to an
optimal situation for the whole system according to a given evaluation criterion.
A relevant indicator to assess the overall performance of a game (or a system)
is the Social Cost (SC).

Definition 3.15. The social cost is the sum of the cost functions: SC(x) :=∑
i∈N bi(x), for all x ∈ Ω.

A strategy profile x ∈ Ω is a social optimum if the social cost is optimized. A
fundamental issue is to evaluate the extent to which individual decisions at
Nash equilibria lead to outcomes that deviate from the socially optimal solution.
The socially optimal solution is obtained through global optimization, where a
central operator coordinates all players’ actions to minimize the social cost.

A classic quantitative measure of the efficiency of Nash equilibria is the Price
of Anarchy (PoA). It is defined as the ratio between the worst value attainable
by the social cost at an equilibrium and the optimal social cost.
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Definition 3.16 ([18]). Given a game G and NE(G) its set of Nash equilibria,
the price of anarchy (PoA) of G is defined by

PoA(G) :=
maxx∗∈NE(G) SC(x∗)

minx∈Ω SC(x)
. (3.16)

We illustrate this concept with the example of the prisoner’s dilemma presented
earlier.

Example 3.2 (continued). As a reminder, the unique Nash equilibrium of the
prisoner’s dilemma is (C, C), which induces SC=2+2=4. The optimal social
cost value is 2 for this game. Thus, PoA=4/2=2 and the NE is inefficient.

The PoA measures the distance between the highest social cost observed at
a Nash equilibrium and the socially optimal solution. Intuitively, this ratio
quantifies the worst-case efficiency loss, defined as the increase in social cost
resulting from the decentralized decision-making of selfish agents, compared to
the optimal solution that could be achieved through centralized approaches.
For a game with multiple equilibria, a price of anarchy close to 1 indicates
that all its equilibria are good approximations of a social optimum outcome.
Conversely, a PoA greater than 1 signifies that at least one NE results in a
social cost higher than the optimal solution. However, a larger PoA does not
allow us to conclude that all equilibria are inefficient [104].

Another measure of inefficiency differentiates games where some NEs are
inefficient from games where all equilibria are inefficient. The Price of Stability
(PoS) of a game is given by the ratio between the best social cost value observed
at an equilibrium and the optimal social cost.

Definition 3.17 ([105]). Given a gameG and NE(G) its set of Nash equilibria,
the price of stability (PoS) of G is defined by

PoS(G) :=
minx∗∈NE(G) SC(x∗)

minx∈Ω SC(x)
. (3.17)

If a game has a unique equilibrium, the PoA and PoS are identical (see Examples
3.2 and 3.4).

A price of stability equal to 1 indicates that at least one NE is a social optimum,
meaning that there exists an outcome in the game that achieved the optimal
solution obtained through centralized optimization. On the other hand, a PoS
greater than 1 implies that even the best social cost observed at a NE is still
higher than the socially optimal solution. It is easy to see from the definitions

60



Chapter 3. Mathematical Fundamentals

that the PoS of a game G is at least as close to 1 as its PoA,

1 ⩽ PoS(G) ⩽ PoA(G).

Note that Definitions 3.16 and 3.17 are expressed in case of minimization. In
case of maximization, the definitions are turned over (see Example 3.6)

Example 3.6. We take the BoS game shown in Example 3.3. Our couple
has finally agreed to go to the cinema, but now they are arguing about the
movie choice between A and B. Again, there are two NEs: (A, A) with values
4 and (B, B) with values 12. The optimal value is 12. Then, PoS=12/12=1
and PoA=12/4=3. The equilibrium (B, B) is a social optimum, while (A, A)
is inefficient.

Eric
A B

Caroline A (3, 1) (0, 0)

B (0, 0) (2, 10)

Table 3.4.: Modified Battle of Sexes game.

3.2.4. Generalized Nash equilibrium problem

The Nash equilibrium problem framework assumes that each players’ decisions
affect the other players only through their individual objective functions. How-
ever, in many situations, strategic interactions can also affect players’ decisions
through constraints, whether individual or shared at the system level. This
therefore necessitates a model enabling a more accurate representation of sys-
tems where players are interdependent not only through their objectives but
also via their strategy sets. For instance, power system stability and reliability
depend on capital power balanced equality constraints. These constraints
are directly influenced by the variables of energy market participants, such
as generators’ production capacity, commodity demand and the operational
conditions of transmission infrastructures. This complex interdependence of
constraints requires a framework in which the interactions between players are
explicitly incorporated into the system constraints in addition to the objective
functions of the participants.

The Generalized Nash Equilibrium Problem (GNEP) extends the classical NEP
by assuming that each player’s feasible set can depend on the rival players’
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strategies. Hence, the feasible sets are not fixed, as it is the case in classical
game theory. Each player i ∈ N has a point-to-set map Ωi :

∏
j ̸=i Rnj → 2R

ni .

Definition 3.18. The generalized Nash equilibrium problem (GNEP) G =
(N , (Ωi)i∈N , (bi)i∈N ) can be formally defined as a problem in which each
player i ∈ N simultaneously solves the following optimization problem, given
other players’ strategies x−i:

G :=

{
min
xi

bi(xi, x−i) ∀i ∈ N

s.t. xi ∈ Ωi(x−i)
(3.18)

where the strategy of player i must belong to the feasible set Ωi(x−i) ⊆ Rni

that depends on the other players’ strategies. The point-to-set mapping
Ω : Rn → 2R

n is defined as Ω(x) :=
∏

i∈N Ωi(x−i), for all x ∈ Rn and
n :=

∑
i∈N ni.

Example 3.7. Consider the energy production duopoly (Example 3.4). We
note qmax the maximum total production for the market based on common
constraints. The new problem for producer i is

max
qi

qi.(α− β(q1 + q2))− γiqi

s.t. qi ⩾ 0

q1 + q2 ⩽ qmax.

A solution of a GNEP is called a generalized Nash equilibrium.

Definition 3.19. A strategy profile x∗ is called a Generalized Nash Equilib-
rium (GNE) of the game G (3.18), if for all i ∈ N :

bi(x
∗
i , x

∗
−i) ⩽ bi(xi, x

∗
−i), ∀xi ∈ Ωi(x

∗
−i). (3.19)

The set of generalized Nash equilibria of G is noted GNE(G).

A GNE is a feasible strategy profile such that no single player can benefit by
unilaterally deviating from her strategy. So, the idea is the same as the NEs,
but applies to all xi ∈ Ωi(x

∗
−i) in the case GNEs.

We assume that for each player i ∈ N , the strategy set is defined explicitly by
inequality and equality constraints, such as:

Ωi(x−i) :=
{
yi ∈ Ωi

∣∣ gi(yi, x−i) ⩽ 0, hi(yi, x−i) = 0
}

(3.20)
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where Ωi ⊆ Rni is the player i’s individual constraints set, gi(·, x−i) : Rni → Rmi

and hi(·, x−i) : Rni → Rpi are respectively the set of inequality and equality
constraints functions of player i that also depend on the other players’ strategies.
For every player i, gi := (gi,j)

mi
j=1 and hi := (hi,k)

pi
k=1. Note that if Ωi(x−i) = Ωi

for all player i ∈ N , the feasible sets do not depend on the other players’
variables, so the GNEP reduces to the standard NEP (3.15).

Some notations, a function of class Ck is a function that has a k-th derivative
that is continuous in its domain. The class C0 consists of all continuous
functions. We call a function of class C1 continuously differentiable.

This thesis considers a special class of GNEPs for which a much more complete
theory exists in the literature [106, 107].

Definition 3.20. Let a GNEP G, suppose that for every player i ∈ N the
objective function is C0 and for every x−i, bi(·, x−i) is convex and the set
Ωi(x−i) is closed and convex. This GNEP is jointly convex if for some closed
convex set C ⊆ Rn and all i ∈ N , we have

Ωi(x−i) = {xi ∈ Rni | (xi, x−i) ∈ C} . (3.21)

When strategy sets are defined as in (3.20), then (3.21) is equivalent to the
requirement that g := g1 = . . . = gN and h := h1 = . . . = hN , such as

C =
{
x ∈ Rn | xi ∈ Ωi ∀i ∈ N , g(x) ⩽ 0, h(x) = 0

}
, (3.22)

where Ωi is closed and convex for each player i, g(x) are (componentwise)
convex with respect to all variables x and h(x) are affine. In fact, g and h
represent the sets of shared coupling constraints, i.e. inequality and equality
constraints that are equal for all the players. Jointly convex GNEPs are also
termed as GNEPs with shared constraints or coupled constraints [107].

Example 3.7 (continued). For each firm i ∈ {1, 2}, we have bi continuously
differentiable in q = (q1, q2). The function −bi(·, q−i) is convex for every q−i.
The individual strategy sets Ωi = R+ are closed and convex, furthermore, the
function g(qi, q−i) = q1 + q2 − qmax is linear and, therefore, convex on q. We
have Ωi(q−i) = {qi ∈ R+ | g(qi, q−i) ⩽ 0} closed and convex, which can be given
as (3.21) with

C =
{
q ∈ R2 | q1 ∈ R+, q2 ∈ R+, q1 + q2 − qmax ⩽ 0

}
closed and convex too. Then, the GNEP is jointly convex by Definition 3.20.

Similar to NEs, the outcomes of GNEs represent a stable situation, but not
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necessarily optimal for the system as a whole. This sub-optimality highlights
the potential inefficiencies inherent in decentralized decision-making models.
To quantify these inefficiencies, the definitions of price of anarchy (PoA) and
the price of stability (PoS), previously introduced in Definitions 3.16 and 3.17
for NEP, can be extended to the GNEP framework.

At this stage, we consider that the reader has all the information needed to
understand the various model formulations in Chapter 4. Table 3.5 provides
a summary of the different conceptual tools. The next sections introduce
mathematical and algorithmic tools for analyzing and solving the problems
presented so far. Thus, readers less interested in these theoretical technical
aspects can skip ahead to the next chapter.

Optimization Problem Nash Equilibrium
Problem

Generalized Nash
Equilibrium Problem

min
x

f(x)

s.t. x ∈ Ω

min
xi

bi(xi, x−i)

s.t. xi ∈ Ωi

min
xi

bi(xi, x−i)

s.t. xi ∈ Ωi(x−i)

One decision-maker. Several decision-
makers.

Several decision-
makers.

One objective function
to be minimized.

Each player minimizes
her own cost function.

Each player minimizes
her own cost function.

A feasible set. Cost functions depend
on the other players’
variables.

Cost functions depend
on the other players’
variables.

Strategy sets are inde-
pendent of the other
players’ choices.

Strategy sets depend on
the other players’ vari-
ables.

Continuous problems & simultaneous decisions

Table 3.5.: Comparative summary of problems addressed: optimization problem,
Nash equilibrium problem and generalized Nash equilibrium problem.

3.3. Mathematical tools to solve (G)NEPs

3.3.1. Variational inequality theory

Variational Inequality (VI) theory provides a general framework that integrates
a broad range of mathematical problems, applied sciences and economic [99,
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100]. This section presents some theoretical foundations in finite-dimensional
variational inequalities and how convex optimization problems and (generalized)
Nash equilibrium problems can be formulated as a VI problem.

Variational inequality problem

A variational inequality problem is defined as follows.

Definition 3.21. Given a set K ⊆ Rn and a vector-valued mapping F : K →
Rn. The variational inequality problem, denoted by VI(K, F ), is to determine
a vector x∗ ∈ K, such that

(y − x∗)⊤F (x∗) ⩾ 0, ∀y ∈ K. (3.23)

The solutions set of VI(K, F ) is noted SOL(K, F ).

The simplest example of a variational inequality is the classical problem of
solving a system of nonlinear equations. If K = Rn, the only vector F (x∗)
which forms a non-obtuse angle with all vectors in Rn is the zero vector. Then
VI(Rn, F ) is equivalent to finding a x∗ ∈ Rn such that F (x∗) = 0

For the sake of simplicity, we assume that F is continuously differentiable. If
F = ∇f for some suitable convex function f on the convex set K, then the
VI(K,∇f) corresponds to the problem of finding points satisfying the minimum
principle (3.10) and so with the resolution of the convex optimization problem
(3.8). Figure 3.4 illustrates a geometrical interpretation of (3.23).

x∗

F (x∗)

x

x− x∗

Feasible set K

(a)

x′

x
F (x′)

x− x′

Feasible set K

(b)

Figure 3.4.: Geometric interpretation of VIs: (a) a feasible point x∗ that is a
solution of the VI(K, F ) as all feasible vector x− x∗ form an acute
angle with F (x∗); and (b) a feasible point x′ that is not a solution
of VI(K, F ).
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However, not all the VI problems have the property that the vector-valued
mapping F is a gradient map of a function [100]. The equivalence between
optimization and the VI is given by the principle of symmetry.

Theorem 3.4 ([99]). Let F : U → Rn be continuously differentiable on the
open convex set U ⊆ Rn. The following three statements are equivalent:

1. there exists a real-valued function f such that F (x) = ∇f(x) for all
x ∈ U ;

2. the Jacobian matrix JF (x) is symmetric for all x ∈ U ;
3. F is integrable on U .

If any one of these statements holds, then the function f can be given by

f(x) :=

∫ 1

0

F (x0 + t(x− x0))⊤(x− x0)dt

where x0 ∈ U is an arbitrary vector.

Recall that a matrix A is symmetric if A⊤ = A. Furthermore, the Jacobian
matrix of F at a point is defined as follows.

Definition 3.22. Let a ∈ Rn and F : Rn → Rm differentiable in a, the
Jacobian matrix of the function F at the point a is

JF (a) :=


∂F1

∂x1
(a) . . . ∂F1

∂xn
(a)

... . . . ...
∂Fm

∂x1
(a) . . . ∂Fm

∂xn
(a)

 .

We present a first result about the existence and structure of the solution set
of a VI problem. It can be considered as the natural extension of Weierstrass
theorem for optimizations problems [108].

Theorem 3.5. Given a VI(K, F ), suppose that
1. The set K is convex and compact (closed and bounded).
2. The function F is continuous.

Then, the set of solutions SOL(K, F ) is nonempty and compact.

The boundedness assumption of the set might be too restrictive in the Theorem
3.5. We can do without this assumption under certain additional properties of
the function F . For this purpose, we provide some function classes.
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Definition 3.23. Let E ⊆ Rn a closed and convex set, a mapping F : E →
Rn is said to be

• monotone on E if, for all x, y ∈ E

(x− y)⊤(F (x)− F (y)) ⩾ 0 (3.24)

• strictly monotone on E if, for all x, y ∈ E such as x ̸= y

(x− y)⊤(F (x)− F (y)) > 0 (3.25)

• strongly monotone on E with parameter τ > 0 if, for all x, y ∈ E

(x− y)⊤(F (x)− F (y)) ⩾ τ∥x− y∥2. (3.26)

We say that the VI(K, F ) is monotone if the mapping function F is monotone.
We do the same for the other properties. Note that if F is an affine function,
then the strict monotonicity is the same as strong monotonicity.

From Definitions 3.23, we can state that the following relation holds.

Let E ⊆ Rn a closed and convex set, and a mapping F : E → Rn, we have

F strongly monotone⇒ F strictly monotone⇒ F monotone.

Note that if the function F is the gradient of a differentiable function f then
the monotony property of F can be related to the convexity of f [108].

Thanks to the monotonicity properties, we can state the following theorem
without requiring the boundedness of the set K.

Theorem 3.6. Given a VI(K, F ), suppose that K is closed and convex and
F is continuous on K. The following statements hold:

1. If F is monotone on K, then the VI(K, F ) has a (possible empty) convex
solution set,

2. If F is strictly monotone on K, then the VI(K, F ) has at most one
solution,

3. If F is strongly monotone on K, then the VI(K, F ) has a unique solu-
tion.

Note that the strict monotonicity of F does not guarantee the existence of a
solution. Further existence and uniqueness results are given in [99], for certain
classes of functions.
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VI formulation of NEP

We have seen that there are at least two other ways of studying the properties
of Nash equilibrium problems (3.2.2). The first approach is to reformulate
the NEP as a suitable variational inequality problem in order to exploit the
well-developed VI theory. It provides a rich framework for analyzing solutions,
developing practical algorithms and studying their convergence properties.

We present the proposition establishing the equivalence between a NEP and
an appropriate VI, under certain conditions. We assume that the equivalence
between two models means that the solutions of one correspond exactly to the
solutions of the other. Then, the initial problem can be solved or analyzed using
an alternative formulation, while ensuring that the fundamental properties and
results obtained remain identical in both frameworks.

Proposition 3.1. Given a NEP G = (N , (Ωi)i∈N , (bi)i∈N ), suppose that for
each player i:

1. the strategy set Ωi ⊆ Rni is closed and convex,
2. the payoff function bi is continuously differentiable in x and convex in

xi for every fixed x−i ∈ Ω−i.
Then, the NEP G is equivalent to the VI(Ω, F ), i.e., NE(G) = SOL(Ω, F )
where

Ω :=
N∏
i=1

Ωi F (x) :=

 ∇x1f1(x)
...

∇xN
fN(x)

 .

Actually, this connection naturally arises from the minimum principle for convex
problems (Definition 3.10) and the Cartesian structure of the combined strategy
set Ω [99]. We take the example of the Cournot duopoly to illustrate this result.

Example 3.8. In the Cournot duopoly (Example 3.4), the energy producers’
feasible sets correspond to the nonnegative real number set R+ which is closed
and convex. Furthermore, −bi is continuously differentiable and convex for
both players. Then, the Proposition 3.1 provides the equivalent VI problem
VI(Ω, F ) where Ω = R+ × R+ and

F (q1, q2) :=

(
γ1 + 2βq1 + βq2 − α
γ2 + 2βq2 + βq1 − α

)
.

Furthermore, we can easily show with the Definition 3.23 that F is strongly
monotone with parameter β > 0. As a result, Theorem 3.6 shows that the VI
problem has a unique solution.
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VI formulation of GNEP

We have shown the connection between NEPs and VI problems through the
Proposition 3.1. We would like to obtain a result of the same order in the
case where the feasible sets are dependent on the other players’ strategies, i.e.,
GNEP (3.2.4). However, it is not as immediate as in the NEPs case. A GNEP
can be formulated as a Quasi-Variational Inequality (QVI). The QVIs are a
generalization of VI problems, in which the defining set of the problem varies
with the variables.

Definition 3.24. Given a point-to-set mapping K : Rn → P(Rn) and a
mapping F : Rn → Rn. The quasi-variational inequality problem, denoted
by QVI(K, F ), is to determine a vector x∗ ∈ K(x∗), such that :

(y − x∗)⊤F (x∗) ⩾ 0, ∀y ∈ K(x∗).

Hence, if the point-to-set mapping K is constant, then the QVI problem reduces
to a VI problem.

Given some conditions, it is possible to establish the link between the GNEP
and a QVI problem [109, 110].

Proposition 3.2. Given a GNEP G, suppose that for each player i:
1. the payoff function bi is continuously differentiable in x,
2. for every x−i, the function bi(·, x−i) is convex in xi and the set Ωi(x−i)

is closed and convex.
Then, the GNEP G is equivalent to the QVI(Ω, F ), where the point-to-set
mapping Ω : Rn → 2R

n is defined Ω(x) :=
∏

i∈N Ωi(x−i) and F (x) :=
(∇xi

bi(x))i∈N for all x ∈ Rn.

Although this result is theoretically valid, it should be noted that, in practice,
methods for solving such a generic problem are still very limited and not
necessarily accessible in real-life cases.

Nevertheless, this thesis considers a special class of equilibrium problems: the
jointly convex GNEPs (3.20), for which meaningful results can be obtained.
Though jointly convex GNEPs remain complex problems, they can be solved
by finding the solution to a suitable VI problem [111, 106].

Proposition 3.3. Given a GNEP G, suppose that for each player i:
1. the payoff function bi is continuously differentiable in x,
2. for every x−i, the function bi(·, x−i) is convex in xi,
3. the sets Ωi(x−i) are defined by (3.21) with C closed and convex.

69



Chapter 3. Mathematical Fundamentals

Then, each solution of the VI(C, F = (∇xi
bi)i∈N ) is a solution of the GNEP.

Proposition 3.3 does not state that any solution of the GNEP is also a solution
of the associated VI problem. In fact, not all the GNEs are preserved in passing
from GNEP to VI. Therefore, it could happen that the GNEP has a solution,
but VI has none.

Example 3.9. Consider the GNEP G1 with two players

min
x

(x− 1)2 min
y

(
y − 1

2

)2
s.t. x+ y ⩽ 1 s.t. x+ y ⩽ 1.

It can be shown that this game has infinitely many GNEs given by (α, 1− α)
for every α ∈ [1/2, 1]. The VI associated VI(C,F )

C = {(x, y) ∈ R2 : x+ y ⩽ 1} F (x, y) = (2x− 2 2y − 1)⊤

with F strongly monotone, so the VI has a unique solution SOL(C,F ) =
{(3/4, 1/4)}. Then GNE(G1) ⊈ SOL(C,F ).

Generalized Nash equilibria of a GNEP, which also satisfy the associated VI
problem, are called variational equilibria. They represent a subset of GNEP
solutions.

Definition 3.25. Let a jointly convex GNEP G. A solution of the GNEP G
that is also a solution of VI(C, F ) is a Variational Equilibrium (VE).

Hence, thanks to the VI formulation, the VEs of a GNEP can be studied and
calculated more easily, relying on the much more developed VI theory. In
Example 3.9, the point (3/4, 1/4) is the unique variational equilibrium of the
game.

Since not every GNE satisfies the VI, it is pertinent to consider the special
characteristics that distinguish the variational equilibria. To do this, we need
to introduce the KKT conditions for both GNEP and VI problems.
We observe a GNEP G defined by (3.18) and for each player i ∈ N , the strategy
set is given by (3.20):

Ωi(x−i) :=
{
yi ∈ Ωi

∣∣ gi(yi, x−i) ⩽ 0, hi(yi, x−i) = 0
}
.

We assume that all objective functions, inequality functions and equality
functions involved are C1. A Nash equilibrium problem (generalized or classical)
constituted interrelated optimization problems. In this way, we can easily derive
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the KKT optimal conditions for each player’s optimization problem and then,
we can deduce from all these conditions what we can call the KKT conditions
of the GNEP, as illustrated in Fig.3.5.

Figure 3.5.: KKT conditions of an equilibrium problem: joint solution of several
systems of KKT conditions.

We now translate this reasoning into mathematical terms. For the sake of
clarity, we disregard the individual constraint sets Ωi. The classical KKT
conditions of player i’s optimization problem is given by:

∇xi
Li(x, λi, µi) := ∇xi

bi(x) +
mi∑
j=1

λi,j∇xi
gi,j(x) +

pi∑
k=1

µi,k∇xi
hi,k(x) = 0

0 ⩽ λi ⊥ gi(x) ⩽ 0

hi,k(x) = 0, ∀k ∈ {1, . . . , pi}
(3.27)

where λi ∈ Rmi and µi ∈ Rpi are the Lagrange multipliers. The concatenation
of these N -KKT conditions provides the following system

L(x, λ, µ) = 0

0 ⩽ λ ⊥ G(x) ⩽ 0

H(x) = 0

(3.28)

where λ := (λi)
N
i=1 ∈ Rm with m :=

∑N
i=1mi, µ := (µi)

N
i=1 ∈ Rp with p :=∑N

i=1 pi, G := (gi)
N
i=1, H := (hi)

N
i=1 and L := (∇xi

Li)
N
i=1.

Similar to the Theorem 3.2, we can provide a result that establishes a clear
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connection between a GNEP and its KKT conditions.

Theorem 3.7. Let a GNEP G = (N , (Ωi)i∈N , (bi)i∈N ) (3.18), with the
strategy sets defined by (3.20). All objective functions, inequality functions
and equality functions involved are C1.

• Let x∗ be a solution of the GNEP at which all the players’ subproblems
satisfy a constraint qualification [112]. Then there exist Lagrange
multipliers λ∗ and µ∗ such that (x∗, λ∗, µ∗) solves system (3.28).

• If (x∗, λ∗, µ∗) solves the system (3.28) and that for every player i ∈ N
and every x−i, the function bi(·, x−i) is convex and the set Ωi(x−i) is
closed and convex. Then x∗ is a GNE of the GNEP.

We now discuss the implications of Theorem 3.7 within the framework of
an additional hypothesis. In the case of a jointly convex GNEP with the
feasible set (3.22), it follows that the system (3.28) is given with G:=(g)Ni=1

and H:=(h)Ni=1 and for each player i we have mi = m and pi = p for fixed
m, p ∈ N. This implies that each vector λi is orthogonal to the same condition
g, but the Lagrange multipliers may vary between players. Next, consider the
KKT conditions of the VI(C, F ) from Proposition 3.3

F (x) +∇xg(x)λ+∇xh(x)µ = 0

0 ⩽ λ ⊥ g(x) ⩽ 0

h(x) = 0

(3.29)

where λ ∈ Rm and µ ∈ Rp are the Lagrange multipliers. The relation between
the VI problem and the KKT conditions are established in [99, Prop. 1.3.4].

The next result establishes the connection between the two KKT systems and a
VE of the jointly convex GNEP, assuming it satisfies a constraint qualification
[112].

Theorem 3.8 ([110, 111]). Let a jointly convex GNEP where the feasible
sets are defined by (3.21) with C convex given by (3.22).

• Let x∗ be a solution of the VI(C, F ) at which (3.29) holds with some
multipliers λ∗ ∈ Rm and µ∗ ∈ Rp. Then x∗ is a solution of the GNEP,
and the corresponding KKT conditions (3.28) are satisfied with λ∗ :=
λ1 := . . . := λN and µ∗ := µ1 . . . := µN .

• Let x∗ be a solution of the GNEP such that (3.28) hold with λ∗1 = . . . =
λ∗N and µ∗

1 = . . . = µ∗
N . Then x∗ is a solution of VI(C, F ) and the point

(x∗, λ∗, µ∗) with λ∗ := λ∗1 and µ∗ := µ∗
1, satisfies (3.29).

In other words, a VE is a solution for the jointly convex GNEP if and only if
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the shared constraints have the same Lagrange multipliers for all the players.

This property can lead to a very interesting economic interpretation, notably in
the context of energy markets, as some of these multipliers can be interpreted
as shadow prices (see e.g., Appendix B.3, [66], etc.). It is therefore common
practice to restrict the resolution of a jointly convex GNEP to the calculation
of its VEs (e.g., [113, 66]).

A possible disadvantage is the fact that one can compute VEs only, excluding
possible other solutions that might be interesting. It can be relevant to study
how efficient those GNEs outcomes can be in comparison to the VE outcome
[66]. Nabetani et al. [114] propose two types of parametrized VIs approaches,
which allow us to evaluate the GNEs set of a jointly convex GNEPs. On the
basis of these approaches, we have been able to establish theoretical results
relating to the characterization of GNEs for the problems studied in Chapter 4.
However, in this report, we choose to focus primarily on variational equilibria,
because of the theoretical and algorithmic tools available for their analysis and
resolution.

3.3.2. Potential games

In Section 3.3.1, we have shown that a Nash equilibrium problem can be studied
by reducing the NEP to a VI problem. Some other approaches exploit the
specific structure of certain games. In this section, we introduce a particular
class of games called potential games. This class of game has many strong
implications for the existence and convergence to equilibria.

The first concept of potential games can be found in Rosenthal’s work from
1973 [115], but they were formally introduced by Monderer and Shapley in 1996
[116]. This class of games has the property that the incentive of all players
to unilaterally deviate from a strategy profile can be expressed in one global
function, the potential function. The specific relationship between the potential
function and the payoff functions of players determines the classification of
potential games. We list three types: ordinal potential games, weighted
potential games and exact potential games, but there exist various types of
potential games in the literature [104, 117].

Let G = (N , (Si)i∈N , (ui)i∈N ) be a strategic game with a finite number of
players.

Definition 3.26. The game G is an exact potential game (EPG) if and only
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if a potential function P : S → R exists such that for all i ∈ N and s−i ∈ S−i

ui(x, s−i)− ui(y, s−i) = P (x, s−i)− P (y, s−i), ∀x, y ∈ Si. (3.30)

Definition 3.27. The game G is a weighted potential game (WPG) if and
only if a potential function P : S → R exists such that for all i ∈ N and
s−i ∈ S−i

ui(x, s−i)− ui(y, s−i) = wi.(P (x, s−i)− P (y, s−i)), ∀x, y ∈ Si, (3.31)

where w = (wi)i∈N is a vector of positive numbers called weights.

Obviously, an exact potential game is a weighted potential game where all the
players have weights equal to one.

Definition 3.28. The game G is an ordinal potential game (OPG) if and
only if a potential function P : S → R exists such that for all i ∈ N and
s−i ∈ S−i

ui(x, s−i)− ui(y, s−i) > 0⇔ P (x, s−i)− P (y, s−i) > 0, ∀x, y ∈ Si. (3.32)

Intuitively, the ordinal potential game requires that the change in the potential
function due to a unilateral strategy deviation needs to be of the same sign as
the change in the player’s payoff function. Clearly, an EPG is an OPG, but
not the other way around. Through the whole thesis, a game will be called a
potential game (PG) if it has a potential function.

Example 3.10. The Cournot duopoly in Example 3.4, is a potential game
where the exact potential function P : R+ × R+ → R is defined as:

P (q1, q2) = α(q1 + q2)− β(q21 + q22)− βq1q2 − γ1q1 − γ2q2, ∀q1, q2 ∈ R+.

If we assume that both generators always produce something, i.e., q1, q2 ∈ R0
+,

then the function P : R0
+ × R0

+ → R defined as:

P (q1, q2) = q1q2(α− β(q21 + q22))− γ1q1 − γ2q2, ∀q1, q2 ∈ R0
+,

is an ordinal potential function.

Example 3.11. We consider a set of N tasks N = {1, . . . , N} that need to
be scheduled on one of the M identical machines available M = {1, . . . ,M}.
Each job i ∈ N has a weight wi, representing the execution time of the task. A
player i’s strategy is to choose a machine j ∈M, thus Si =M and S =MN .
The load of a machine j ∈M is defined as the sum of the tasks assigned to that
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machine, given the strategy profile s ∈ S, lj(s) =
∑

i,si=j wi. The objective
of each player is to minimize the total load of the machine on which job i is
working: ci(j, s−i) = lj(s). This load balancing game is a potential game with
the weighted potential function P : S → R defined as:

P (s) =
1

2

∑
j∈M

lj(s)
2, ∀s ∈ S.

We present how potential functions can help to better analyze a potential game
and to find Nash equilibria. In fact, a Nash equilibrium in potential games can
be established by the finding that the NEs set corresponds to that of a game
where all players minimize the potential function.

Theorem 3.9 (Monderer and Shapley). If P : S → R is a potential function
for the ordinal potential game G = (N ,S, (ui)i∈N ), then the set of Nash
equilibria of G coincides with the Nash equilibria set of the game G̃ =
(N ,S, (P )i∈N ):

NE(G) = NE(G̃).

A consequence of this result is that the NEs properties can be studied using
only the potential function. Clearly, if the potential function P has a minimum
point x∗ ∈ S, then x∗ is a Nash equilibrium for the game G. However, the
converse is usually not true. Indeed, there may be equilibria that are inefficient
or just local minimum points (e.g., some Cournot oligopolies [116]). Let Pmin

denote the set of global minima of P on S.

The relationship between the NEs of G̃ (and so of G) and the global minimum
of the potential function P on S is provided by the following theorem.

Theorem 3.10. Let G = (N ,S, (ui)i∈N ) be a potential game with potential
function P .

1. If x ∈ Pmin, then x is a Nash equilibrium of G.
2. Assume that S is a convex set with a Cartesian structure and P is a

continuously differentiable and convex function on S. If x is a NE of
G, then x ∈ Pmin. If P is strictly convex, the NE is unique.

These two results imply that we can study, under certain conditions, the
properties of NEs using a single function that does not depend on the particular
player. Hence, the study of potential games can be carried out using the game
G̃ = (N ,S, (P )i∈N ) and the classical game theory framework (Theorem 3.9) or
via the standard optimization problem where the objective function is just the
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potential function (Theorem 3.10):

min
s

P (s)

s.t. s ∈ S := S1 × . . .× SN .
(3.33)

Note that Theorem 3.10 does not assert the existence of a solution. Nevertheless,
the existence of a minimum for the potential function P on the set S leads
directly to the existence of a Nash equilibrium for the game G.

The following theorem describes the conditions for existence and uniqueness of
NE in ordinal potential games, based on the characteristics of their strategic
spaces and potential functions.

Theorem 3.11 ([117]). The following statements are true
• Every finite (ordinal) potential game admits at least one NE.
• Every infinite (ordinal) potential game, whose strategy space S is com-

pact and potential function P is continuous, admits at least one NE.
Moreover, if P is strictly convex, the NE is unique.

The above results apply only to NEPs. Definitions 3.26-3.28 of potential
functions can be extended to GNEPs [118]. In this way, we can establish the
following theorem.

Theorem 3.12. Let G be a GNEP and a potential game with potential
function P (assumed Pmin non-empty). If x ∈ Pmin, then x is a generalized
Nash equilibrium of G.

Remark 3.2. The second point of Theorem 3.10 cannot be applied to potential
GNEPs. For clarity, we assume that GNEP is jointly convex. A GNE of the
jointly convex GNEP does not necessarily minimize the potential function over
the set (3.22). In fact, global constraints shattered the Cartesian structure in
the set (3.22) [119, 120].

3.4. Distributed algorithms

At first glance, all we have are theoretical existence results and no explicit
method for calculating Nash equilibria of a NEP. In general, the effective
determination of these NEs requires appropriate algorithmic methods. A
first approach is to use centralized algorithms, where a central operator has
complete information on players’ objective functions, constraints and strategies.
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These algorithms optimize the system as a whole and are well developed in the
literature [99, 94], but they can be inappropriate in certain real-life applications.

In the context of energy communities, members are especially concerned about
the confidentiality and protection of their data and may be reluctant to share
sensitive information. Therefore, the adoption of distributed methods seems
more appropriate in this environment. This type of algorithm is better suited
to progressive decentralization and the emergence of computing capacities
directly on members. It also addresses data confidentiality issues. Members
are equipped with smart meters, which not only measure their consumption
and production, but also provide communication and processing resources. So,
the implementation of distributed algorithms becomes particularly relevant in
this setting. This choice eliminates the need for a central authority and thus
reinforces the autonomy of end-users within the community.

In this section, we describe two distributed algorithms to solve the game
formulation of the energy exchange scheduling problem in energy communities:
the best-response and the proximal decomposition algorithms.

Since a NE can be seen as a fixed-point of the best-response mapping for each
player i ∈ N , a natural algorithm is to iterate best-responses and update
the strategies of each player simultaneously (Jacobi scheme) or sequentially
(Gauss-Seidel scheme), given the strategies of the others. The implementation
of the distributed best-response algorithm is described in Algorithm 1.

Algorithm 1 Best-Response Dynamic Algorithm
Choose any feasible point x0 ∈ Ω
k ← 0
while a suitable termination criterion is not satisfied do

for i ∈ N do
Sequential update:
xk+1
i := x∗ ∈ arg min

xi∈Ωi

bi(x
k+1
1 , ..., xk+1

i−1 , xi, x
k
i+1, ..., x

k
N)

Simultaneous update:
xk+1
i := x∗ ∈ arg min

xi∈Ωi

bi(xi, x
k
−i)

end for
k ← k + 1

end while

The only computationally demanding step is the computation of the best
response Bi(xk−i) on line 4. We can used some standard stopping criteria for
this algorithm: a maximum number of iterations, an objective on the difference

77



Chapter 3. Mathematical Fundamentals

between iterates
∥∥xk+1 − xk

∥∥ ⩽ ε, the satisfaction of the KKT conditions up to
an error tolerance, etc. However, the fixed-point based analysis can be limited,
as it may be difficult to have a closed form calculation of the best response
mapping. These issues can be overcome by reducing the NEP to a variational
inequality problem.

If the NEP satisfies hypotheses of Proposition 3.1, then we can solve the game
by focusing on the associated VI problem, for which several well-established
solution methods and convergence of algorithms results are available in the
literature. We refer the interested reader to [99]. The convergence properties
of the algorithm are provided in the following result [121, 122]. Algorithm 1
globally converges to the solution of the VI problem and so on a NE of the
game, under the condition that the VI problem is strongly monotone (Definition
3.23).

Theorem 3.13. Let G = (N ,Ω, b) be a NEP such as Proposition 3.1 holds
and let F = (∇xi

bi)
N
i=1. If F is strongly monotone, then any sequence {xk}∞k=0

generated by Algorithm 1 converges to the unique NE of G.

As a reminder, if a VI problem is strongly monotone, then there is a unique
solution, guaranteed by Theorem 3.6. Then, under this setting, the Theorem
3.13 ensures that Algorithm 1 converges to the unique Nash equilibrium.

Example 3.12. For the Cournot competition in Example 3.4, we have shown
that there is an equivalent strongly monotone VI problem with a unique
solution. The Algorithm 1 is well defined and should converge to the unique
NE, according to Theorem 3.13. We study the case where α = 10, β = 5, γ1 = 1
and γ2 = 2, with this value the algorithm should output:

q∗ =
(α− 2γ1 + γ2

3β
,
α− 2γ2 + γ1

3β

)
=
(2
3
,
7

15

)
≈ (0.668, 0.467).

We implemented the problem using the Julia programming language with the
Gurobi solver. We take the point x0 = (0, 0) as initial value and the stopping
criterion is set such that the difference between successive iterations had to be
less than or equal to 10−3. The algorithm converged to (0.668, 0.467) after 12
iterations and the computation time remained under 1s.

The assumption of strong monotonicity is rather restrictive in practical sit-
uations. On the other hand, the monotonicity property is more commonly
encountered in real-world applications. Since monotone NEPs can admit multi-
ple equilibria, Algorithm 1 can fail to converge. A wide range of algorithms for
solving monotone VI problems are available in the literature, see [99, Vol.II].
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However, most of these solution methods are based on centralized approaches.
In [122, 123], the authors developed distributed best-response algorithms to
solve monotone NEPs with possible multiple solutions. They rely on a reg-
ularization technique called proximal algorithms, see [99, Ch 12]. Instead of
a single NEP, the approach leads to solving a sequence of strongly convex
sub-problems with a particular structure, which are guaranteed to converge
under some technical conditions.

Before presenting the formal description of the algorithm, we first highlight a
few key observations that provide intuition for the construction of the sequence
of strongly monotone NEPs. Let G = (N ,Ω, b) be a monotone NEP, we
consider an additional regularization term in the objective function. The game
is defined as Gτ,y := (N ,Ω, (bi + (τ/2)∥I − yi∥2)Ni=1), where I is the identity
map, τ is a positive parameter and y = (yi)

N
i=1 is the center of the regularization

with each yi ∈ Rni . The NEP Gτ,y is a game where each player i ∈ N solves
the following convex optimization problem, given x−i ∈ Ω−i:

min
xi

bi(xi, x−i) +
τ

2
||xi − yi||2

s.t. Θi ∈ Ωi.
(3.34)

The connection between the original and regularized problem is established by
the following result.

Proposition 3.4 ([122]). Let G = (N ,Ω, b) be a monotone NEP. For any
given positive τ , x∗ ∈ Ω is a NE of G if and only if x∗ is a NE of Gτ,x∗.

Algorithm 2 describes the proximal decomposition algorithm (PDA).

Algorithm 2 Proximal Decomposition Algorithm (PDA)

Choose any starting point x0 ∈ Ω. Given {ρk}∞k=0 and τ > 0.
k ← 0
while a suitable termination criterion is not satisfied do

for i ∈ N do
xk+1
i := x∗ ∈ argmin{bi(xi, xk−i) + τ

2
||xi − xki ||2, xi ∈ Ωi}

end for
if a NE is reached then

each player i ∈ N sets xk+1
i ← (1− ρk).xki + ρk.xk+1

i

end if
k ← k + 1

end while
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If τ is large enough, each Gτ,y(k) is a strongly monotone NEP with a unique NE
which can be computed by the distributed best-response algorithm 1 whose
convergence is guaranteed by Theorem 3.13. The convergence properties of
Algorithm 2 are established in the following result.

Theorem 3.14 ([122]). G = (N ,Ω, b) be a NEP such as Proposition 3.1 holds
and F = (∇xi

bi)
N
i=1 is monotone. Suppose that τ is large enough so that Gτ,y

is strongly monotone and choose {ρk} ⊂ [Rm, RM ] with 0 < Rm ⩽ RM < 2.
Then Algorithm 2 is well defined, and the sequence {xk}∞k=0 generated by the
algorithm converges to a solution G.

The two algorithms presented in this section serve as the main computing tools
for solving the energy exchange scheduling discussed in Chapter 4.
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CHAPTER 4.
Valuing the Electricity Produced Locally in

Renewable Energy Communities through
Noncooperative Resources Scheduling Games

The design of the RECs studied in our work, implements a collaborative
demand-side management scheme inside a community that aims to optimize
the use of resources and energy exchanges by unlocking some flexibility, in order
to achieve the best objective. This chapter extensively studies the problem of
short-term (e.g., day-ahead) dispatch of energy assets within such communities
while modeling DSM possibilities. We discuss that a centralized optimization
formulation may not be sufficient depending on the local market design, and
that game theory is rigorously required: community members share indeed
common resources (such as the public power grid, local electricity surpluses)
so that members’ strategies (e.g., schedule of appliances) may influence the
other members’ objectives (e.g., individual electricity bills) and feasible strate-
gies. Note that the models developed in this chapter are designed to provide
recommendations to the community members.

Further, aware of the increasing willingness of end users to find new alternatives
for sourcing their electricity regarding the recent price volatility on electricity
markets, we investigate the influence of the retail electricity price on the
operation of a REC of domestic users connected to the public LV network.

The content of this chapter is based on the following publications:

• [24] L. Sadoine, M. Hupez, Z. De Grève and T. Brihaye, "Towards
Decentralized Models for Day-Ahead Scheduling of Energy Resources in
Renewable Energy Communities," in Operations Research Proceedings
2022, Springer International Publishing, pp. 321-329, 2023.
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• [25] L. Sadoine, Z. De Grève and T. Brihaye, "Impact of retail electricity
prices and grid tariff structure on the operation of resources scheduling in
Renewable Energy Communities," in 2023 IEEE PES Innovative Smart
Grid Technologies Europe (ISGT EUROPE), 2023.

• [26] L. Sadoine, Z. De Grève and T. Brihaye, "Valuing the Electricity Pro-
duced Locally in Renewable Energy Communities through Noncooperative
Resources Scheduling Games," under revision in Applied Energy.

4.1. Introduction
Mathematical game theory has been considerably investigated in the Smart
Grids literature [10], and more particularly in the framework of DSM modeling
at a community or microgrid scale. Noncooperative games provide a conve-
nient framework to model interactions between selfish users sharing a common
network. Mohsenian-Rad et al. [9] formulated, for instance, day-ahead energy
consumption scheduling games in which each consumer optimizes its own cost
by acting on demand scheduling, using a daily billing approach. Atzeni et al.
[11, 124] proposed, on the other hand, a DSM scheme consisting of day-ahead
optimization, considering both distributed electricity generation and distributed
storage as decision variables rather than shifting energy consumption. The
problem has been expressed as noncooperative and cooperative games succes-
sively, with a continuous billing strategy [11] and has been extended in [124] by
embedding global constraints on aggregate bid energy load, thereby creating
dependencies between players feasible strategies, leading to a generalized Nash
Equilibrium Problem (GNEP). Mishra et al. [125] jointly considered flexible
appliances, storage and local dispatchable generation in the DSM process. They
solved the game and measured the impact of DSM on system performance pa-
rameters. References above do not model, however, in a community framework
that is compliant with EU retail tariff regulation (which separates commodity
costs from grid costs), and in which economic flows may also be optimized.

Le Cadre et al. [66] analyze, for instance, peer-to-peer energy exchange inside
communities with centralized and distributed market designs. Electricity flows
are optimized by maximizing the community’s social welfare, and the authors
formalize a generalized game considering selfish users who optimize their own
operation (local demand and flexibility activation). References [63, 126] present
a local competitive market for community microgrids, which aims at maximizing
the community’s social welfare, by formulating the problem as a bilevel model.
Hupez et al. [76] proposed a DSM scheme for communities established on
typical European LV grids, and focused on the sharing of costs within the
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community using game-theoretical billings. Hupez et al. [72] considered a
collaborative community where surpluses of local renewable generation and
excess storage space are made available freely among community members.
The latter hypothesis is, however, difficultly justifiable in real communities,
in which members who have invested in generation assets may wish to value
internally (in the community) and externally (through classical markets) their
excess production. Moreover, their network costs do not include capacity-based
tariffs.

The allocation of total costs among the members’ individual bills is also an
important question, which has already been investigated in the literature
whether in terms of fairness, user incentives according to their profile or
efficiency, see e.g., [9, 76, 72, 24, 127]. However, papers [9, 127] do not fall
within the energy communities context, where energy can be exchanged between
members. Furthermore, these studies examine the global bill efficiency obtained
from the decentralized approach against that obtained with the centralized
approach.

In this work, we develop two internal market designs for RECs which dictate the
exchanges inside the RECs with flexible appliances, local renewable generation
and energy storage systems. The first design (D1) implements a collabora-
tive demand-side management scheme inside a community where members’
objectives are coupled through grid tariffs, whereas the second design (D2)
allows the valuation of individual excess generation within the community. The
contributions of this chapter are:

1. We extend the formalism of [76, 72] by valuing the electricity exchanged
internally and sold on the retail market at non-zero prices, and we
augment the grid cost structure by considering peak tariffs. Two grid cost
structures are tested, one academic (T1) and a realistic one (T2) which
reflects the Belgian regulations in terms of grid tariffs. We formulate the
mathematical problem in a centralized fashion (i.e. optimization-based),
and distribute the REC total costs among community members ex-post.
We also develop decentralized models based on noncooperative game
theory which endogenize cost distribution.

2. We carry out a theoretical and empirical study concerning the existence
of equilibria with the decentralized models. We also study the efficiency
of the obtained equilibria, i.e., we compare theoretically and empirically
the total REC costs obtained at the equilibrium with the social optimum
obtained with the centralized formulation. We first show that there
always exists an equilibrium that is a social optimum. We also show that
the computed equilibrium induces a total bill equal to or slightly different
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from the centralized solution, meaning that the faster optimization-based
model can be preferred for macroscopic, system-level studies in which
communities may be considered as single economic entities.

3. We study and compare the member individual outcomes for the centralized
and decentralized formulations, for each cost distribution. We show
empirically that replacing decentralization with ex-post allocation from
the centralized model essentially keeps the same individual invoices for
daily billing methods. The same conclusion applies to continuous pricing
if the network costs are linear.

4. We perform a sensitivity analysis of retail electricity prices and measure
the impact on the total REC costs with design D2. We demonstrate
the existence of a threshold in the import retail price, depending on
the difference between the import/export community prices and the
import/export retail prices, for which the economic gains of operating as
a REC increase significantly, for both grid tariffs T1 and T2.

5. We also study the impact on members’ individual bills and interest
in joining/leaving the community. We show that, according to our
hypotheses (rational behavior of members), the realistic grid tariff design
T2 is at least neutral or beneficial in terms of individual costs for each
user type, provided certain cost allocation policies in place.

This chapter is organized as follows. Section 4.2 describes the community
framework with two , the prosumer load model and the adopted cost structures.
Section 4.3 presents the day-ahead energy resources scheduling problem for the
design D1 and D2, in both centralized and decentralized cases. We analyze
in Section 4.4 the socially optimal solutions and (generalized) Nash equilibria,
and propose distributed algorithms for solving the games. The case study
data are presented in Section 4.5 and Section 4.6 display outcomes on the
proposed use-case. In Section 4.7, we conduct the sensitivity analysis on a
REC with design D2 and evaluate outcome differences between centralized and
decentralized problems for T1 pricing. On the other hand, numerical results
are compared to the case when users act individually without community under
T2 pricing. Conclusions constitute the last section.

4.2. Community framework
An overview of the models is presented in Fig.4.1. We assume collaborative
communities built on a demand-side management (DSM) scheme and composed
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Figure 4.1.: Renewable energy community with (A) physical (design D1 and
D2) and (B) virtual decision variables for the pooling of excess
generation (design D2).

of consumers and prosumers connected to the same LV public distribution grid,
where members may virtually pool their excess production (D2) or not (D1).
Each member is equipped with a bidirectional metering device, or smart meter.

4.2.1. Prosumer profile

Let N = {1, . . . , N} be the set of community members, and T = {1, . . . , T}
the set of time steps of duration ∆t within a day. The consumption profile of
member i ∈ N divides into flexible or non-flexible (base) loads.
The flexible consumption is the load for which end-users consent flexibility in
their operation (e.g., electric vehicles, washing machines, etc.). Let Ai be the set
of flexible appliances of member i. For each device a ∈ Ai, we define the energy
scheduling vector xi,a = (x1i,a, . . . , x

T
i,a). The non-flexible loads (e.g., fridge) of

user i are modeled by di = (d1i , . . . , d
T
i ) such as dti ⩾ 0, ∀t ∈ T . A user i might

also be equipped with non-dispatchable energy generation (e.g., photovoltaic
panels), represented by gi = (g1i , . . . , g

T
i ) with gti ⩾ 0, ∀t ∈ T . Note that, we

assume a perfect forecast of the non-flexible load and local production.
Each agent may have a personal energy storage system, such as a battery. The
power scheduling is given by the storage vector si = (s1i , . . . , s

T
i ), with sti > 0
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in charging mode and sti < 0 discharging mode.
The physical net load of prosumer i at time t ∈ T that is metered by the DSO,
is defined as

lti =
∑
a∈Ai

xti,a + dti + sti.∆t− gti . (4.1)

Net load is negative if the prosumer’s production exceeds her consumption
(export situation), and positive if her local generation does not cover her
own consumption (import situation). We define lt+i = max(0, lti) and lt−i =
max(0,−lti), respectively the positive and negative net load, such as lti = lt+i −lt−i .
The daily peak power consumption of member i reads

max
t∈T

(
lt+i
∆t

)
.

We avoid the max operator in the objective function by introducing auxiliary
variables pi, and reformulate as follows:

lt+i
∆t

⩽ pi, ∀t ∈ T . (4.2)

Flexible appliances are subject to constraints. The temporal flexibility consented
to device a by individual i is defined by a daily (parameter) binary vector
δi,a = (δ1i,a, . . . , δ

T
i,a). A value of 1 indicates that member i agrees to schedule

a over time slot t ∈ T , otherwise it will be set to 0. The predetermined total
amount of energy that appliance a must consume for the day is denoted Ei,a.
Without loss of generality, we consider flexible devices with fully modular
consumption cycles, i.e., each of them is limited only by maximum power Mi,a,
which reads

δi,a.x
⊤
i,a = Ei,a (4.3)

0 ⩽ xti,a ⩽Mi,a.δ
t
i,a.∆t, ∀t ∈ T . (4.4)

We adopt a simplified storage model neglecting all losses. The battery is subject
to maximum charge M ch

i and discharge Mdis
i power levels, which yields

−Mdis
i ⩽ sti ⩽M ch

i ∀t ∈ T . (4.5)

The initial state of charge e0i is expressed as a percentage of battery capacity.
We impose that the final state of charge is equal to this value. The storage
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capacity is noted Est
i . The battery state of charge constraints are written:

0 ⩽ e0i +
t∑

h=1

shi .∆t ⩽ Est
i , ∀t ∈ T (4.6)

e0i +
∑
t∈T

sti.∆t = e0i . (4.7)

We consider maximum injection and withdrawal connection power for each
member

lt+i ⩽ lmax
i , ∀t ∈ T (4.8)

lt−i ⩽ gti , ∀t ∈ T (4.9)

pi ⩽
lmax
i

∆t
, (4.10)

where lmax
i > 0 is the upper bound of the member’s capacities.

In the case of design D2, which allows for the virtual mutualization of excess
resources among community members (see Fig. 4.1), we further define virtual
power flows1 that deviate from the physical flows. A prosumer i ∈ N with
a production surplus may sell a quantity ecom,t

i at time step t ∈ T to the
community

0 ⩽ ecom,t
i ⩽ lt−i , ∀t ∈ T . (4.11)

A member i in an energy deficiency situation may also purchase energy icom,t
i

from the community
0 ⩽ icom,t

i ⩽ lt+i , ∀t ∈ T . (4.12)

Moreover, the total excess production allocated to the community must equal
the total quantity imported by members at each time step:∑

i∈N

icom,t
i =

∑
i∈N

ecom,t
i , ∀t ∈ T . (4.13)

Finally, the volumes imported iret,ti from and exported eret,ti to the retail market
by member i are obtained by:

iret,ti = lt+i − icom,t, ∀t ∈ T (4.14)
eret,ti = lt−i − e

com,t
i , ∀t ∈ T . (4.15)

1representing commercial, monetary-based exchanges.
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In summary, if the net load is positive, the energy is imported from the REC
pool icom,t

i and/or from the supplier iret,ti . Similarly, if the net load is negative,
the energy surplus can be sold to other members ecom,t

i and/or to the supplier
eret,ti .

The decision variables set of a user i ∈ N is defined as Θi = {xi,a, si, l+i , l−i , pi}
in D1 model and Θi = {xi,a, si, l+i , l−i , icomi , ecomi , ireti , ereti , pi} for D2 model, with
Θ := (Θ1, . . . ,ΘN). Note that the number of decision variables for a member
i ∈ N can be expressed as follows:

ni := T.(|Ai|+ κ) + 1, (4.16)

with κ = 3 for model D1 and κ = 7 for model D2.

4.2.2. Cost structure

We assume that members aim to minimize their energy bill. The community
electricity bill is constituted by different components:

• Gray energy costs (D1, D2): these costs are based on the portion
of consumption not covered locally, they are charged by the electricity
supplier. We assume a single supplier for the whole community, without
loss of generality. For each member i ∈ N , the costs are formulated as
Ct

ret,i = λtimp.l
t+
i (D1 model) or Ct

ret,i = λtimp.i
ret,t
i (D2 model), with λtimp

the retailer’s import price in e/kWh.

• Local energy costs (D2 only): costs of electricity bought from the
REC pool, at tariff λtiloc e/kWh. For each user i ∈ N , we have Ct

loc,i =

λtiloc.i
com,t
i .

• Revenue from exported energy (D1, D2): income related to the
sale of excess local production on the retail market Rt

ret,i = λtexp.l
t−
i (D1

model) or Rt
ret,i = λtexp.e

ret,t
i (D2 model), with λtexp the retailer export

price in e/kWh. In D2 model only, revenues for the energy exported on
the REC pool are Rt

loc,i = λteloc.e
com,t
i , with λteloc the community export

price in e/kWh.

• Grid costs (D1, D2): costs related to upstream transmission and
distribution grid utilization. These include:

– Volumetric-based costs: we assume two grid pricing structures. As in
[76], Tariff T1 translates the upstream grid usage as a quadratic cost
term expressed as CT1,t

gr = α.(Lt)2, with Lt =
∑

i∈N lti the aggregate
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net load at the MV/LV transformer and α e/kWh2. Tariff T2
is in line with the real grid tariffs applied in Flanders (Belgium)
[128], to which we add a possible discount for the energy consumed
locally as in Brussels (Belgium). This linear cost term is CT2,t

gr =

α.
∑

i∈N (iret,ti + γ.icom,t
i ), with γ ∈ [0, 1] discount factor.

– The peak-based costs: are based on the daily 2 peak power con-
sumption of each member as Cp,i = β.pi, with β e/kW unit penalty
cost.

The total REC costs for D1 and D2 are respectively:

fD1(Θ) =
∑
t∈T

[∑
i∈N

(Ct
ret,i −Rt

ret,i) + Ct
gr

]
+
∑
i∈N

Cp,i (4.17)

fD2(Θ) =
∑
t∈T

[∑
i∈N

(Ct
ret,i + Ct

loc,i −Rt
ret,i −Rt

loc,i) + Ct
gr

]
+
∑
i∈N

Cp,i (4.18)

We assume λtexp < λtimp and λteloc < λtiloc for all t ∈ T .

4.3. Day-ahead energy resources scheduling
problem

We formulate the day-ahead energy exchange scheduling problem, in which
members optimize their available flexibility (D1 and D2) and the virtual energy
exchanges (D2) so as to minimize the total energy costs. Section 4.3.1 presents
the centralized (i.e., optimization-based) formulation, whereas Section 4.3.2
describes the decentralized (i.e., game theoretical) formulation.

4.3.1. Centralized optimization models

This section describes the optimization-based formulation for both designs D1
and D2. We refer the reader to Section 3.1 of Chapter 3 concerning optimization
theory.
Design D1 consists in a collaborative demand-side management scheme be-
tween community members, coupled via the upstream grid cost component.
We assume a central operator (e.g., a community manager) is solving the

2In [128], the mean month power peak is charged. Since it would make no sense to plan
energy resources hourly over a month, we assumed that minimizing the daily peak is
equivalent to minimize the mean monthly peak. We used a daily peak tariff component,
and adjusted the unit price accordingly.

89



Chapter 4. Valuing the Electricity Produced Locally in Renewable Energy
Communities through Noncooperative Resources Scheduling Games

optimization model in order to minimize the total REC electricity costs

P1 :=

{
min
Θ

fD1(Θ) as in (4.17)

s.t. Θ ∈ Ω1
(4.19)

with Ω1 :=
{
(xi, si, l

+
i , l

−
i , pi)

N
i=1 ∈ Rn | (4.1)− (4.10)

}
the feasible set and n :=∑

i∈N ni.

Design D2 allows prosumers to sell their excess production to the community
pool, whereas consumers may purchase electricity on that pool. We have

P2 :=

{
min
Θ

fD2(Θ) as in (4.18)

s.t. Θ ∈ Ω2
(4.20)

where Ω2 :=
{
(xi, si, l

+
i , l

−
i , i

com
i , ecomi , ireti , ereti , pi)

N
i=1 ∈ Rn | (4.1)− (4.15)

}
is

the feasible set.

The profiles minimizing the total bill are named socially optimal solutions.
We define Xopt(P1) and Xopt(P2) the socially optimal solution sets of the
optimization problems P1 and P2 respectively.

4.3.2. Noncooperative games

Designs D1 and D2 may give rise to strategic interactions between community
members, who compete for common resources (i.e., the electrical network and
the local production surplus), which are not captured by (4.19)-(4.20). Indeed,
each member has control over her load profile that impacts her own aims, which
may conflict with those of the other users. Additionally, the allocation of costs
to each member is not addressed in the centralized models, which minimize
the total REC electricity bill only (cost allocation must be performed ex-post
in that case). We formulate, consequently, the day-ahead energy resources
scheduling problem as a noncooperative game for D1 and D2, where the cost
distribution is endogenized in the members’ objective functions. We propose
four mechanisms for allocating REC costs among individuals and computing
the individual bills bi of each member i ∈ N , inspired by [76].

The first three cost distribution methods share the total REC daily costs f(Θ)
proportionally among members according to distribution keys Ki. Then, these
keys of distribution have constant values over the horizon time and the sum of
these keys is 1. The last billing method allocates the total REC costs on an
hourly basis. Note that other allocation mechanisms, based on energy sharing
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rather than cost sharing, can be found in the literature (see e.g., [29, 60]).

1. Egalitarian billing [EB]. The first static key is simply based on equal
sharing between members of the community.

bEB
i (Θ) = Kif(Θ) =

1

N
f(Θ), ∀i ∈ N . (4.21)

2. Net load proportional billing [NET]. The distribution key for member
i ∈ N is given by the ratio between the absolute value of her net load
and the community net load. More precisely, we consider the minimal
value of the net load, i.e. l∗i ∈ argmin(

∑
t∈T |lti|), in order to make the

key independent of the solution set [76].

bNET
i (Θ) = Kif(Θ) =

∑
t∈T l

t∗
i∑

j∈N
∑

t∈T l
t∗
j

f(Θ), ∀i ∈ N . (4.22)

3. Marginal cost billing [VCG]. The distribution key of each member is
calculated using the normalized Vickrey-Clarke-Groves (VCG) mechanism
[127, 76]. A new approach addresses the absolute contribution of the
user:

bVCG
i (Θ) = Kif(Θ) =

|C∗
N − C∗

N\{i}|∑
j∈N |C∗

N − C∗
N\{j}|

f(Θ), ∀i ∈ N (4.23)

where C∗
N are the minimum community costs for a REC composed by

all members of set N , and are obtained by solving (4.19) or (4.20). This
requires the solution of N additional optimization problems to obtain
each C∗

N\{i}.

4. Continuous billing [CB]. The total cost is distributed among commu-
nity members at each time slot t ∈ T . We have for designs D1 and D2
respectively, for each user i ∈ N

bCB1
i (Θ) =

∑
t∈T

(Ct
ret,i −Rt

ret,i + Ct
gr,i) + Cp,i (4.24a)

bCB2
i (Θ) =

∑
t∈T

(Ct
ret,i + Ct

loc,i −Rt
ret,i −Rt

loc,i + Ct
gr,i) + Cp,i (4.24b)

where Ct
gr,i = lti.αL

t, with Lt =
∑

j∈N ltj, for tariff T1 and Ct
gr,i =

α.(iret,ti + γ.icom,t
i ) for tariff T2.
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Design D1 as a NEP

We rewrite the problem (4.19) as a Nash equilibrium problem (NEP) de-
scribed in Section 3.2.2 of Chapter 3. Each member i ∈ N is a selfish
player choosing her strategy Θi ∈ Rni in order to minimize her own daily
cost function bi : Rn → R, which depends itself on other players’ strategies
Θ−i := (Θ1, . . . ,Θi−1,Θi+1, . . . ,ΘN). Mathematically, each member solves the
following optimization problem, given Θ−i the other players’ strategies

G :=

{
min
Θi

bi(Θi,Θ−i) ∀i ∈ N

s.t. Θi ∈ Ωi

(4.25)

where Ωi ⊆ Rni is the strategy set constituted by the player i’s individual
constraints, which are independent of the other members’ strategies in D1.
The n-dimensional joint strategy set is expressed as Ω :=

∏
i∈N Ωi, with

n :=
∑

i∈N ni. The game G is described as the triplet G = (N ,Ω, (bi)Ni=1).

A strategy profile Θ∗ ∈ Ω is called a Nash equilibrium (NE) of the game G
(4.25) if ∀i ∈ N :

bi(Θ
∗
i ,Θ

∗
−i) ⩽ bi(Θi,Θ

∗
−i), ∀Θi ∈ Ωi. (4.26)

The set of NEs of game G is denoted NE(G). A NE is a feasible strategy
profile such that no single player can benefit by unilaterally deviating from her
strategy.

The REC’s total cost is the sum of the members’ individual energy bills, which,
by Definition, 3.15 corresponds to the social cost. A strategy profile is a social
optimum if it optimizes social costs. Note that a NE does not necessarily lead
to a social optimum, and a social optimum may not be a NE. A game G is said
to be equivalent to a minimization problem of a function F : Rn → R if, for all
Θ∗ ∈ Ω, Θ∗ is a NE if and only if Θ∗ is a global minimum of F .

Design D2 as a GNEP

Design D2 allows excess production to be shared among community members.
This translates into additional constraints ensuring the balance of internal
virtual exchanges (4.13). These constraints couple the strategy set of each
player to her rivals’ decisions. We reformulate consequently problem (4.20) as
a generalized Nash equilibrium problem (GNEP) described in Section 3.2.4
of Chapter 3. In a GNEP, both the objective functions and the strategy sets
depend on the rivals’ strategies, contrary to NEPs where interactions occur on
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. . .

Figure 4.2.: Design D2 as a generalized Nash equilibrium problem.

the objective functions only. We have

G :=

{
min
Θi

bi(Θi,Θ−i) ∀i ∈ N

s.t. Θi ∈ Ωi(Θ−i)
(4.27)

where the strategies of player i ∈ N must belong to her feasible strat-
egy set Ωi(Θ−i) ⊆ Rni . Similarly, the game is described as the triplet
G = (N , (Ωi(Θ−i))i∈N , (bi)i∈N ).

In our case, the members share common linear equality constraints, so that we
define the feasible set of agent i ∈ N as

Ωi(Θ−i) :=
{
Θi ∈ Ωi | h(Θi,Θ−i) = 0

}
, (4.28)

where Ωi ⊆ Rni is player i individual constraints set. We write the shared
coupling constraints (4.13) as: h(Θ) := (

∑
i∈N ecom,t

i − icom,t
i )t∈T . The joint

strategy set reads

C =
{
Θ ∈ Rn | Θi ∈ Ωi ∀i ∈ N , h(Θ) = 0

}
. (4.29)

A strategy profile Θ∗ is called a generalized Nash equilibrium (GNE) of the
game G (4.27) if ∀i ∈ N :

bi(Θ
∗
i ,Θ

∗
−i) ⩽ bi(Θi,Θ

∗
−i), ∀Θi ∈ Ωi(Θ

∗
−i). (4.30)

The set of generalized Nash equilibria of G reads GNE(G). As with NEPs,
the community’s total bill corresponds to the social cost, and a GNE is not
automatically a social optimum, just as a social optimum may not be an
equilibrium.
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4.4. Analysis and resolution
This section studies the existence of solutions and presents solution algorithms
for each model presented in Section 4.3. It also provides a theoretical analysis for
assessing the overall and individual efficiency of the various billing mechanisms.
We use the Price of Anarchy (Definition 3.16) and the Price of Stability
(Definition 3.17) as performance measures to estimate the performance of
decentralized models in comparison with the centralized formulations, which, in
fact, correspond to the problems of minimizing the social cost. The theoretical
results obtained in sections 4.4.2 and 4.4.3 are summarized and supported
empirically in Table 4.6 on page 113, Section 4.6.2 of the present chapter.

4.4.1. Optimization problems
We first analyze the classification and properties of centralized optimization
problems P1 (4.19) and P2 (4.20) for both grid tariff structures.

Theorem 4.1. The optimization problems P1 (4.19) and P2 (4.20), with T1
or T2, have at least a global minimum.

These models are convex quadratic optimization (tariff T1) or linear optimiza-
tion (tariff T2) problems, for which the existence of a solution is guaranteed.
Multiple solutions may exist, however, since the objective functions fD1 and fD2

are not strongly convex. This could lead to a fairness issue among members, as
some may prefer one solution, while others may prefer another. These problems
can be solved in a centralized way by standard algorithms, such as interior-point
methods, in polynomial time [94, 129].
Remark 4.1. At the optimum, no simultaneous export to import from the grid
can occur for member i ∈ N over a time period t ∈ T . The same holds for the
energy imported from and exported to the community. It can be shown via
the KKT conditions of the convex optimization problems.

4.4.2. Nash equilibrium problems
We study Nash equilibria in the case of design D1 (section 4.3.2), for tariff T1
and each cost distribution method. Case T2 is discussed in remark 4.2. The
properties of our problem allow us to draw connections with other theories
presented in Chapter 3. In this way, we can establish the following results.

Theorem 4.2. Given the NEP (4.25) with tariff T1, for the four cost
distribution methods, the NEs set of the game is nonempty and compact.
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Proof. We provide the proof in Appendix A.1. ■

Although Theorem 4.2 guarantees the existence of an equilibrium, there may
be multiple solutions, which are discussed in Theorem 4.3.

Theorem 4.3. Given the NEP G defined in (4.25),
1. For [EB,NET,VCG], the game is equivalent to the P1 problem (4.19).

Each Nash equilibrium Θ∗ of G is a social optimum and leads to the
same values of the individual objective functions:

∀Θ∗,Θ′ ∈ NE(G),∀i ∈ N , bi(Θ∗) = bi(Θ
′).

2. For [CB], the game is equivalent to the optimization problem:

min
Θ

fD1(Θ)− α

2

∑
t∈T

∑
i∈N

lti.L
t
−i

s.t.Θ ∈ Ω

(4.31)

where Lt
−i =

∑
j∈N\{i} l

t
j.

Proof. We provide the proof in Appendix A.1. ■

Theorem 4.3 states that NEP (4.25) can always be formulated as a centralized
optimization problem. More particularly, for [EB,NET,VCG] cost distribution
methods, the NE set coincides with the optimal solutions of the centralized
problem P1, i.e., NE(G) = Xopt(P1). The values of players’ billing functions
are furthermore constant over the NE set. Roughly speaking, one can say that
all the NEs are equivalent in terms of values of the players’ cost functions. As
a direct consequence of the Theorem 4.3.1, we deduce the Corollary 4.1 which
reads that all NEs are efficient.

Corollary 4.1. Consider the NEP G defined in 4.25, and further assume
that the cost allocation is based on [EB,NET,VCG], then

PoA(G) = PoS(G) = 1.

In the case of [CB], the NEs may not achieve social optimality, as we can observe
for our use-case in Section 4.6.2. However, we certainly cannot theoretically
assert that this will never happen for any of them.

Nevertheless, a centralized resolution raises important issues related to pro-
sumers’ consumption privacy. We focus on the computation of the NEs of game
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(4.25), via distributed iterative algorithms discussed in Section 3.4 of Chap-
ter 3. Since the problem may have multiple NEs, the classical best-response
algorithm (see Algorithm 1) may fail to converge [122]. Hence, we adopt a
proximal decomposition algorithm (PDA) (see Algorithm 2), that have desir-
able privacy-preserving properties [11, 122]. Indeed, each member solves its
local problem and only need the aggregate net load which can be exchanged
between community members’ smart meters, without needing to be stored
or made accessible to any other party. The sequence generated by the PDA
converges to a solution of the game. More details regarding the algorithm and
its convergence are provided in Appendix A.2.
Remark 4.2. If we apply continuous cost allocation [CB] with T2 pricing, there
is no dependency between players in the objective function. We end up with
N independent optimization problems, which is not a game. For daily billings
[EB, NET, VCG], results remain similar to T1.
As a summary, this theoretical study indicates that for any cost distribution key,
we can always write an optimization model, which is equivalent to the NEP, and
that the NEP resolution via PDA converges towards a game equilibrium. For
the daily billings [EB, NET, VCG], all NEs further respect the community-level
efficiency and do not induce any deviations in individual invoices.

4.4.3. Generalized Nash equilibrium problems
The power balance conditions within the community (4.13) imply that the
strategy sets depend on the other players’ strategies. As a result, GNEPs are
more complicated to solve than NEPs. This section examines the equilibria of
GNEP (4.27), with both designs T1 and T2.

Problem G in (4.27) belongs to the jointly convex GNEPs subclass, defined in
Definition 3.20. For jointly convex GNEPs, one can characterize a subset of
GNE, presenting desirable properties for our application, named variational
equilibria (VEs) (see Definition 3.25, [106]). Those concepts are defined in
Chapter 3 and discussed for our framework in Appendix B. Recall that we note
VE(G) the set of VEs of a jointly convex GNEP G.

One can show that a VE (and thus a GNE) always exists.

Theorem 4.4. Let us consider GNEP (4.27) for both tariffs T1 and T2,
as well as all cost distribution methods. The game possesses at least one
generalized Nash equilibrium: GNE(G) ̸= ∅.

Proof. We provide the proof in Appendix B.1. ■
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Theorem 4.4 guarantees the GNE existence for game G, but it may have multiple
solutions. In contrast to the case discussed in Section 4.4.2, it is theoretically
not possible to provide a full characterization of the GNEs. However, depending
on the pricing system, we may still analyze some of them to determine the
most appealing.

Theorem 4.5. Given the jointly convex GNEP (4.27), for both tariffs T1
and T2:

1. For [NET,VCG], the social optimum of P2 in (4.20) are included in
the GNEs set, i.e., Xopt(P2) ⊆ GNE(G).

2. For [EB], the VEs set coincides with the social optimum of P2 over the
set C, and leads to the same value of the objective functions.

∀Θ∗,Θ′ ∈ VE(G),∀i ∈ N , bi(Θ∗) = bi(Θ
′).

For [CB] with the billing function (4.24b),

3. In the case of T1 quadratic pricing, the VEs set coincides with the
optimal solutions of the optimization problem:

min
Θ

fD2(Θ)− α

2

∑
t∈T

∑
i∈N

lti.L
t
−i

s.t.Θ ∈ C
(4.32)

where Lt
−i =

∑
j∈N\{i} l

t
j.

4. In the case of T2 linear pricing, the VEs set coincides with the social
optimum of P2 over the set C, i.e.,

Xopt(P2) = VE(G) ⊆ GNE(G).

Proof. We provide the proof in Appendix B.2. ■

From Theorem 4.5, we can deduce the following corollary.

Corollary 4.2. Given the jointly convex GNEP G defined in 4.27, for both
tariffs T1 and T2:

1. If we assume [NET,VCG] then the Price of Stability of G is equal to 1.

2. For [EB], we have that the Price of Stability of G is equal to 1, and
the Price of Anarchy restricted to game’s variational equilibria is also
equal to 1.
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In the case of T2 linear pricing only:

3. For [CB], we have that the Price of Stability of G is equal to 1, and
the Price of Anarchy restricted to game’s variational equilibria is also
equal to 1.

For [EB,NET,VCG], we note that all the optimal solutions to the social problem
(4.20) are included in the GNEs set. Therefore, the game with any of these three
cost distribution methods has its Price of Stability equal to 1. We can be more
specific in the case of [EB], as the optimal solutions to the centralized problem
coincide with the VEs of the game. Moreover, all VEs are equivalent. Besides,
the game with [CB] and realistic T2 pricing also has a Price of Stability equal
to 1 and its VEs coincide with the optimal solutions for the P2 optimization
problem. On the other hand, there may be GNEs which are suboptimal in
regard to the socially optimal cost. Note that for [CB] with T1 pricing, nothing
can be asserted theoretically about equilibria efficiency, thus GNEs and VEs
may not achieve social optimality.

Even though Theorem 4.4 ensures the existence of an equilibrium, we need to
be able to calculate it in practice. The optimal selection and monitoring of
GNEs is still considered as a scientific challenge and goes beyond the scope of
this work [130]. Here, we resort to the proximal decomposition algorithm with
shared constraints [122]. This algorithm is guaranteed to converge towards
a VE for all cost distribution methods using tariff T2 and [EB,CB] for tariff
T1. Thus, we are sure to obtain an efficient equilibrium for [EB] and [CB]
under tariff T2. The [NET,VCG] are more sensitive to T1 pricing, however,
we empirically observe the convergence to a GNE for our use-case in Section
4.6. We provide more details regarding the convergence of the algorithm in
Appendix B.3.

In summary, at least one social optimal GNE exists, except for [CB] in design
T1. The PDA with shared constraints converges towards an equilibrium
corresponding to the social optimum for [EB] with T1 and T2, and [CB] with
design T2. In theory, nothing can be asserted about the solution efficiency of
allocation methods [NET,VCG]. However, the empirical study conducted in
Section 4.6 reveals that inefficiency is negligible for both keys for our use case.
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4.5. Case study

4.5.1. Members profiles and parameters

We study a REC composed of 55 residential members who mutualize excess
PV generation (design D2) and connected behind the same MV/LV feeder.
For the non-flexible loads, hourly electricity consumption profiles are extracted
from the Pecan Street Project dataset [131] and generated for whole days,
with T = 24. Battery Energy Storage Systems are assigned to community
members with a penetration level of 50%. The initial battery state-of-charge is
fixed at 50%. Installed PV capacities vary between 0 and 10 kWp. The day
ahead energy scheduling models are run for 20 days (10 days with high PV
production - 10 days with low PV). We assume that the total daily energy
demand remains constant, regardless of the schedule of flexible appliances
(no load shedding). The prosumers may own different flexible devices: white
goods (dishwashers, washing machines, clothes dryers, etc.), Electric Vehicles
(EV) and Heat Pump (HP). For simplicity and without loss of generality, the
latter is considered as a fully flexible load. We consider bi-hourly commodity
tariffs: λtimp = 0.08 e/kWh, λtexp = 0.02 e/kWh, λtiloc = 0.065 e/kWh and
λteloc = 0.032 e/kWh between 21 p.m. and 4 a.m., and λtimp = 0.16 e/kWh,
λtexp = 0.04 e/kWh, λtiloc = 0.13 e/kWh and λteloc = 0.05 e/kWh elsewhere.
We assume constant network tariffs with α = 0.00109488 e/kWh2 for T1 grid
tariffs and β = 0.1096737 e/kW. In T2 pricing, we take α = 0.027 e/kWh and
a γ = 0.5 discount on the tariff grid for energy imported from the REC pool.

4.5.2. Benchmark and key performance indicators

We simulate the REC use-case under designs D1 and D2, for both grid tariff
structures T1 and T2. We compare outcomes with a benchmark where each
user i ∈ N individually minimizes her own commodity and peak power costs
(situation without community). In each case, the REC total and the individual
bills are calculated according to the cost distribution method selected from
those presented in Section 4.3.2. In the T1 grid pricing benchmark, total
costs are gathered by summing over the individual costs of each user first, and
then adding the upstream network volumetric costs. The individual costs are
obtained directly when using the game-theoretical models, or computed ex-post
with the centralized optimization models.

We further calculate the following technical Key Performance Indicators (KPIs):
• Self-Consumption Rate (SCR): ratio between the production con-
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sumed locally and the total production

SCR := 1−
∑

t∈T
∑

i∈N κti∑
t∈T
∑

i∈N gti
, with κti =

{
lt−i if design D1
eret,ti if design D2.

(4.33)

• Self-Sufficient Rate (SSR): ratio between the load supplied locally
and the total consumption

SSR := 1−
∑

t∈T
∑

i∈N κti∑
t∈T
∑

i∈N lti + gti
, with κti =

{
lt+i if design D1
iret,ti if design D2.

(4.34)

• Peak to Average Ratio+(−) (PAR+(−)): ratio between the peak com-
munity consumption(+)/injection(-) and the average community con-
sumption/injection

PAR+(−) :=
T.maxt∈T

∑
i∈N l

t+(−)
i∑

t∈T
∑

i∈N l
t+(−)
i

. (4.35)

All the convex quadratic and linear problems arising from the models are coded
in Julia/JuMP [22] and solved using Gurobi [23]. We report CPU solving times.

4.6. Results and discussion

We first study the centralized, optimization-based formulations for designs D1
(4.19) and D2 (4.20), and compare with the individual benchmark. We then
provide a detailed analysis of NEP (4.25) under T1 pricing, and GNEP (4.27)
for both grid tariff structures. In each subsection, we start by summarizing our
findings and then illustrate and discuss supporting results. We finally expose
a synthesis of our theoretical and experimental findings for noncooperative
games, along with two observations of important practical significance. Simula-
tions have been performed on a laptop with an Intel(R) Core(TM) i7-10750H
processor and 16 GB of RAM.

4.6.1. Centralized formulations

Design D2 which includes the valuation of excess local generation, and to a
lesser extent design D1, tends to lower the total REC electricity costs and to
improve the technical KPIs.
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We compare the optimal solution for the community as a whole for models D1
and D2 as presented in Section 4.3.1, and across different grid tariff structures.
Table 4.1-4.2 depicts the mean and standard deviations (between parentheses)
of the total REC costs and technical KPIs, over the 10 high and low PV
generation days. The total REC cost components are shown in Fig. 4.3. CPU
times for solving the model for one day are equal to 1s for design D1 (6,631
decision variables and 21,267 constraints), and 2s for design D2 (11,911 variables
and 29,235 constraints).

REC Bill [e] PAR+ PAR- SCR [%] SSR [%]
Day High PV
Benchmark 317.15 (13.24) 2.37 (0.03) 4.44 (0.28) 73.08 (1.4) 47.49 (0.78)
Design D1 221.55 (12.12) 1.19 (0.03) 2.45 (0.07) 73.08 (1.4) 47.49 (0.78)
Design D2 203.02 (13.42) 1.19 (0.03) 2.46 (0.07) 100 (0) 65 (2.3)
Day Low PV
Benchmark 819.55 (16.83) 2.22 (0.01) 4.8 (10.12) 99.99 (0.03) 1.49 (0.4)
Design D1 664.65 (12.42) 1.21 (0.01) 4.8 (10.12) 99.99 (0.03) 1.49 (0.4)
Design D2 664.65 (12.42) 1.21 (0.006) 4.8 (10.12) 100 (0) 1.5 (0.4)

Table 4.1.: Summary of centralized results for tariff T1. Columns refer to the
economic and technical KPIs, whereas rows refer to the two market
designs and the individual benchmark. The table reports the means
of the KPIs for 10 days of high and low PV generation respectively,
whereas standard deviations are depicted between parentheses.

REC Bill [e] PAR+ PAR- SCR [%] SSR [%]
Day High PV
Benchmark 171.28 (6.66) 2.37 (0.03) 4.41 (0.14) 73.08 (1.4) 47.49 (0.78)
Design D1 171.28 (6.66) 2.4 (0.03) 4.18 (0.35) 73.08 (1.4) 47.49 (0.78)
Design D2 161.95 (6.85) 2.39 (0.04) 3.25 (0.34) 83.37 (0.02) 54.18 (1.02)
Day Low PV
Benchmark 362.96 (4.67) 2.22 (0.01) 4.8 (10.12) 99.99 (0.03) 1.49 (0.4)
Design D1 362.96 (4.67) 2.22 (0.01) 4.8 (10.12) 99.99 (0.03) 1.49 (0.4)
Design D2 362.96 (4.67) 2.22 (0.01) 4.8 (10.12) 100 (0) 1.49 (0.4)

Table 4.2.: Summary of centralized results for tariff T2. Columns refer to the
economic and technical KPIs, whereas rows refer to the two market
designs and the individual benchmark. The table reports the means
of the KPIs for 10 days of high and low PV generation respectively,
whereas standard deviations are depicted between parentheses.

101



Chapter 4. Valuing the Electricity Produced Locally in Renewable Energy
Communities through Noncooperative Resources Scheduling Games

Figure 4.3.: Mean (and standard deviation) of the components of the total REC
costs with T1 tariff, for the individual benchmark, D1 and D2, (a)
for the high PV days and (b) the low PV days. The subplots (c)
and (d) represent the T2 tariff case with γ = 0.5, corresponding to
days with high PV and low PV respectively.

We first analyze the results of the quadratic grid tariff design in Table 4.1.
Compared to the benchmark solution, total costs are on average 30.14% (18.9%)
lower for high (low) PV days under REC design D1. The gain mainly originates
in lower upstream grid costs and to a lesser extent individual peak costs, which
is confirmed by the lower PAR values. Extra savings of 8.36% are obtained
with the D2 design compared to D1, for high PV days.

According to the data from Table 4.2 and Fig.reffig-2(c)-(d), we can assert that
the benchmark and model D1 are equivalent to the linear grid tariff design. We
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observe a cost decrease of 5.45% for the D2 model in the high PV case. Note
the smaller difference in this case than with the T1 tariff.

The REC with mutualization of local excess generation (i.e., model D2) leads
to the lowest total cost, and to the best technical KPI values, compared with
the benchmark and D1 models. Indeed, the excess of local production is
exchanged inside the REC at more advantageous prices than retail market
prices, reducing commodity costs and the total REC bill. Sharing the surplus
produced locally increases the incentive for members to coordinate their efforts,
thereby increasing their self-consumption and self-sufficiency. Note that total
bills obtained for tariffs T1 and T2 should not be compared on an absolute
basis: our results aim to show that our modeling framework can be adapted to
different grid tariff structures, but the study of the ideal grid tariff structure for
communities from the regulatory point of view is out of the scope of this work.

For centralized models, the individual member bills are obtained ex post:
the optimal total costs are distributed according to the billing mechanisms
[EB,NET,VCG,CB] described in Section 4.3.2. In addition, we show that the
D2 solution Pareto-dominates the D1 solution in [EB,NET] methods for both
T1 and T2, since some members are better off without making another worse off.
For the sake of conciseness, we don’t include the quantitative results supporting
that claim here. In the case of continuous billing, this is also true for T2 grid
pricing and for the high PV case with T1 pricing, whereas the difference is
negligible for low PV. Note that the [CB] individual bill for a member of the
D1 model is identical to the one obtained if he had remained alone in the
Benchmark.

4.6.2. Noncooperative games results

We focus on the numerical resolution of NEPs (4.25) for model D1 and GNEPs
(4.27) for model D2. For each game, we start by calculating the REC global
costs and inefficiency of equilibria compared with social optimum. Next, we
look at members’ bills and its variations from the centralized case. A summary
of all the main empirical findings can be found in Table 4.6.

Design D1 as a noncooperative game

a) For design D1 with tariff T1, the inefficiencies of the computed equilibria
compared to the social optimum are zero for billings [EB, NET, VCG], and
remain very limited for billing [CB].
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We first study the total REC costs and technical KPIs for the four cost-
distribution methods proposed in the noncooperative day-ahead scheduling
problems (4.25) under T1 pricing only, since T2 tariff is not relevant in this
case. Table 4.3 summarises the mean and standard deviations of the results.
The longest simulation times are 780s for [EB,NET,CB] and 1200s for [VCG].
Note that if the initial values correspond to a social optimum, then Algorithm
2 converges after 2 iterations in a few seconds for [EB,NET,VCG].

REC Bill [e] PAR+ PAR- SCR [%] SSR [%]
Day High PV
EB 221.55 (12.12) 1.19 (0.03) 2.45 (0.07) 73.08 (1.4) 47.49 (0.78)
NET 221.55 (12.12) 1.19 (0.03) 2.45 (0.07) 73.08 (1.4) 47.49 (0.78)
VCG 221.55 (12.12) 1.18 (0.03) 2.45 (0.07) 73.08 (1.4) 47.49 (0.78)
CB 224.85 (11.92) 1.43 (0.02) 2.42 (0.07) 73.08 (1.4) 47.49 (0.78)
Day Low PV
EB 664.65 (12.42) 1.21 (0.006) 4.8 (10.12) 99.99 (0.03) 1.49 (0.4)
NET 664.65 (12.42) 1.21 (0.004) 4.8 (10.12) 99.99 (0.03) 1.49 (0.4)
VCG 664.65 (12.42) 1.21 (0.005) 4.8 (10.12) 99.99 (0.03) 1.49 (0.4)
CB 669.54 (12.41) 1.39 (0.003) 4.8 (10.12) 99.99 (0.03) 1.49 (0.4)

Table 4.3.: Summary of decentralized results for model D1 with tariff T1.

As predicted by Theorem 4.3 and Corollary 4.1, the REC total costs at the
computed equilibrium correspond to the social optimum of P1 (221.55e) for
the daily allocation keys [EB,NET,VCG]. Then, these billing mechanisms are
efficient (PoA=1). In addition, the standard deviations are identical.

The [CB] billing, on the other hand, leads to a sub-optimal solution. We
quantify the inefficiency as (

∑
i∈N bCB1

i (Θ∗)− C∗
N )/C∗

N , where Θ∗ is a NE and
C∗

N the social optimum. The [CB] inefficiency remains however small: we
obtain a mean inefficiency of 1.49% for the high PV days, and 0.73% on the
low PV days. Thus, we have the following bound on the PoA of the game with
[CB]:

PoA(G) ⩾
224.85

221.55
≈ 1.0149.

In fact, the upstream grid contribution of (4.24a) is subject to strategy in this
billing, explaining the greater inefficiency during high PV days. The PARs
differ from the daily billings, whereas SCR and SSR remain the same.
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b) For design D1 with tariff T1, the individual bills obtained with the game
formulation and via the ex-post distribution of the social optimum are equal
to billings [EB, NET, VCG], and we observe non-negligible deviations for a
limited number of individuals for [CB].

It is important to note that, while the daily cost distribution approaches tend to
minimize the total REC costs, some users may experience lower profits. Figure
4.4 depicts the individual invoices of the 55 members set, at the computed
Nash equilibrium on high PV days.

Figure 4.4.: Mean (and standard deviation) individual bills for the NEP (4.25)
under tariff T1 with (a) [EB], (b) [NET], (c) [VCG] and (d) [CB]
on the High PV days.

Overall, it appears that no clear trend can be observed regarding the allocation
method, which is the most suited to members. It is, however, not the aim of
this chapter to study the problem of fairness of allocation methods (we refer
to [76, 72, 60, 127] for that purpose): our purpose is to compare individual
bills when adopting the centralized and decentralized approaches, with the
allocation method as a parameter.

Results showed that individual bills obtained with the centralized and de-
centralized approaches are overall equivalent, which validates Theorem 4.3.1.
Although it is clear for [EB, NET, VCG], this is not so straightforward for
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the continuous billing [CB]. Figure 4.5 shows, for each member, the average
percentage of changes between the bill bCB1

i and the one obtained after ex-post
allocation of the social optimum.

Figure 4.5.: Mean percentage of changes between individual bills bCB1
i and the

one obtained from the centralized method with [CB] on high PV
days. Data for players 26 and 41 are not displayed due to scale
considerations.

The relative difference reaches 4622.5% for member 41. This outlier is explained
by the fact that, for one of the days in our use case, the player goes from a bill
very close to zero at the social optimum, to 0.384 e. We observe a value of
84% for player 26, who is, in fact, a pathological case like players 12, 22 and
40. In fact, their bills are lower than 1 in absolute value, which explains the
large relative change (see Fig.4.4(d)). For all members of the REC, the mean
difference in absolute number does not exceed 0.72 e. This value is associated
to member 30, which so corresponds to the largest deviation (31.17%) excluding
the pathological cases mentioned. Therefore, we conclude that, in the D1
case, the daily costs distribution among members are equals when solving the
optimization problem (4.19) and the game (4.25) for [EB, NET, VCG]. The
differences are however not negligible for the continuous case, for some of the
members.

Design D2 as a noncooperative game

We proceed in a similar way for the noncooperative scheduling problem with
local exchanges (4.27), first for the grid tariff structure T1 and then T2 pricing.
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c) For design D2 and tariff T1, the inefficiency of the computed equilibria
compared to the social optimum is zero for billing [EB], is negligible for
billings [NET, VCG], and remains very limited for billing [CB].

We first examine the problem from a macroscopic perspective for the four cost
allocation methods. Table 4.4 summarises the mean and standard deviations
of the results of the GNEP resolution. If the set of initial values corresponds
to a social optimum, the worst simulation time is 83s for [EB], 107s for [NET,
VCG] and 149s for [CB].

REC Bill [e] PAR+ PAR- SCR [%] SSR [%]
Day High PV
EB 203.02 (13.42) 1.19 (0.032) 2.46 (0.07) 100 (0) 65.02 (2.3)
NET 203.04 (13.42) 1.19 (0.032) 2.46 (0.07) 100 (0) 65.02 (2.3)
VCG 203.05 (13.42) 1.19 (0.032) 2.46 (0.07) 100 (0) 65.02 (2.3)
CB 203.83 (13.6) 1.24 (0.076) 2.45 (0.07) 100 (0) 65.02 (2.3)
Day Low PV
EB 664.65 (12.42) 1.21 (0.006) 4.8 (10.12) 100 (0) 1.49 (0.4)
NET 664.67 (12.42) 1.21 (0.006) 4.8 (10.12) 100 (0) 1.49 (0.4)
VCG 664.68 (12.42) 1.21 (0.006) 4.8 (10.12) 100 (0) 1.49 (0.4)
CB 668.05 (13.13) 1.36 (0.02) 4.8 (10.12) 100 (0) 1.49 (0.4)

Table 4.4.: Summary of decentralized results for model D2 with tariff T1.

For [EB] billing, the computed VE is a social optimum for problem P2 (4.20),
because the same value of total costs can be observed in Table 4.1 and 4.4, for
both high PV (203.02e) and low PV (664.65e). This corroborates Theorem
4.5.2 and Corollary 4.2.2. We observe that the total bill does not correspond
exactly to the social optimum for the [NET] and [VCG] billings. As explained
in Section 4.4.3, although Theorem 4.5.1 assures that there are GNEs that are
socially optimal, we are not able to prove that the PDA converges to one of
them. As expected, [CB] leads to a sub-optimal solution. The inefficiencies (i.e.,
deviations from the social optimum) are calculated as (

∑
i∈N b∗i − C∗

N )/C
∗
N ,

where C∗
N is the social optimum. We observe in Table 4.6, that the inefficiencies

remain, however, very small, especially for [NET,VCG] (0.007% and 0.014%
respectively, contrarily to 0.4% for [CB]). Thus, we have the following bound
on the PoA of the game with [CB]:

PoA(G) ⩾ 1.005.
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Note that the inefficiency of [CB] in D2 is lower than for D1.

d) For design D2 with tariff T1, the individual bills obtained with the game
formulation and via the ex-post distribution of the social optimum are equal
for billing [EB]. The difference is negligible for billings [NET, VCG], and we
observe non negligible deviations (although smaller than for D1) for a limited
number of individuals for [CB].

Figure 4.6 shows the invoices of the 55 members at the computed equilibrium
on high PV days for the grid tariff T1. In a similar way to the centralized case,
we note that the D2 solution Pareto-dominates D1 solution with [EB,NET]
distributions (see Fig.4.4(a)-(b) and Fig.4.6(a)-(b)).

Figure 4.6.: Mean (and standard deviation) individual bills for the GNEP (4.27)
under tariff T1 with (a) [EB], (b) [NET], (c) [VCG] and (d) [CB]
on the high PV days.

The individual bill derived from the [EB] mechanism is equal to the one obtained
ex-post in the centralized case. The individual changes under [NET,VCG,CB]
methods are displayed in Figure 4.7.
As we can see on Fig. 4.7(a), the percentages are quite small for the [NET]
method. The percentage maximum reaching 0.022%, for member 17, and a
difference of 0.001e (this may correspond to a numerical or rounding error).
The same can be said of the [VCG] billing, as shown in Fig.4.7(b), with the
percentage maximum at 0.21% and a difference of 0.006e. Once again, we
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Figure 4.7.: Mean percentage of changes between individual bills and the one
obtained from the centralized method with (a) [NET], (b) [VCG]
and (c) [CB] on high PV days under tariff T1. Data for players 12,
26 and 41 are not displayed due to scale considerations.

come across pathological cases with higher percentages for the [CB] mechanism
(see Fig.4.7(c)). On one day, member 26’s bill rises from 0e to 0.064e. This
explains his percentage of 2131.94%. We observe a value of 47% and 65%
for players 12 and 41 respectively, but their bills are lower than 1 in absolute
value, which explains the large relative change (see Fig.4.6(d)). In fact, for
all members of the REC, the mean difference in absolute number does not
exceed 0.4e in the [CB] distributions. Excluding these special cases, the biggest
difference is 18.4% corresponding to member 30. For daily billing mechanisms,
the individual bills are the same whether the optimization problem (4.20) or
the game (4.27), under the grid tariff T1, is solved. The differences remain
acceptable for the continuous case and are better than in model D1.

e) For design D2 with tariff T2, the inefficiencies of the computed equilibria
compared to the social optimum are zero for billing [EB,CB], and are negligible
for billings [NET, VCG].

We display results for tariff T2, inspired by Belgian regulation: we apply a
discount on grid fees for energy consumed locally (as in Brussels), in this case
50%, and include a peak component in the grid invoice (as in Flanders). We
begin by comparing the average total costs of the community obtained from
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the GNEP resolution at Table 4.5. The longest simulation times are 83s for
[EB], 103s for [NET,VCG] and 80.6s for [CB], when the set of initial values is
a social optimum.

REC Bill [e] PAR+ PAR- SCR [%] SSR [%]
Day High PV
EB 161.95 (6.85) 2.39 (0.04) 3.3 (0.31) 83.38 (1.6) 54.18 (1.03)
NET 161.96 (6.85) 2.39 (0.04) 3.3 (0.31) 83.38 (1.6) 54.18 (1.03)
VCG 161.97 (6.85) 2.39 (0.04) 3.3 (0.31) 83.38 (1.6) 54.18 (1.03)
CB 161.95 (6.85) 2.39 (0.04) 3.3 (0.31) 83.38 (1.6) 54.18 (1.03)
Day Low PV
EB 362.96 (4.67) 2.22 (0.006) 4.8 (10.12) 100 (0) 1.49 (0.4)
NET 362.98 (4.67) 2.22 (0.006) 3.9 (0.96) 100 (0) 1.49 (0.4)
VCG 362.99 (4.67) 2.22 (0.006) 3.8 (0.75) 100 (0) 1.49 (0.4)
CB 362.96 (4.67) 2.22 (0.006) 4.8 (10.12) 100 (0) 1.49 (0.4)

Table 4.5.: Summary of decentralized results for model D2 with tariff T2 and
γ = 0.5.

The VE corresponds to a social optimum of P2 problem (4.20) for [EB,CB]
allocation methods as stated by Theorem 4.5.2 and 4.5.4, as well as Corollary
4.2.2 and 4.2.3. As with T1 pricing, we are unable to prove that the PDA
converges towards a social optimum for [NET,VCG] billings. However, their
inefficiencies are so small that they can be considered negligible (see Table 4.6).
We can therefore say that the calculated VEs of GNEP (4.27) are equivalent
to the social optimum of P2 problem (4.20).

f) For design D2 with tariff T2, the individual bills obtained with the game
formulation and via the ex-post distribution of the social optimum are equal
for billing [EB]. The difference is negligible for billings [NET, VCG], and
remains very limited for [CB] for a few individuals.

Figure 4.8 shows the 55 members’ bills at the computed VE on high PV days
for the grid tariff T2 and a discount factor γ = 0.5.

The [EB] billing method induced the same individual costs for centralized
and decentralized systems. This is not necessarily the case for the continuous
method. Theorem 4.5.4 does not guarantee equivalence at the individual bill
level. We need to study the empirical individual changes result of our use-case,
shown in Figure 4.9.
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Figure 4.8.: Mean (and standard deviation) individual bills for the GNEP
(4.27), under tariff T2 and γ = 0.5, with (a) [EB], (b) [NET], (c)
[VCG] and (d) [CB] on the high PV days.

Figure 4.9.: Mean percentage of changes between individual bills and the one
obtained from the centralized method with (a) [NET], (b) [VCG]
and (c) [CB] on high PV days under tariff T2 with γ = 0.5. Data for
players 22, 26 and 32 are not displayed due to scale considerations.

111



Chapter 4. Valuing the Electricity Produced Locally in Renewable Energy
Communities through Noncooperative Resources Scheduling Games

A view of the Figure 4.9(a)-(b) allows us to draw similar conclusions to tariff
T1 for [NET,VCG] cost distributions. We focus on the continuous method
(see Fig.4.9(c)). The missing data on the graph are 5.18%, 6% and 3.47%
associated with members 22, 26 and 32, respectively. Counting player 37, these
are once again users whose invoices are smaller than 1 in absolute value, which
explains the slightly higher percentages than the others (see Fig.4.8(d)). The
difference in absolute number does not exceed 0.150e. Excluding these special
cases, the biggest percentage is 1.8%, associated with member 30. These gaps
are relatively small and can be considered negligible in the context of energy
costs. So, replacing centralized with decentralized maintains the same values
of individual invoices for each allocation method examined, with the grid tariff
T2. Note that the same conclusions apply to low production days.

Summary of analytical and empirical results for noncooperative
games

Table 4.6 summarizes the theoretical and empirical results related to the
noncooperative game models, for the different cost allocation methods and
for the two grid tariff structures. Columns aim to answer 5 theoretical and
practical questions:

• Q1 (Existence): does a (G)NEP exist?
• Q2 (Efficiency of the equilibrium): is there an equilibrium which is also a

social optimum?
• Q3 (Individual deviations): is there an equilibrium for which the individual

bills are equivalent to the one computed ex-post in the centralized case?
• Q4 (Resolution): Does the Proximal Decomposition Algorithm (PDA)

converge towards an equilibrium?
• Q5 (Empirical verification): What is the average computed inefficiency

in terms of total REC costs for our use-case, and what are the worst
computed individual deviations?

More precisely, columns Q1 to Q4 report the analytical conclusions of Sections
4.4.2-4.4.3 and the Appendices, and column Q5 reports the main findings of
section 4.6. Note that in Table 4.6, the symbol "?" indicates cases for which
we have no conclusive theoretical results. This underlines the uncertainty or
absence of formal guarantees concerning these situations. Overall, for the two
proposed local market designs, and for the four studied billings and two grid
tariff schemes, we outline two important conclusions of practical significance
for the management and billings of Renewable Energy Communities:

1. The total REC costs obtained with the centralized optimization-based and
noncooperative game formulations are either identical, or differ slightly
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Q1 Q2 Q3 Q4 Q5
REC [%] Worst Ind.[%]

Linear T2 D2

EB
Yes

(Thm.4.4)

Yes (Thm.4.5.2 & Cor.4.2.2)
Yes

(Appendix B.3)

0 (4.6.2e)) 0 (4.6.2f))
NET Yes (Thm.4.5.1 & Cor.4.2.1) 0.008 (") 0.03 (")
VCG 0.014 (") 0.052 (")
CB Yes (Thm.4.5.4 & Cor. 4.2.3) 0 (") 1.8∗ (")

Quad. T1

D1

EB
Yes

(Thm.4.2)
Yes (Thm.4.3.1 & Cor. 4.1) Yes

(Appendix A.2) 0 (4.6.2a)) 0 (4.6.2b))NET
VCG
CB ? (Thm.4.3.2) Yes (Appendix A.2) 1.49 (") 31.17∗ (")

D2

EB
Yes

(Thm.4.4)

Yes (Thm.4.5.2 & Cor. 4.2.2) Yes (Appendix B.3) 0 (4.6.2c)) 0 (4.6.2d))
NET Yes (Thm.4.5.1 & Cor. 4.2.1) Appendix B.3 (Rem. B.1) 0.007 (") 0.022 (")
VCG 0.014 (") 0.21 (")
CB ? (Thm.4.5.3) Yes (Appendix B.3) 0.4 (") 18.4∗ (")

Table 4.6.: Summary of analytical and empirical results of the decentralized
approach.

(with a negligible difference). This means that, at the macroscopic level,
any study which aims at quantifying the economic impact of a massive
roll-out of RECs in the electricity system can rely on the light and fast
centralized formulation.

2. The individual bills of the REC members are either identical or differ
very slightly when computed ex-post from the results of the centralized
optimization-based model, compared to the noncooperative game reso-
lution, apart from the [CB] billing scheme with quadratic grid tariff T1,
where non-negligible deviations occur. This means that, if we except
the [CB] case with tariff T1 and if sharing members data with the Com-
munity Manager is not an issue (if the latter issues a problem, a PDA
approach can be employed and always converge towards an equilibrium),
the individual bills can be obtained with the fast centralized formulation,
which is an important information for community managers for billing
purposes.

4.7. Sensitivity analysis on retail electricity
prices

In this section, we investigate the influence of retail electricity price on the
operation of the REC with D2 design. To this end, we carry out a sensitivity
analysis of retail electricity prices. We study a REC composed of 25 members
included in the community of 55 participants studied in Sections 4.5 and
4.6. The day-ahead energy scheduling model is run for 10 days with high PV
production. The value of λimp varies from 0.06 to 0.16 e/kWh with steps of
0.01. Then, we set all other prices over the full horizon: λiloc = 0.13 e/kWh,
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PV ESS
(capacity, max. power)

Total
consumption

Flexibility
level

User 8 9 kWp (0 kWh, 0 kW) 37.36 kWh 0%
User 14 3 kWp (0 kWh, 0 kW) 116.03 kWh 36.38%
User 21 9 kWp (14 kWh, 5 kW) 11.84 kWh 138.24%
User 22 8 kWp (14 kWh, 5 kW) 82.21 kWh 78.1%

Table 4.7.: Characteristics of the 4 selected end-users.

λeloc = 0.05 e/kWh, λexp = 0.04 e/kWh and β = 0.11 e/kW.

In addition to the total REC costs, we study individual member invoices
according to five cost distribution methods. These are [NET, VCG, CB] as
presented in Section 4.3.2, as well as the classic versions of [NET, VCG], studied
in [76]. Named [Clas. NET] and [Clas. VCG], these cost allocations correspond
to the equations (4.22) and (4.23) respectively, but without the absolute values.
Figure 4.10-4.12 depicts the individual invoices of 4 users selected from the 25
members set. Table 4.7 details their electrical equipment, daily energy needs
and flexibility level (computed as the ratio between the available flexibility in
kWh, including storage, and the total consumption over the period).

4.7.1. Grid tariff structure T1
We first study the total REC costs and individual bills for the five cost allocations
with T1 grid tariff design and α = 0.00109488 e/kWh2.

Total REC costs

The Fig. 4.10(a) depicts the mean REC total cost composition of the global
optimization (4.20) as a function of the import retail fee. Despite numerical
errors (max 0.04%), the global optimization model (4.20) and the decentralized
model (4.27) share the same trends in terms of REC total cost. Therefore, we
do not illustrate REC bill in Fig. 4.11 and the Fig. 4.10(a) analysis concerns
both formulations.

The total cost increases linearly for a value less than or equal to 0.11 e/kWh. In
this case, the import retail fee is lower than the local import price and no agent
will buy from the community, so the selling members sell their surplus energy
on the classical market. There is therefore no exchange inside the REC. There
is a behavior change when λimp = 0.12 e/kWh although it is still lower than
λiloc = 0.13 e/kWh. In fact, for this value, the difference between the price
of import and export in the retail market is equal to that in the community.
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Figure 4.10.: Design T1: Mean total cost composition of the centralized REC
in (4.20) (a) and each subplot (b)-(e) represents the different
personal bills of a player in Tab. 4.7, as a function of λimp.

Members will therefore play on both sides. Finally, with a larger import retail
and so λiloc − λeloc < λimp − λexp, users are more likely to buy energy from the
REC pool. It is therefore more profitable for sellers of excess energy to make
available as much as possible to other members. As a result, the total cost
increase is smaller than for the lower values. As a summary, as long as

λiloc < λimp or λexp < λeloc, (4.36)
λiloc − λeloc < λimp − λexp, (4.37)

the energy is exchanged inside the community at more advantageous prices than
the retail market prices. This reduces commodity costs and as a consequence
the total bill.

Individual bills

Figures 4.10(b)-(e) and 4.11 show the individual bills of the 4 members of
Table 4.7, at the computed optimal solution and Nash equilibrium, respectively.
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Note that [Clas. NET, Clas. VCG] billing methods are not calculated in the
game formulation (see Fig. 4.11), because of the non-convexity they can cause.
Despite numerical errors, for each member and cost distribution, the global
optimization model (4.20) and the decentralized model (4.27) share the same
trends.

Figure 4.11.: Design T1: Mean cost allocation of the GNEP (4.27), each subplot
(a)-(d) represents the personal bills of a player in Tab. 4.7, as a
function of λimp.

Each billing policy has its own specificities. As noted in [71], the VCG schemes
depend on the cost structure and the individual profiles. Some prosumers, such
as user 21, have a negative relative contribution, indicating, in fact, a positive
impact of the member on the total costs. In the case of [VCG], the distribution
key is positive, leading to an increase in the denominator. Thus, users 14 and
22 have lower costs compared to the [Clas. VCG, CB], but a higher bill than
[NET]. The latter presents a similar phenomenon, but much more amplified.
The [NET] method incentivizes members to minimize interactions with the
grid, so user 21 is strongly impacted. We also notice that [NET] tends to be
egalitarian, unlike the [Clas. NET], in this market design. Finally, we see that
[CB] provides negotiating power to members: outcomes for users with PV but
no storage and flexibility assets tend to degrade compared to VCG schemes.
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4.7.2. Grid tariff structure T2

We display results for tariff T2 with α = 0.027 e/kWh, both without (γ = 1,
Fig. 4.12) and with a discount on tariff grid for electricity consumed locally
(γ = 0.5, Fig. 4.13). Thanks to this linear structure, we also establish a
comparison benchmark in which every user optimizes his individual electricity
bill, without any community operation.

Figure 4.12.: Design T2: Mean total cost composition of the REC with γ = 1
and the sum of the individual bills in the benchmark (a). Each
subplot (b)-(e) represents the different personal bills of a player
in Tab. 4.7.

Total REC costs

Fig. 4.12(a) shows the mean REC total cost composition with γ = 1 and the
sum of the individual bills in the benchmark, according to the import retail fee.
The γ = 0.5 case is illustrated in Fig. 4.13. It is interesting to note that the
change of attitude does not occur at the same time or with the same intensity
depending on the discount granted. Indeed, members are starting to benefit
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from internal exchanges once

λiloc − λeloc ⩽ λimp + α(1− γ)− λexp. (4.38)

However, for γ = 1, Figure 4.12(a) shows that members share their trade
between the REC pool and the retail market until 0.14 e/kWh, even though
both

λiloc < λimp,

λiloc − λeloc < λimp − λexp,

are verified. Actually, they prioritize the community as soon as

λiloc − λeloc + α ⩽ λimp − λexp, (4.39)

i.e, for λimp = 0.15 e/kWh.

In the discount situation, i.e., when γ = 0.5, Figure 4.13 shows that it becomes
profitable to trade in the community when λimp = 0.11, while continuing to
sell on the retail market. Although λimp = λiloc at 0.13 e/kWh, thanks to
the reduction on the local grid, it is more profitable to exchange as much as
possible in the REC pool, which leads to a larger reduction in total costs than
in previous case.

Figure 4.13.: Design T2: Mean total cost composition of the REC with γ = 0.5,
and the sum of the individual bills in the benchmark.
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Scenario 1 2 3 4 5 6 7 8 9 10 11
λimp value 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16

REC
total
costs

T1 38.54 44.6 50.67 56.74 62.81 68.88 74.95 78.65 82.35 86.06 89.76
T2, γ = 1 46.96 53.03 59.1 65.17 71.24 77.3 83.37 87.24 91.05 94.76 98.47

T2, γ = 0.5 46.96 53.03 59.1 65.17 71.24 76.53 80.39 84.16 87.87 91.57 95.27

Grid
costs

T1 11.58 11.58 11.58 11.58 11.58 11.58 11.58 11.58 11.58 11.58 11.58
T2, γ = 1 20.01 20.01 20.01 20.01 20.01 20.01 20.01 20.01 20.22 20.29 20.29

T2, γ = 0.5 20.01 20.01 20.01 20.01 20.01 17.03 17.03 17.1 17.1 17.1 17.1

Table 4.8.: Mean total and grid costs summary.

Table 4.8 shows that T1 has the lowest total costs and grid costs, which remain
constant despite the change in members’ behavior. Nonetheless, a reduced
tariff on the local grid (thus a smaller γ) increases the incentive for members
to trade in the REC pool, which increases self-consumption, resulting in a
decrease of the grid costs and so the total costs.

Members interest in joining the REC

Each subplot Figure 4.12(b)-(e) displays average individual bills. We seek to
determine which distribution method incentivizes users to join the community
rather than staying outside (see red lines). Despite differences, design T2 with
γ = 1 and γ = 0.5 share trends in terms of cost allocation. Thus, they are not
represented in Fig. 4.13 and the analysis concerns both formulations.

As we can see on Figure 4.12(b), the [NET] method damages the invoice of
user 8. Users 14 and 22 have great interest in being part of the REC under
both [NET,VCG] pricing methods. On the other hand, [Clas. NET] does not
encourage them to follow recommendations or to be part of the community.
Concerning [Clas. VCG, CB] billings, we observe bill reductions starting at
λimp = 0.13; below this value, their preferences are neutral (Fig.4.12(c) and
(e)). User 21 is a seller of surplus energy so the two new keys [NET, VCG]
damage his bill, since its costs are positive, while the three other invoicing
methods generate a profit. However, in [Clas. VCG, CB], it is the internal
exchanges that will allow us to reduce the billing compared to the benchmark,
whereas the [Clas. NET] billing really incentivizes the prosumer to participate
in the community.

In brief, a community with grid tariff pricing T2 is beneficial to each user type
whether the policy of cost distribution is [Clas. VCG] or [CB]. Other comments
are similar to the analysis of individual bills in Section 4.7.1
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4.8. Conclusion

This chapter compares two market designs for the optimal day-ahead scheduling
of energy exchanges and members’ appliances within renewable energy commu-
nities. The first one (D1) implements a collaborative demand-side management
scheme inside a community where members’ objectives are coupled through grid
tariffs, the second (D2) allows the valuation of excess generation in the commu-
nity and on the retail market. Two grid tariff structures are tested, an academic
one which considers quadratic costs for the upstream grid contribution and one
which reflects the Belgian regulations in terms of grid tariffs. Individuals’ bills
are obtained through 4 methods of cost allocation. Both models are formulated
as optimization problems first, and as noncooperative games then. Analytical
and empirical studies are conducted in order to compare D1 and D2, as well
as the centralized and decentralized approaches. The models are tested on a
use-case made of 55 members and compared with a benchmark situation where
members act individually.

We first show that design D2 which includes the valuation of excess local
generation, and to a lesser extent design D1, tends to lower the total REC
electricity costs, and to improve the self-consumption, self-sufficiency and peak-
to-average ratio of the community. For instance in high PV case, the model
D1 saves an average of 30.14% on total costs for T1 pricing, while model D2
saves an extra 8.36% compared to D1. We observe a cost decrease of 5.45% for
model D2 compared to the benchmark, with T2 pricing.

Then, we focus on the existence and the efficiency of the equilibria computed
with the decentralized models. First, we show that there always exists an
equilibrium that is a social optimum, with the three daily cost distributions
[EB, NET, VCG]. This also holds for continuous billing [CB] if tariff T2 is in
effect. Secondly, we show that the total REC costs obtained with the centralized
and noncooperative game formulations are either identical, or differ very slightly
(0.4% and 1.49% for [CB] with tariff T1 and designs D1 and D2 respectively).
This means that, at the macroscopic level and with our hypotheses, any study
which aims at quantifying the economic impact of a massive roll-out of RECs
in the electricity system can rely on the light and fast centralized formulation.

Finally, we show, analytically when possible, and empirically if not, that
members’ individual bills obtained ex-post from the faster centralized model
results and directly via decentralized approaches are exactly equivalent for the
daily cost allocation methods [EB, NET, VCG], and very close for the [CB]
method with T2 tariff (i.e., 1.8%), which is of practical significance for the
community manager for billing purposes. The deviations for [CB] with tariff
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T1 are not negligible, however (18 to 31% for some members).

In Section 4.7, we studied the impact of retail electricity prices and the two grid
tariff structures on the operation of a REC with design D2. We demonstrate the
existence of a threshold in the import retail price, depending on the difference
between the import/export community prices and the import/export retail
prices, for which the economic gains of operating as a REC increase significantly,
for both grid tariffs T1 and T2. We also show that, according to our hypotheses
(rational behavior of members), the realistic grid tariff design T2 is at least
neutral or beneficial in terms of individual costs for each user type, provided
that the cost allocation policy is [Clas. VCG] or [CB].

Apart from data privacy issues, the use of decentralized approaches for modeling
communities remains of practical significance if community members pursue
individual objectives of different natures (e.g., bill minimization for member 1,
CO2 emissions minimization for member 2, etc.). Additionally, end-users may
exhibit limited rationality in their decisions, and may not share the same risk
attitudes. Further exploration of these aspects is kept for a future work.
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CHAPTER 5.
Extensive-Form Games and Prospect Theory

5.1. Introduction
Chapter 4 exposed the design of a low-voltage renewable energy community.
We implemented a collaborative demand-side management scheme inside a
community where members’ objectives are coupled through grid tariffs, and
allowing the excess generation to be shared among community members. We
have extensively studied the day-ahead resources scheduling within such com-
munities. We have proved that it is always possible to find a Nash equilibrium
which leads to minimizing the social cost.

However, strategic games are mainly static, meaning that players choose their
strategies independently and simultaneously, as mentioned in Section 3.2. So,
these games do not integrate any notion of order and timing into the players’
strategic decision-making, which is an important feature of many economic and
industrial settings. For instance, a consumer responding to a price signal from
the supplier, or the new member integration problem inside a REC (see Section
6.2). This raises the problem of representing and analyzing dynamic strategic
environments. An extensive-form game (or an extensive game) is a detailed
representation of the sequential structure of the decision-making process faced
by players in a strategic situation [7]. Extensive games highlight the order in
which players move, as well as the information available to the players at each
stage of their choice process. An insight is provided in Section 5.2.

Classical theory focuses on the question: how will rational players play? As a
reminder, game theory is based on the fundamental assumption that players are
rational. This means that all players will choose the options that maximize their
gains or minimize their costs. As explained in Chapter 2, the electrical system
is tending to evolve towards a prosumer-centric system. Apart from technical
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specifications of the smart grid, important behavioral factors will determine
users’ decisions. Providing members with the opportunity to perform optimally
is no guarantee that they will follow these recommendations. End-user behavior
and preferences are therefore central side to this realization. It is thus important
to consider models where the bounded rationality of the end-users is taken into
account. Section 5.3 presents the descriptive decision-making model proposed
by Kahneman and Tversky in [77, 81], which aims to integrate insights from
psychology to get better answers to the question: how do humans play?

5.2. Extensive-form games
The extensive form of a game is a complete description of 1) the set of players,
2) who moves when and what their choices are, 3) what players know when
they move and 4) the players’ payoffs as a function of the choices that are
made. Von Neumann and Morgenstern provided a set-theoretic description of
this model [8], but this section is mainly based on [7, 132].
We are particularly interested in the case of extensive games with perfect
information. There is perfect information in such a game if each player, when
making any decision, is perfectly informed of all the events that have previously
occurred. Chess is a sequential game with perfect information.

5.2.1. Extensive game with perfect information
We provide a formal definition of an extensive game [7]. Note that actions
(x ∈ X :=

∏
i∈N Xi) and strategies (s ∈ S :=

∏
i∈N Si) are the same in strategic

games, but they won’t be in dynamic games.

Definition 5.1. An extensive-form game with perfect information is defined
by the tuple Γ = (N , H,X , ρ, u).

• N = {1, . . . , N} is a finite set of N players.
• A is the set of all actions in the game.
• H is a set of sequences (finite or infinite) of actions in set A, called

histories, which satisfies the following properties:
– The empty sequence ∅ ∈ H,
– For all histories (xk)Kk=1 ∈ H (where K may be infinite) and for

all L < K, we have (xk)Lk=1 ∈ H and (xk)Lk=1 is a prefix of (xk)Kk=1,
noted (xk)Lk=1 ⊑ (xk)Kk=1,

– For all infinite sequences (xk)∞k=1 satisfying (xk)Lk=1 ∈ H for every
positive integer L, we have (xk)∞k=1 ∈ H.
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A history (xk)Kk=1 ∈ H is terminal if it is infinite or if there is no xK+1

such that (xk)K+1
k=1 ∈ H. We define Z as the set of terminal histories.

• ρ : H\Z → N is the player function that assigns to each nonterminal
history h ∈ H\Z, the player who move after the history h.

• X : H\Z → 2A is a mapping defined such as for all nonterminal history
h ∈ H\Z,

X (h) := {x | hx ∈ H}

is the action set of player ρ(h).
• For each player i ∈ N , ui : Z → R is the player i’s cost (or payoff)

function.

Remark 5.1. For simplicity, the definition does not consider games where several
players can play at the same time. This extension is presented in Section 5.2.3.

If H is finite, then the extensive-form game is finite. Otherwise, the game is
called infinite. We deal with finite games. If the longest history of H is finite,
then the game has a finite horizon. A player can have an infinite set of actions
after some histories, so a game with a finite horizon can have an infinite number
of terminal histories. If Z is finite, then the extensive game is finite branching.

Example 5.1 (Entry game). Power generation Firm 1 (F1) has a monopoly
on the market. A second firm, Firm 2 (F2), has the opportunity to enter the
market. If Firm 2 enters, Firm 1 will have to choose how to compete: either
aggressively (Fight it), or by giving up part of its market share (Adapt). An
extensive game that models this situation is Γ = (N , H,X , ρ, u) with:

• N = {F1,F2},
• H = {∅, Out, In, (In, Fight), (In, Adapt)},
• The terminal histories are Z = {Out, (In, Fight), (In, Adapt)},
• The player function assigns the Firm 2 to the start of the game ρ(∅) = F2,

and the firm that plays after the history "In" ρ(In) = F1,
• The action set of Firm 2 available at the start of the game is X (∅) =
X2 = {Out, In}, and the action set of Firm 1 after the history "In" is
X (In) = X1 = {Fight, Adapt},

• The firms’ preferences are represented by the payoff functions u1 and u2
such as: u1(Out)= 4, u1(In, Fight)= −1 and u1(In, Adapt)= 2, and for
the Firm 2 u2(Out)= 0, u2(In, Fight)= −1 and u2(In, Adapt)= 2.

The basic structure representation of an extensive game is a directed tree. The
induced tree in Example 5.1 is shown in Figure 5.1.
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F2

(4,0)

Out

F1

(-1,-1)

Fight

(2,2)

Adapt

In

Figure 5.1.: The entry game of Example 5.1. Note that the Firm 1’s payoff is
the first number in the tuple.

The nodes of the tree represent game states that encode the full history of the
play. The node at the top of the tree is the initial history ∅, which is often
called the tree’s root. The label in the circle indicates the player who chooses
an action. In Figure 5.1, the F2 in the circle indicates that the Firm 2 makes
the first move (ρ(∅) = F2) of the game. The branches at a node represent
the actions available to the player at the node. Each terminal node is called a
leaf of the tree and stands for an outcome of the game. The tuple of numbers
beneath each leaf provides the players’ payoffs to that terminal history.

We provide another classical example with its tree representation [7, 132].

Example 5.2 (Sharing money). Two people have to split two euros as follows.
First, player 1 proposes a division of the sum, then player 2 can accept (A) or
reject (R) the proposal. If the proposal is accepted , the money is allocated
according to the proposal, otherwise both players receive nothing. The extensive
game is shown in Figure 5.2.

1

2

(2,0)

A

(0,0)

R

(2,0)

2

(1,1)

A

(0,0)

R

(1,1)

2

(0,2)

A

(0,0)

R

(0,2)

Figure 5.2.: The sharing money game of Example 5.2. Note that the player 1’s
payoff is the first number in the tuple.

An example where player 1 takes an action at the start of the game and then
chooses again after the second player has played.
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Example 5.3. Player 1 must choose between A and B. If action A is taken,
player 2 must choose between C and D, otherwise between E and F. Finally, if
F is selected, the first player must decide between G and H.

1

2

(3,8)

C

(8,3)

D

A

2

(5,5)

E

1

(2,10)

G

(1,0)

H

F

B

Figure 5.3.: The extensive game of Example 5.3 in which player 1 moves before
and after player 2. Note that the player 1’s payoff is the first
number of the tuple.

For an extensive game, a player’s strategy is a complete plan of action explaining
how the player will play the game.

Definition 5.2. Let Γ be an extensive game with perfect information. A
strategy of player i ∈ N is a function si : Hi\Z → Xi such that si(h) ∈ X (h)
for each h ∈ Hi\Z, where Hi is the histories set for which ρ(h) = i.

We define Si as the set of strategies available to player i, and the strategy
profiles set of the game is S :=

∏
i∈N Si. Again, we write s = (s1, . . . , sN) as a

strategy profile and s−i ∈ S−i are the other players’ strategies.

A strategy specifies a unique player’s action for every history after which it is
the player turn to move, even for histories that are never reached if the strategy
is followed ! We illustrate the strategy notion with the game in Figure 5.3 from
Example 5.3. Player 2 chooses an action after each of the two histories A and
B. In both cases there are two possible actions. A strategy of player 2 is a
function that assigns either C or D to the history C, and either E or F to
the history B. Then, the second player has four strategies: S2 = {CE, CF,
DE, DF}. The first player takes a decision after the initial history ∅ and the
history (B, F). The strategy function of player 1 attaches either A or B to the
initial history, and either G or H to the history (B, F). Player 2 also has four
strategies: S1 = {AG, AH, BG, BH}. Thus, the strategy indicates an action
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after history (B, F) even though it states that player 2 chooses A at the start
of the game. The strategy specifies an action to be taken in all circumstances,
even if this same strategy never reached certain states. In a sense, we can say
that the AG and AH strategies are equivalent because, for any fixed choice of
the other players, they lead to the same result.

Note that for the sharing money game in Fig. 5.2 from Example 5.2, player 1
has three strategies, while player 2 has eight strategies!

Given the definition of strategy for a game in extensive form, we can reuse the
Nash equilibrium as a solution concept.

5.2.2. Solution concept

Nash equilibrium

As a reminder, a strategy profile is a Nash equilibrium (NE) if no player has
an interest in deviating unilaterally from the strategy, given the other players’
strategies (see Definition 3.12). We refer to the subsection 3.2.1 in Chapter 3
for further details.

An extensive-form game can also be converted into a normal form. Then, we
can define a NE of an extensive game as a NE of the derived strategic game.

The set of Nash equilibria of any extensive game with perfect information is
the set of Nash equilibria of its strategic form.

Table 5.1-5.3 represents the associated normal-form game of the extensive-form
game in Figure 5.1-5.3, respectively. Note that in all three examples, the
players seek to maximize their payoffs. In an extensive game, strategies are
combinations of actions, so the strategic form has exponential size [104]. An
extensive-form game can be written in normal form, but the other implication
is not necessarily true.

Example 5.1 (continued). The extensive game is represented by the Figure
5.1. The strategy set of Firm 1 is S1 = {Fight, Adapt} and Firm 2’s strategy
set is S2 = {Out, In}. Table 5.1 shows the associated normal-form game. There
are two NEs: (Fight, Out) and (Adapt, In).
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Firm 2
Out In

Firm 1 Fight (4, 0) (−1,−1)
Adapt (4, 0) (2, 2)

Table 5.1.: The strategic form of the extensive game in Figure 5.1.

Example 5.2 (continued). The extensive game is represented by the Figure
5.2. The strategy set of player 1 is S1 = {(2, 0), (1, 1), (0, 2)} and Player 2’s
strategy set is S2 = {AAA, AAR, ARA, ARR, RAA, RAR, RRA, RRR}. Table
5.2 shows the associated normal-form game. There is nine NEs: ((2, 0),AAA),
((2, 0), AAR), ((2, 0), ARA), ((2, 0), ARR), ((1, 1), RAA), ((1, 1), RAR), ((0, 2),
RRA), ((2, 0), RRA) and ((2, 0), RRR).

Player 2
AAA AAR ARA ARR RAA RAR RRA RRR

Player 1
(2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (0, 0) (0, 0) (0, 0) (0, 0)

(1, 1) (1, 1) (1, 1) (0, 0) (0, 0) (1, 1) (1, 1) (0, 0) (0, 0)

(0, 2) (0, 2) (0, 0) (0, 2) (0, 0) (0, 2) (0, 0) (0, 2) (0, 0)

Table 5.2.: The strategic form of the extensive game in Figure 5.2.

Example 5.3 (continued). The extensive game is represented by the Figure
5.3. Table 5.3 shows the associated normal-form game. There is three NEs:
(AG, CF), (AH, CF) and (BH, CE).

Player 2
CE CF DE DF

Player 1

AG (3, 8) (3, 8) (8, 3) (8, 3)

AH (3, 8) (3, 8) (8, 3) (8, 3)

BG (5, 5) (2, 10) (5, 5) (2, 10)

BH (5, 5) (1, 0) (5, 5) (1, 0)

Table 5.3.: The strategic form of the extensive game in Figure 5.3.

In fact, a NE ignores the sequential structure of the extensive game. It considers
the strategies as choices that are made once and for all before play begins. As
a result, NEs can exhibit an undesirable characteristic in the case of extensive-
form games. We consider the Nash equilibria in the Example 5.1 in order to
highlight this characteristic.
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The entry game has two Nash equilibria, the strategy profiles (Fight, Out) and
(Adapt, In). The outcome of the game cannot be predicted precisely. We need
to find a way to discriminate between these NEs focusing on the most likely
outcome. On closer examination, the equilibrium (Fight, Out) appears strange.
Firm 1 chooses to fight to induce the Firm 2 not to enter the market. However,
if Firm 2 were to enter the market, Firm 1’s payoff is −1 if it fights and 2 if
it adapts. Thus, if the history "In" were to occur, Firm 1 has every interest
in adapting and not carrying out its threat. Consequently, this equilibrium is
based on a non-credible threat. Firm 1 can be confident that if it enters, then
Firm 2 will choose Adapt, since Firm 2 prefers the outcome (Adapt, In) to the
Nash equilibrium outcome (Fight, In). So, Firm 2 has an incentive to deviate
from the equilibrium. We need to define a concept of equilibrium that takes
these considerations into account.

Subgame perfect equilibrium

The concept of subgame perfect equilibrium (SPE) is related directly to the
extensive form of a game. It aims to rule out non-credible equilibria by assuming
that once a history has happened, each rational player’s strategy specified an
optimal action, given the other players’ strategies. We need to define the notion
of a subgame in order to provide the definition of a SPE.

Definition 5.3. Let Γ = (N , H, ρ, (ui)i∈N ) be an extensive game with perfect
information and let h ∈ H. A subgame of the Γ extensive game which follows
the history h, is the extensive game noted Γ(h) = (N , H|h, ρ|h, (ui|h)i∈N )
where

• H|h is the histories (sequences of actions) h′ set for which (h, h′) ∈ H,
• ρ|h is defined by ρ|h(h′) = ρ(h, h′), for each h′ ∈ H|h,
• ui|h is defined by ui|h(h

′) = ui(h, h
′).

In an extensive game Γ, given si a strategy of player i and a history h, we
denote by si|h the strategy that si induces in the subgame Γ(h). For each
h′ ∈ H|h, si|h(h

′) = si(h, h
′).

For the entry game in Example 5.1, the subgame following the history "In"
is the extensive game in which Firm 2 is the only player, with two terminal
histories "Fight" and "Adapt". Note that the subgame following the initial
history ∅ is the entire game.

A subgame perfect equilibrium is a strategy profile s∗ with the property that
in no subgame can any player i ∈ N do better by choosing a strategy different
from s∗i , given the other players’ strategy s∗−i.
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Definition 5.4 ([133]). Let Γ = (N , H, ρ, (ui)i∈N ) be an extensive game with
perfect information. A strategy profile s∗ is a Subgame Perfect Equilibrium
(SPE) if it induced a Nash equilibrium in each subgame of Γ (i.e., s∗|h is a
NE of the subgame Γ(h) for every history h ∈ H).

The notion of subgame perfect equilibrium eliminates Nash equilibria in which
the players’ threats are not credible. The following statement is true in general:

Every subgame perfect equilibrium is a Nash equilibrium, but NE are not
necessarily SPE.

Example 5.1 (continued). The NE (Fight, Out) of the entry game is not a
SPE. Because, the strategy Fight is not optimal for Firm 2 since the firm is
better off choosing to Adapt in the subgame following the history "In". The
NE (Adapt, In) is a SPE as each firm’s strategy is optimal given the other
firm’s strategy in the game and in the subgame following history "In".

Example 5.2 (continued). Among the nine NEs in the game, only two of
them: ((2, 0), AAA) and ((1, 1), RAA) are SPEs.

Example 5.3 (continued). The strategy profile (AG, CF) is the unique SPE
of the game.

We are interested in the existence results of a SPE and how to find them.
The following result is known as the Kuhn’s theorem.

Theorem 5.1 (Kuhn [134]). Every finite extensive game with perfect infor-
mation and finite horizon has a subgame perfect equilibrium.

Note that this theorem does not claim that a finite extensive with finite horizon,
has a unique SPE. Furthermore, a player may be indifferent to some outcomes.

We can find the subgame perfect equilibria by finding the Nash equilibria and
checking whether each of these equilibria is subgame perfect. This task can
quickly become burdensome, depending on the problem characteristics and
given the exponential size of the normal form deduced from the extensive
game. A common technique for identifying SPEs is to start at the end of the
finite extensive game with finite horizon, and work back to the front. This is
called backward induction. Backward induction is the process of determining a
sequence of actions, in such a way that they are optimal at every decision node,
for each player. It is a solution methodology applying sequential rationality.
The length of a subgame is the length of the longest history in the subgame
The procedure works as follows:

133



Chapter 5. Extensive-Form Games and Prospect Theory

1. The backward induction considers each node that is an immediate pre-
decessor of a terminal node (leaf), and finds the optimal actions of the
rational player who moves at this node.

2. It takes these actions as given and finds the optimal actions of the players
who start in the subgames of length 2.

3. At each stage k, the backward induction finds the optimal actions of the
players who move first at the start of the subgames of length k, given the
optimal actions found in all shorter subgames.

4. The process terminates after the starting point of the game is reached,
the found strategies profiles are SPEs of the extensive game.

When several actions provide identical costs (or payoffs), the backward induction
must traces back the implications of each optimal choice separately. Therefore,
the set of strategy profiles that the algorithm of backward induction provides,
is the SPE set of the extensive game.

Proposition 5.1 ([132]). Let Γ = (N , H, ρ, (ui)i∈N ) be a finite horizon
extensive game with perfect information. The set of subgame perfect equilibria
of the game Γ is equal to the set of strategy profiles isolated by the algorithm
of backward induction.

We apply backward induction to one of the examples described in this section.

Example 5.1 (continued). We take the entry game, which involves two power
generation firms that maximize their payoff functions. It has been shown that
the game has only one SPE, the strategy profile (Fight, In) with payoffs (2, 2).
According to Proposition 5.1, the backward induction should result in the same
strategy profile. Figure 5.4 shows the backward induction process on the entry
game.
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F2

(4,0)

Out

F1

(-1,-1)

Fight

(2,2)
Adapt

In

(a) Step 1

F2

(4,0)

Out

F1

(-1,-1)
Fight

(2,2)
Adapt

In

(b) Step 2

Figure 5.4.: Application of backward induction on the entry game of Example
5.1 with (a) the first step of the procedure and (b) the second and
final step.

We start by considering the actions of Firm 1 in the subgame following "In".
The action Adapt is an optimal choice for Firm 1 as 2 ⩾ −1 (see Figure 5.4a)).
The entire game is the only subgame of length 2, at which Firm 2 moves. Given
the optimal actions in the subgame following "In", Firm 2’s best response is to
enter as 2 ⩾ 0 (see Figure 5.4b)). In fact, we can say that Firm 2 anticipates
the optimal action of Firm 1 and chooses In at the start of the game. Then,
the backward induction procedure proposes the equilibrium (Adapt, In), which
is what was expected.

Remark 5.2. The presence of the same costs (or payoffs) introduces a degree of
strategic flexibility for players, because some choices may have not impacted the
final outcome. This flexibility can be used to model situations where external
elements or not modeled criteria influence the decision (e.g., social, economic
or environmental preferences). In this way, players can decide between actions
using secondary criteria. For example, a player might choose an action based
on the lexicographical order.

Definition 5.5. Let (Xi,⩽i), i = 1, . . . , k be partial orders. The lexicograph-
ical order ⪯ on X1 × . . . × Xk is defined as: (x1, . . . , xk) ⪯ (y1, . . . , yk) if
either (x1, . . . xk) = (y1, . . . , yk), or there exist a 1 ⩽ d ⩽ k such as xd ⩽d yd,
xd ̸= yd and for all i = 1, . . . , d− 1, xi = yi.

So, (x1, . . . , xk) ⪯ (y1, . . . yk) if either the two k-uplet are equal, or in the first
coordinate d from where they differ xd ⩽d yd. As a reminder, ⩽X is a partial
order on X if it is a transitive, reflexive and antisymmetric binary relation on
X.
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Example 5.4. The lexicographic order on {0, 1}×{0, 1} usually ordered, gives
(0, 0) ⪯ (0, 1) ⪯ (1, 0) ⪯ (1, 1).

Note that the lexicographic order is useful, but it loses some SPEs in the
process.

5.2.3. Simultaneous moves extension
The Definition 5.1 of an extensive game with perfect information assumes that
after each sequence of events, only one player chooses an action with knowledge
of each player’s previous actions. In the next part of this thesis, we investigate
situations where players simultaneously choose their actions after some histories.
Each player knows the previous actions of every player, but not those they are
currently taking at the same time. We extend the definition as follows.

Definition 5.6 ([7]). An extensive game with perfect information and simul-
taneous moves is defined by the tuple Γ = (N , H, ρ, (ui)i∈N ) where,

• N , H, Z and (ui)i∈N are the same as in Definition 5.1.
• ρ is a function that assigns a set of players to each nonterminal history
h ∈ H\Z.

• H and ρ jointly satisfy the condition that for every nonterminal history
h ∈ H\Z there is a collection {Xi(h)}i∈ρ(h) of sets for which

X (h) = {x | hx ∈ H} =
∏

i∈ρ(h)

Xi(h),

such as for all i ∈ ρ(h), Xi(h) is the set of actions available for player i
after the history h.

In an extensive game with perfect information and simultaneous moves, a
history is a sequence of vectors. For each vector xk, the components are the
actions chosen by the players having to make a decision after the history (xl)k−1

l=1 .
We use the following example to illustrate this type of game.

Example 5.5 (Variant of Battle of Sexes [132]). The first player must choose
between staying home to read a book or going to the cinema. If he opts to read,
the game ends. If he decides to see a movie then, as in Example 3.3, he and
the second player then select, independently and without knowing the other’s
choice, a film from two options: A or B. Both players would rather see their
favorite film together than have the first player reading at home. However, the
latter outcome is preferable to watching a film they do not like together. The
worst-case scenario for both players is that they choose different films. In this
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context, both players maximize their payoffs. The extensive game with perfect
information and simultaneous moves is shown in Figure 5.5, with

1

(2,2)

Book Movie

Player 2
A B

Player 1 A (3, 1) (0, 0)
B (0, 0) (1, 3)

Figure 5.5.: The variant of battle of sexes of Example 5.5.
.

• N = {1, 2},
• Z = {Book, (Movie, (A, A)), (Movie, (A, B)) (Movie, (B, A)), (Movie,

(B, B))},
• ρ(∅) = 1 and ρ(Movie)= {1, 2},
• The player 1’s action set available at the start of the game is X1(∅) =
{Book, Movie} and her set of actions after the history "Movie" is X1(Movie)=
{A, B}. Player 2’s action set after the history "Movie" is X2(Movie)= {A,
B}.

The definition of a strategy for a player i ∈ N is identical to that in Definition
5.2, except that "ρ(h) = i" is replaced by i ∈ ρ(h). Furthermore, the concept of
strategic form for an extensive game with perfect information and simultaneous
moves is the same as before, and a strategy profile is a Nash equilibrium of the
extensive game if and only if it is a NE of its strategic form.

Example 5.5 (continued). The extensive game with simultaneous moves is
represented by the Figure 5.5. The strategy set of player 1 is S1 = {(Book,
A), (Book, B), (Movie, A), (Movie, B)} and player 2’s strategy set is S2 = {A,
B}. Table 5.4 shows the associated strategic form game. There is three NEs:
((Movie, A), A), ((Book, A), B) and ((Movie, B), B).
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Player 2
A B

Player 1 (Book,A) (2, 2) (2, 2)

(Book,B) (2, 2) (2, 2)

(Movie,A) (3, 1) (0, 0)

(Movie,B) (0, 0) (1, 3)

Table 5.4.: Strategic form of the game in Example 5.5.

In addition, a subgame perfect equilibrium of an extensive game with perfect
information and simultaneous moves is defined in the same way as previously
established in Definition 5.4, with the exception that "i ∈ ρ(h)" instead of
"ρ(h) = i". Nevertheless, the Kuhn’s theorem 5.1 ensuring the existence of at
least one SPE, cannot be extended to the case of finite extensive games with
perfect information and simultaneous moves. In fact, a strategic game can be
seen as an extensive game with simultaneous moves of length 1. Moreover, a
finite normal-form game may not have a NE (e.g., the Matching Pennies game
in Example 3.5 on page 57), which explains why the Kuhn’s theorem does not
extend in this case.
Remark 5.3. Although it is not developed in this thesis, it should be noted
that the Kuhn’s theorem for mixed strategies (where each player chooses a
probabilistic distribution over their possible actions) applies to extensive-form
games with simultaneous moves. The reader can refer to the sources [7, 132]
for more information.

As before, we can use backward induction to obtain all the SPEs of an exten-
sive game with perfect information and simultaneous moves that has a finite
horizon. The only complexity arises from the fact that some (or perhaps all)
of the situations we need to analyze involve multiple players choosing actions
simultaneously. When this happens, we must identify a list of actions for the
players who move at the beginning of each subgame, ensuring that each player’s
action is optimal, taking into account the simultaneous choices of others and
their behavior throughout the rest of the game [132]. Which is similar to the
reasoning used to determine the Nash equilibria of a strategic game.

Example 5.5 (continued). We apply backward induction to the extensive
game in Figure 5.5 which have finite horizon. The process goes as follows. We
consider the subgame following the history "Movie", there are two NEs: (A, A)
et (B, B). The only subgame of length 2 is the entire game, at which the first
player moves. If the outcome of the subgame that follows "Movie" is (A, A)
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then player 1’s best response is to see a movie as 2 ⩽ 3. If the outcome of the
subgame following "Movie" is (B, B), then player 1’s optimal choice is to read
a book at home as 2 ⩾ 1. Therefore, the backward induction implies that the
game has two SPEs: ((Book, B), B) and ((Movie, A), A).

Remark 5.4. The results and reasoning presented remain valid in a context
expanded to include generalized Nash equilibria (GNEs).

5.2.4. Exogenous uncertainty extension
We are interested in situations involving exogenous uncertainties. Uncertainty
is said to be exogenous if it does not depend on the decisions of the system’s
agents. Otherwise, the uncertainty is endogenous. We extend the model of an
extensive-form game with perfect information given in Definition 5.1 to cover
problems with some exogenous uncertainty. We also suppose that the extensive
game is finite.

Definition 5.7 ([7]). An extensive game with perfect information and chance
moves is defined by the tuple Γc = (Nc, H, ρ, fc, (ui)i∈N ) where,

• Nc = N ∪ {c} is a finite set with N = {1, . . . , N} a finite set of N
players and c represents the nature or chance.

• H and Z are the same as in Definition 5.1,
• ρ : H\Z → Nc is a function such as if ρ(h) = c, then chance determines

the action taken after the history h ∈ H,
• For each h ∈ H with ρ(h) = c, fc(·|h) is a probability measure on X (h)

defined as fc(x|h) is the probability that x ∈ X (h) occurs after the
history h ∈ H,

• For each player i ∈ N , ui : Z → R is the utility function of player i.
• The player’s preferences are defined over the set of lotteries (or proba-

bility distributions) over the terminal histories.

Note that each probability measure is assumed to be independent of every
other such measure. Despite the inclusion of chance moves, the player who
makes a decision after nature knows the previous action made by the other
players before him. So, although there is uncertainty, we still call this a game
with perfect information. We say that the game with perfect information is
conditional on the realization of uncertainty.

Example 5.6 ([132]). A first player chooses A or B. If he takes A, the game
ends with payoffs (1, 1). Otherwise, the game ends with probability 0.5 and
payoffs (3, 0), while with probability 0.5 the second player takes a decision
between C and D, which yield payoffs (0, 1) and (1, 0) respectively. The game
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is represented in Figure, where c denotes chance and the number beside each
chance action is the associated probability.

1

(1,1)

A

c

(3,0)

1
2

2

(0,1)

C

(1,0)

D

1
2

B

Figure 5.6.: The extensive game with chance moves of Example 5.6. Note that
the player 1’s payoff is the first number of the tuple and label c
denotes the chance.

The Definition 5.7 does not affect the notion of strategy (Definition 5.2).
However, because of the random nature of some moves, the outcome of a
strategy profile is a probability distribution over the terminal histories. In such
a framework, players do not directly minimize the costs associated with terminal
histories, as these costs are uncertain due to exogenous uncertainty. Instead,
rational players make decisions under uncertainty that minimize their expected
utilities, according to the Expected Utility Theory (EUT). More information
about this theory and the concept of the expected utility are provided in Section
5.3.1.

The definition of a subgame perfect equilibrium for an extensive game with
chance moves, is defined in the same way as established in Definition 5.4. As
before, we can use backward induction to determine the SPEs set of the game;
we have the following result.

Theorem 5.1 holds for an extensive game with perfect information and chance
moves.

Example 5.6 (continued). We consider the extensive game with chance moves
in Fig. 5.6. Player 1’s strategy set is S1 = {A, B} and player 2’s strategy
set of S2 = {C, D}. We use backward induction to obtain the SPEs. In the
subgame where player 2 is the first to move, this player’s best response is C.
We consider the consequences of player 1’s decision. If he chooses A, then he
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gets the payoff 1. If he chooses B, then he obtains 3 with probability 0.5 and 0
with probability 0.5, so the expected payoff is:

U1 =
1

2
.3 +

1

2
.0 =

3

2
.

Then, player 1’s best response is B as 1 ⩽ 3/2. As a result, the unique SPE is
when player 1 takes B and player 2 chooses C.

5.3. Prospect theory
We assume that the reader is familiar with the concepts of probability theory
[135].

In many situations, individuals are faced with choices involving several options
with uncertain outcomes. When these outcomes are associated with well-known
or estimable probabilities, the process is referred to as decision-making under
risk. These options are often called prospects or lotteries. Each possible outcome
leads to consequences that differ in value or preference for the decision-maker,
influencing her choices.

Definition 5.8. A prospect (or lottery) L is a probability distribution over
a set of outcomes X = {x1, . . . , xn} ⊆ R. The probability of each outcome
occurring is pi, for all i = 1, . . . n. The prospect is represented as

L = (x1, p1;x2, p2; . . . ;xn, pn),
n∑

i=1

pi = 1. (5.1)

The set of prospects is noted L.

There are two approaches to decision analysis models:

1. Normative decision models. These models determine optimal decisions
that a rational individual should take. A rational agent seeks the actions
that will be most profitable for her, and to do this he has constant access
to relevant information and knowledge, as well as unlimited processing
capacity. The agent is aware of the available options and has clear
preferences.

2. Descriptive decision models. These models aims to describe and pre-
dict how individuals actually make decisions. In this context, an agent
possesses bounded rationality [136, 78]. Bounded rationality refers to
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the idea that individuals, although intentionally rational, make decisions
based on their limited access to information, their restricted cognitive
capacities and some heuristics. This leads them to outcomes that are
satisfactory, but not always optimal.

One of the most important normative models for analyzing decisions under risk
is the expected utility theory.

5.3.1. Expected utility theory

The Expected Utility Theory (EUT) is a normative decision model established
by Von Neumann and Morgenstern (VNM) in their founding book Theory
of Games and Economic Behavior, in 1944 [8]. In addition, this theory also
constitutes a fundamental foundation for the game theory. The EUT is based
on a series of axioms describing the behavior of a rational individual who must
make choices in a risky situation. These axioms are completeness, transitivity,
continuity, independence of irrelevant alternatives and monotonicity.

In the EUT and economics framework, individuals do not directly compare
the possible outcome of their choices, but rather the utility associated with
each outcome. The utility is a measure of well-being or satisfaction obtained
by acquiring a certain number of commodities or services. Thus, it is assumed
that a decision-maker possesses a utility function u : R→ R that represents her
preferences over a set of possible outcomes. Therefore, the EUT assumes that
when faced with probabilistic outcomes, a rational agent chooses the action that
maximizes (or minimizes) the expected value of her utility function u : R→ R.
For a discrete case, the expected utility of a prospect L is defined as

U(L) = E(u(L)) :=
n∑

i=1

piu(xi), (5.2)

where u(xi) is the utility associated to the outcome xi. Hence, an individual is
said to prefer the prospect L to L′ if and only if U(L) ⩾ U(L′).

It is worth highlighting that in EUT, decisions are made in terms of final
states of wealth, i.e., the individual’s overall situation after considering the
outcomes of a decision. Furthermore, the curvature of a utility function reflects
the individual’s attitude to risk. A concave utility function translates a risk
aversion, while a convex function indicates a preference for risk. If the function
is linear, the decision-maker is risk-neutral.
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5.3.2. Prospect theory
Although expected utility theory (EUT) is a powerful normative model for
analyzing rational choices in risk situations, numerous experimental results
have revealed anomalies in its application to real-life decision-making.

In practice, empirical studies ([137, 77, 80]) have shown that, in uncertain and
risky situations, human players may not act in accordance with the rational
behavior established by expected utility theory, and so game theory. In fact,
people are irrational, and EUT is inadequate to describe the actual behavior
of individuals in decision-making under risk. An emblematic example is the
Allais paradox [137], which shows that individuals’ choice can breach the axiom
of independence in EUT. The following example presents a variant of this
paradox.

Example 5.7 ([77]). A questionnaire is presented to different participants.
For each problem, the agents must choose one of the proposed prospects. The
survey is given as follows:

• Problem 1:
A: An 80% chance of getting a payoff of 4000e,
B: A 100% chance of getting a payoff of 3000e.

• Problem 2:
C: A 20% chance of getting a payoff of 4000e,
D: A 25% chance of getting a payoff of 3000e.

The results obtained for the first problem show that 80% of agents take prospect
B. Under EUT, these preferences imply that the expected utility of prospect B
is strictly higher than that of A (i.e., U(A) < U(B)). We note that C and D
can be obtained from A and B, we have that C=(A, 0.25) and D=(B, 0.25).
So, according to EUT, if B is preferred to A, then D should be preferred to C.
In reality, 65% of participants prefer C to D. The individuals have therefore
not respected the expected utility theory.

In order to describe non-rational human behavior in decision-making under risk,
the EUT has been set aside in favor of modern theories such as the Prospect
Theory (PT) proposed by Kahneman and Tversky.

The research of Kahneman and Tversky has left a major impact on the study
of bounded rationality, enabling a more nuanced understanding of human
decision-making and judgments in situations of uncertainty. Far from always
behaving rationally and consistently, individuals are influenced by personal
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preferences and their restricted access to information and cognitive capacities.
In this way, Kahneman and Tversky explored heuristics that individuals use to
simplify complex decisions as well as the cognitive biases involved [138, 139].
These psychological biases manifest themselves in a variety of judgment tasks,
including predictions of future events or evaluations of available evidence [78].
Their work revealed that these mental shortcuts, although effective in many
cases, lead to systematic errors in regard to the optimal beliefs and choices
obtained from rational-based models.

In addition to the cognitive biases studies, Kahneman and Tversky developed
a model to describe boundedly rational decision-making under risk, based on
their experimental results. Prospect Theory (PT) is a descriptive decision
model, which is one that seeks to describe how individuals actually make their
decisions, as opposed to a normative model such as EUT, which looks for the
best choice to be made for an individual. The original formulation in [77]
was refined as Cumulative Prospect Theory (CPT) in [81] and then as Smooth
Prospect Theory (SPT) in [140] for continuous distributions. The fundamental
characteristics of prospect theory remain faithful to the original version even
though its mathematical formulation has evolved. The term prospect theory
(PT) is used throughout this thesis.

Prospect theory is based on the principle that non-rational individuals do
not maximize objective expected utility but rather a global subjective value,
according to their perception of outcomes and associated probabilities. This
global value V is characterized by two fundamental components:

1. A subjective value function v, which reflects how an individual evaluates
outcomes in relation to a reference point;

2. A probability weighting function w, which translates the biased perception
of probabilities by an individual, influencing their decision-making.

These two concepts capture the behaviors observed in real decision-making,
and are described in the following sections.

5.3.3. Subjective value function

Value carriers are seen as changes in wealth or well-being rather than absolute
payoffs. In PT, these changes are perceived as gains or losses regarding a
reference point noted r. This principle is also known as the framing effect.
Each individual has her own reference point, depending on her perception of
the problem, objectives, knowledge and other personal choice heuristics. For
example, a gain of 50e will be perceived differently by a high-income person
as opposed to a low-income individual. Besides, the exact interpretation of
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the reference point varies in the literature. In the founding paper of PT [77],
Kahneman and Tversky define the reference point as the individual’s initial
situation (current wealth or well-being). It is then fixed and normalized at
zero. In recent papers [141, 13, 142], the reference point represents an agent’s
expectation of the problem, and is no longer normalized to zero. The subjective
value function is then defined on results representing the individual’s payment
and describes how agents evaluate gains and losses. This outcome is said to be
a gain if it is at least as good as the reference point, otherwise it is said to be a
loss.

The value function should be concave for gains (v′′ < 0) and convex for losses
(v′′ > 0), reflecting the diminishing sensitivity. In both gain and loss regions, an
individual’s sensitivity to a marginal change in her subjective value decreases
with distance from the reference point. For instance, a change from 0 to 100e
is perceived as more significant than going from 1000e to 1100e. Furthermore,
the value function is generally steeper for losses than for gains. This captures the
phenomenon that an individual is more sensitive to losses than to gains of the
same amount, i.e., humans manifest loss aversion. In other words, losing 100e
is perceived as more painful than gaining 100e is satisfying. Mathematically,
the subjective value function v : R× R→ R is represented in [81] by equation
(5.3) and displayed in Figure 5.7.
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Figure 5.7.: Subjective value function v as defined in (5.3). For this illustration,
r = 0 and the parameters are α = β = 0.45 and λ = 1.96.
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We have

v(xi, r) :=

{
(xi − r)α if xi ⩾ r

−λ(r − xi)β if xi < r,
(5.3)

where xi is an outcome, r is the reference point, α and β ∈]0, 1[ represent the
diminishing sensitivity speed of gains and losses respectively, and λ > 1 the loss
aversion coefficient. Kahneman and Tversky estimated the value parameters
of the subjective function at α = β = 0.88 and λ = 2.25, on the basis of
experiments carried out with real people [81]. Recent empirical studies on
companies in different sectors, provide α = β = 0.45 and λ = 1.96 [143].
Further parameters estimates by country can be found in [144].

Remark 5.5. The reference point selection is a major operation of this theory,
but this selection is usually dependent on the context in which the theory is
applied. Furthermore, in a specific context, it can be difficult for an analyst to
determine people’s reference points and to translate certain choice problems
into terms of gains and losses [145]. In the framework of game theory, a player’s
reference point could depend on internal factors such as the opponents’ payoffs
[146]. A PT extension that allows reference points to be uncertain is developed
in [147]. Recently, the idea of a dynamic reference point is increasingly being
considered in practical cases [148].

5.3.4. Probability weighting function

In PT, individuals distort the probabilities of uncertain outcomes in real
decision-making, in contrast to the EUT hypothesis where agents are regarded
as statisticians who judge probabilities objectively. The probability weighting
function w assigns a value called the decision weight, which represents the
subjective probability of an objective probability.

Remark 5.6. For all i = 1, . . . , n, the decision weight w(pi) is not a probability.
Indeed, the function w does not respect the additivity axiom of probability
theory. Then, the sum of weights for a prospect may not be equal to 1. In fact,
this is a type of measure called capacity defined by Choquet [149].

Individuals tend to overweight low probabilities and underweight medium and
high probabilities. Diminishing sensitivity is an integral part of the subjective
value function, but also manifests in the probability weighting function. As a
reminder, this psychological principle asserts that humans are less sensitive to
variations in probability as it gets further away from 0 and 1 for both gains
and losses. For example, a change of 0.1 has more impact when it shifts an
initial probability from 0.9 to 1 or from 0 to 0.1 than when it modifies 0.6 to
0.7 [81]. In addition, decision-makers often display a preference for certain over
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uncertain gains and uncertain over certain losses. The w function in prospect
theory captures four fundamental attitudes of individuals towards risk observed
in the experimental results, summarized in the table 5.5.

Gains Losses
Low probabilities
(possibility effect) Risk seeking Risk aversion

(provided losses are not extreme)
Medium and large

probabilities Risk aversion Risk seeking

Table 5.5.: Risk attitudes.

The original mathematical formulation of w : [0, 1]→ [0, 1] proposed in [81], is
given by

w(pi) :=
pγi

(pγi + (1− pi)γ)
1
γ

(5.4)

where pi is the probability associated to the outcome xi and γ is the probability
weighting parameter. Based on experimental results at the individual level, it
is estimated that γ = 0.65. There is as yet no clear real value at company level
[150]. Other parameters estimates can be seen in [144]. As shown in Figure
5.8, the probability weighting function has an “inverted S” curve with several
properties:

1. w(0) = 0 and w(1) = 1,
2. It is asymmetrically reflected at a point p̃ ∈]0, 1[ such as w(p̃) = p̃,
3. For all p ∈]0, p̃[, the function is concave and w(p) > p,
4. For all p ∈]p̃, 1[, the function is convex and w(p) < p.

5.3.5. Global value and conclusion
The global value V of a prospect L is calculated by combining the subjective
value function v (Section 5.3.3) and the probability weighting function w
(Section 5.3.4). This combination provides the main equation of PT defined as

V (L) :=
n∑

i=1

w(pi)v(xi, r). (5.5)

The decision-maker will therefore select the prospect that maximizes the overall
value V .

Prospect theory is a promising framework for modeling the non-rational prefer-
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Figure 5.8.: A probability weighting function w as defined in 5.4. For this
illustration, γ = 0.65.

ences of humans in real-life decision-making under risk. Unlike EUT, which
assumes objective probability and rational utility, PT incorporates subjective
evaluation of both probabilities and outcomes, reflecting observed deviations
from rational behavior. In other words, PT captures the nuances of experimen-
tally observed human behavior such as loss aversion, diminishing sensitivity
and probability distortion. Hence, prospect theory is a milestone in behavioral
economics and decision theory. Prospect theory inspired various extensions and
theoretical development, for interested readers we refer to [151] for an overview.

Although PT was originally developed to analyze choices involving monetary
prospects, its application has since been extended to many fields. In recent
years, it has been employed in a variety of sectors, including different aspects
of the energy sector [141, 152, 80, 153, 86, 13, 154, 155, 150], communication
and cybersecurity [156], health, etc. In Chapter 6, we use prospect theory
in the renewable energy communities framework, to model the non-rational
decision-making of end-users with heterogeneous preferences.
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CHAPTER 6.

New Member Integration Decisions in Renewable
Energy Communities under Prospect Theory

Although renewable energy communities have attracted growing interest in
recent years as an innovative contributor to the energy transition and to a
prosumer-centric power system, their implementation has yet to overcome
considerable challenges (Section 2.5.3 in Chapter 1). This chapter explores a
crucial aspect that is still not widely studied in the literature: the integration
of new members into an existing renewable energy community. The topic is
especially relevant to the viability of energy communities, which are called upon
to expand by integrating members with various characteristics and objectives.
Against this background, the preceding chapters have laid the foundations for
the analysis proposed in this chapter. Chapter 4 focused on the day-ahead
energy resources scheduling problem, highlighting the operational aspects of
managing energy resources and exchanges within communities. Chapter 5
introduced the theoretical concepts of extensive games and prospect theory,
offering powerful analytical tools for modeling sequential strategic behavior
and decision-making under risk.

The content of this chapter is based on the following publication:

• [27] L. Sadoine, Z. De Grève and T. Brihaye, "New Member Integration
Problem in Renewable Energy Communities: An Extensive Game Study
with Prospect Theory," in preparation.
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6.1. Introduction

6.1.1. Context

European directives [6, 19] state that participation in an energy community
must be open and voluntary, based on transparent and non-discriminatory
criteria. Similarly, any member wishing to leave the community has the right
to a fair and non-discriminatory exit procedure. However, there are no further
details concerning these procedures. The absence of common standards leaves
a number of gray areas, which can give rise to uncertainties and concerns
for energy communities. More precisely, the impact of a user’s integration or
exit on community dynamics is not fully anticipated in the literature. Indeed,
entry and exit processes raise specific issues for the stability and efficiency of
the community: the arrival of a new user or the departure of a member can
affect energy flows, costs, self-consumption and self-sufficiency rates, etc. In
addition, the diversity of user profiles (in terms of consumption, production
or flexibility) may require adjustments to strategies and recommendations for
energy exchanges and consumption within the community. To the best of
our knowledge, the analysis of the dynamics of community members after a
change in their composition (entry or exit), remains relatively unexplored in
the literature. This lack of scientific references and regulations is a barrier to
the expansion of energy communities.

6.1.2. Related work

The authors in [20] propose a methodology to help an existing energy community
to select new members or guide investment decisions with the aim of maximizing
shared benefits within the community. Two heuristic metrics are introduced
to assess whether the community needs more generation or consumption, and
to estimate the suitability of each candidate. The assessment of more battery
capacity is also performed heuristically. Simulations on a case study in France
show that the ranking of candidates by these metrics aligns closely with the
results of a more precise optimization method, but with faster computation
and better explainability. The paper [69] develops an energy community
management model incorporating a fair revenue-sharing system and exit clauses
to find the optimal sizing of communities and to enhance cooperation. The
exit clauses require users leaving the community to pay compensation that
decreases over time, to mitigate the impact of their departure. These costs
are calculated to ensure that the other members do not suffer financial losses,
thus guaranteeing economic stability for the energy community. In practice,
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exit costs are significantly reduced after ten years, enabling users to leave
without significant financial impact after this period. In [70], Perger and Auer
focus on the dynamic participation of prosumers in an energy community
with peer-to-peer trading by allowing adjustments over time, including users’
entries and exits. It uses a bi-level optimization model where the upper-level
problem minimizes an objective function that includes the prosumers’ cost-
saving and emission-saving preferences to determine the optimal profile of a new
member, whereas the lower-level problem maximizes the collective welfare of the
community according to a willingness-to-pay criteria. Once departure and new
commitment decisions have been made, the optimal community configuration
is recalculated for each period, ensuring that members are well aligned with
collective energy and economic objectives.

This chapter proposes an original approach to the New Member Integration
Problem (NMIP) into an existing renewable energy community, in which the
interactions between initial members of a REC and the potential newcomer
are considered. In addition to the initial energy profile, we consider that an
external user has the possibility of investing in additional means of production
or energy storage. However, the main objective of this chapter is not to assess
the impact of a specific investment model, but rather to evaluate the overall
effect of a new member, with or without additional investments, on the existing
community. We refer to other works for a more in-depth exploration of the
dynamics specific to investment models in energy communities, such as [157,
158, 159]. Therefore, this chapter focuses on the NMIP, perceived from a long-
term (LT) planning horizon, while considering their repercussions on short-term
(ST) management. We adopt an approach based on Game Theory, and more
specifically extensive-form games, to model the dynamics of the problem’s
decision-making process. Note that extensive games are not new to smart
grids and the power systems literature, and have been widely applied through
Stackelberg game models for instance [160, 12, 14, 13, 161, 84]. However,
their use for the NMIP in a renewable energy community with demand-side
management schemes (as in design D2 of Chapter 4 for instance), remains
innovative. Our approach takes into account the various stakeholders and their
specific objectives, incorporating their preferences and interactions. In addition,
extensive games capture the sequential structure of the NMIP decision-making
process, i.e., are able to quantify the impact of the order of players’ decisions
on the model outcomes. The solutions of these games, known as Subgame
Perfect Equilibrium (SPE), provide a through and robust plan of action, and
they eliminate non-credible threats by ensuring that only coherent, rational
decisions are made (see Chapter 5).
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Standard modeling assumptions in energy communities consider that prosumers
aim to minimize their total costs. Nevertheless, end-users’ growing awareness
of current energy and ecological priorities, as well as the potential economic,
social and environmental benefits that a community can provide, have made it
relevant to examine the results of SPEs when stakeholders show more various
and heterogeneous preferences. In this context, we study the SPEs obtained
when candidates and the REC adopt different criteria for their long-term goals.
For reasons of simplicity and readability, we limit our analysis to five main
criteria, but encourage readers to explore other relevant criteria, such as those
proposed in [67, 62, 162].

Currently, most of the literature considers decision-makers as perfectly rational
agents and relies more generally on the expected utility theory (EUT) [8] (Sec-
tion 5.3.1). In this way, risk measures such as expected shortfall or conditional
value-at-risk (CVaR) are commonly used in the energy sector [163, 64, 164,
17]. Empirical studies have shown that an agent’s subjective perception and
other cognitive biases regarding opponents, results and uncertainty can play
a decisive role in the agent’s decisions and, consequently, in final outcomes
[80]. However, as a normative model, the EUT fails to capture these elements
and to predict an individual’s real decision-making when facing uncertainty.
Kahneman and Tversky introduced prospect theory (PT) as an alternative
to describe the decision-making of bounded rational individuals under risk
[77],[81]. This Nobel-prize-winning theory has already been applied in the
context of power systems. For instance, energy management combined with
DSM strategies has been the subject of numerous studies [152, 86, 165]. Wang
et al. [152] explores the role of subjective perceptions of end-users in smart
grid DSM programs, comparing decisions based on EUT and PT. They show
that taking non-rational behavior into account can significantly influence DSM
participation rates and performance. In [86], Etesami et al. extend the analysis
by introducing stochastic games under uncertainty, incorporating PT to model
prosumer perceptions. Unlike more static approaches such as in [152], this
paper proposes multi-period dynamics and a distributed algorithm, showing
how subjective behaviors influence global energy management decisions over
multiple time horizons. Good [165] integrates behavioral economic theory into
the modeling of energy demand response, enabling the design of more effective
energy policies, taking into account cognitive biases and individual preferences.
Energy trading between participants of a microgrid or an energy community,
and in smart grids has also been widely studied. El Rahi et al. [141] model
a noncooperative game between prosumers, showing that the framing effect
and probability weighting under PT reduce the volumes of energy exchanged
compared to classical game theory. While in [13], the authors introduce a
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Stackelberg game between an energy supplier and prosumers, analyzing the
impact of future price uncertainty and subjective perceptions on company profit
and network load. Dorahaki et al. [155] present an energy community with a
centralized peer-to-peer (P2P) energy trading framework based on a modified
version of PT, incorporating time discount effect to model end-users behavior
under risk. It highlights the impact of subjective perceptions on trading deci-
sions and on the overall performance of energy communities, while Andriopoulos
et al. [166] propose a local energy market architecture based on a cooperative
game and a pricing algorithm inspired by PT. By combining a method of profit
allocation via Shapley value with the representation of non-rational prosumers’
behavior, this approach promotes fairness, local self-sufficiency and better inte-
gration of renewable energies into energy communities. Investment decisions
in energy assets were discussed from different angles with the PT framework,
although the literature is less abundant in that respect. At the individual level,
[153] studies the factors influencing households’ choices to invest in PV panels,
integrating behavioral and economic elements. At the organizational level, Tao
et al. [150] apply PT to model power plant investment decisions, showing the
impact of bounded rational behavior on the LT choices of generation companies.
A sensitivity analysis considers the influence of parameters such as reference
point dependence and loss aversion, revealing that these factors slow down
the adoption of renewable energies. These works underline the importance of
taking into account both collective dynamics and individual motivations for
ST and LT decisions.

6.1.3. Contributions
The present chapter builds on these foundations to integrate heterogeneous
preference criteria, model behavior under risk via prospect theory, and analyze
the integration of a new member with possible investment into an existing
energy community. The aim is not only to enrich the research, but also to
provide practical elements for the development of more robust rules and models
for future energy communities. The main contributions presented in this chapter
are summarized as follows.

1. We present an original approach of the new member integration problem
into an existing REC, modeled using extensive games. The problem
considers both long-term strategic decisions (investments, internal price
adjustments) and short-term decisions (day-ahead schedules). Our theo-
retical framework is general and offers enough flexibility to encompass a
variety of scenarios and stakeholder preference criteria (economic and en-
vironmental). In addition, prospect theory is used to model the bounded
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rationality of participants, more specifically on their perception of retail
import prices, providing a better understanding of their behavior under
uncertainty and risk.

2. We apply our NMIP models to a detailed case study:

a) We first compare our model outcomes with the results of the heuristic
methods proposed in [20]. We show that, compared to the subgame
perfect equilibria obtained when the community initiates integration,
these heuristic metrics can effectively predict the selected profile
provided that the REC adopts a financial objective, such as the net
present value maximization or the total cost minimization. However,
their reliability decreases if the REC follows criteria such as the
minimization of carbon emissions or the price per kWh.

b) We conduct an extensive parametric study to demonstrate the flexi-
bility of our modeling framework. We show via simulation that the
outcomes at SPEs and the behavior of stakeholders are influenced by
various aspects of the problem: the order of decisions of actors, the
preference criteria (or nature of the objectives) of the candidate and
the REC, as well as the prospect theory parameters. More precisely,
the order of decisions and stakeholders’ preference criteria modify
the strategies adopted, which may lead to solutions that are more
focused on community or individual objectives, sometimes to the
detriment of the other participant. Furthermore, the integration of
prospect theory shows that stakeholder bounded rational choices
introduce deviations from the behavior predicted by perfect ratio-
nality, thus impacting the final results. These deviations are mainly
due to the parameters of the PT functions and, in particular, to the
reference point selection method.

The remainder of the chapter is organized as follows. Section 6.2 defines the
NMIPs scope and hypotheses for the REC developed in Chapter 4, as well
as the decomposition of the time horizon. The theoretical presentation of
extensive-form game formulations, the different preference criteria and the
incorporation of prospect theory are detailed in Section 6.3. The heuristic
metrics, i.e., the matching score and collective self-consumption developed by
Mustika et al. [20] are described in Section 6.4. Section 6.5 presents the case-
study data. Simulation results for rational stakeholders are discussed in Section
6.6, whereas Section 6 presents scenarios and outcomes of the simulations for
bounded rational stakeholders. The conclusions are reported in Section 6.8.
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6.2. New member integration problem (NMIP)

6.2.1. Problem scope and hypotheses
The New Member Integration Problem (NMIP) is defined for a collaborative
community built on a demand-side management (DSM) scheme and composed
of consumers and prosumers connected to the same LV distribution feeder
(Fig. 6.1). The members can purchase their green electricity locally in the
REC pool where the excess of local PV productions are mutualized, and to
retail markets for gray electricity non-produced locally. This corresponds to a
renewable energy community (REC) with design D2 proposed in Chapter 4.
We assume that when the community was created, each member contributed
with an individual investment in renewable generation as solar panels or energy
storage assets. These devices are fully owned by their users, meaning that the
ownership and management of each installation remains at the individual level,
and without infrastructure pooling. Only surplus local renewable energy can
be made available to other members.

Figure 6.1.: Integration of a new member in an existing REC.

We suppose an existing renewable energy community (REC), with the set of
initial members noted N = {1, . . . , N} and the set of new member candidates
asM = {1, . . . ,M}. We propose two distinct approaches. In the first structure,
we model the case of an external user interested in joining the community,
with or without investment contribution. The second approach examines
the situation where the community is the instigator of its own expansion.
This analysis thus compares the dynamics of voluntary spontaneous adhesion
with those of integration driven by established community members or the
community manager.
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In both approaches, we assume that agents choose actions which will have a
significant impact on their daily operational management over the next Y years.
The new member integration problem is divided into two levels to account
for the different time horizons, up to Y years. The Long-Term (LT) level is
associated with planning decisions with LT consequences, i.e., decisions taken at
time 0 and which have a significant impact on the long run, notably on the daily
operational management of energy resources. (Section 6.2.3). The Short-Term
(ST) level is dedicated to the day-ahead energy resources scheduling decisions
as described in Chapter4. The purpose of the NMIP is, therefore, to study
the profitability and viability of long-term decisions on individual preferences,
within a community framework. We initially assume that agents are interested
in minimizing their total costs over the Y -year period.

6.2.2. Short-term decisions

The DSM model is formulated as a day-ahead energy resources scheduling
problem reducing REC energy costs by providing an optimal allocation of
resources among members. It is implemented as a convex optimization problem:

min
Θ∈ΩST

f(Θ), (6.1)

where ΩST ⊆ Rn is the convex feasible set. The user i’s decision variables set is
defined as Θi = {xi,a, si, li, icomi , ecomi , ireti , ereti , pi} and Θ := (Θ1, . . . ,ΘN). We
note T = {1, . . . , T} the set of time steps of duration ∆t for a given day. Each
stakeholder i ∈ N may own shiftable appliances (xi,a), PV panels (gi) and
battery storage system (si). We assume a perfect forecast of the non-flexible
load (di) and local generation. The physical net load of member i at the time t
is noted lti. The user either imports, lti ⩾ 0, or exports, lti < 0, energy from/to
the grid. We define the positive and negative net load lt+i = max(0, lti) and
lt−i = max(0,−lti). We note pi the peak power consumption over the day for
the user i ∈ N .

For billing purposes, we define virtual flow1 variables. If the net load is positive,
the energy is imported from the REC pool icom,t

i and/or from the supplier iret,ti .
Similarly, if the net load is negative, the energy surplus can be sold to other
members ecom,t

i and/or to the supplier eret,ti .

The total cost minimization is subject to various constraints given the context.
Every member must satisfy technical, capacity and budget requirements (we
refer to Section 4.2 on page 84 for the complete development). Note the presence

1representing commercial, monetary-based flows.
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of global constraints, which indicate that the total excess production allocated
to the community must equal the total quantity imported by members at each
time step.

The objective of the REC is to reduce energy costs. The community electricity
bill includes commodity and grid costs. The commodity cost consists of:

• Supplier costs: these costs relate to the part of consumption not covered
by local energy. For each user i ∈ N , we have Ct

ret,i = λtimpi
ret,t
i .

• Local electricity costs: these costs are associated with the energy pur-
chased from the REC’s local pool at price λtiloc. For each user i ∈ N , we
have Ct

loc,i = λtiloci
com,t
i .

• Revenues from exported electricity: these revenues come from the sale of
surplus local production. A prosumer i ∈ N earns Rt

ret,i = λtexpe
ret,t
i , for

the energy sold to the supplier, and/or Rt
loc,i = λteloce

com,t
i for the energy

exported on the local REC pool.

The network costs are based on the grid (upstream transmission and distribution
grids, and local distribution grid) usage. We assume that these costs correspond
to the T2 pricing presented in Chapter 4:

• Volumetric-based costs: these costs are in line with the real tariffs applied
in Flanders (Belgium [128]), on which the energy consumed locally can
benefit from a possible discount γ ∈ [0, 1]. For each member i ∈ N , we
have Ct

gr,i = α(iret,ti + γicom,t
i ), with α in [e/kWh].

• Capacity-based costs: these costs are based on the peak power consump-
tion over the day. For each user i ∈ N , we have Cp,i = βpi, with β in
[e/kW].

Hence, the total costs of the REC can be expressed for all profiles Θ ∈ ΩST as:

f(Θ) =
∑
t∈T

[∑
i∈N

(Ct
ret,i + Ct

loc,i −Rt
ret,i −Rt

loc,i + Ct
gr,i)
]
+
∑
i∈N

Cp,i. (6.2)

In Section 4.3.2, we formulated the day-ahead resources scheduling problem
as a generalized Nash equilibrium problem (GNEP). In this way, strategic
interactions between members sharing common resources (energy pool and
network) can be captured and the privacy-preserving properties of the associated
distributed resolution algorithms can be exploited. As a reminder, in this
framework each member is a selfish player who aims at minimizing his own daily
cost function bi defined by (6.4), subject to individual and global constraints.
Therefore, the user’s strategies set depends on the strategies of the other
members: ΩST,i(Θ−i). A member i ∈ N solves the following optimization
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problem, given Θ−i the rivals’ strategies

G :=

{
min
Θi

bi(Θi,Θ−i) ∀i ∈ N

s.t. Θi ∈ ΩST,i(Θ−i).
(6.3)

A strategy profile Θ∗ is a generalized Nash equilibrium (GNE) of the game G,
if for all i ∈ N and Θi ∈ ΩST,i(Θ−i), we have bi(Θ∗) ⩽ bi(Θi,Θ

∗
−i). See Section

3.2.4 for further details.

We assume that the total cost is distributed among community members
continuously at each time step t ∈ T . The billing of a member i ∈ N is defined
by

bi(Θ) =
∑
t∈T

(Ct
i,ret + Ct

i,loc −Rt
i,ret −Rt

i,loc + Ct
i,gr) + Ct

i,p. (6.4)

In the centralized optimization (6.1), the allocation is computed ex-post,
whereas the cost distribution is endogenized in the members’ objective functions
for the GNEP (6.3).

6.2.3. Long-term decisions
The two approaches proposed for integrating a new member into a REC,
present significant differences in terms of decision processes and integration
perspectives. Then, the set of decisions and the order of decision-making vary
according to the approach considered. These differences allow us to analyze
how the flexibility or thoroughness of integration processes can influence the
REC’s dynamics, cost and energy stability, maintaining consistency with its
own objectives and end-users’ satisfaction. In the first instance, we suppose
that candidate users and the community want to minimize their total costs
over the next Y years. To do this, they can resort to various actions. Some
of these actions require decisions to be taken at time 0, with consequences
extending over the Y years, such as investment, while others are daily, as DSM.
Figure 6.2 shows the complete NMIPs timeline and the different decision time
horizons. We detail the NMIP in the first case considered. Note that the
problem considers the short-term decisions of all REC members, whereas at the
long-term level, it considers the REC as a single entity making LT integration
decisions.

Case 1: new user’s point of view

Let j ∈ M be a user, potentially owning PV installations of capacity Qpv,j

kWp, who is considering the interest of being part of this REC (Year 0 on the
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Figure 6.2.: Complete timeline of NMIPs with short-term and long-term periods
defined for the various decisions.

timeline in Fig.6.2). The LT decision-making process of this stakeholder is split
into two steps. In the first step, the user chooses between remaining alone
or to enter the community. Next, she takes LT investment decisions among
several investment profiles. For the sake of simplicity, and since the model does
not attempt to determine the user’s optimal investment, we assume a finite set
of investment options, numbered from 1 to K, is available and noted Q. For
all k ∈ {1, . . . ,K}, we have qk = (qpv,k, qst,k) ∈ Q where

• qpv,k is a PV capacity in [kWp], such as qpv,k ∈ {0, 1, . . . , qmax
pv } with

qmax
pv ∈ Z.

• qst,k is equal to 1 if the profile includes a battery with a capacity of Est in
[kWh] and a maximum charging power of M ch in [kW], otherwise it is 0.

We consider the first profile k = 1 to represent the case where the user does not
make any new investments, thus q1 = (0, 0). The investment costs (CAPEX)
of user j ∈M for an investment profile qk ∈ Q is defined as:

Cinv,j = λpvqpv,k + λcapE
st + λpowM

ch, (6.5)

where λpv is the photovoltaic price expressed in [e/kWp] and λcap, λpow the
price of the storage system linked to the energy [e/kWh] and power [e/kW]
components respectively.
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Once the user j ∈M has decided to join the community with an investment
option, the REC can adjust its local fees λtiloc and λteloc to compensate for the
impact of expanding membership. Therefore, the community can Increase,
Decrease, or leave Constant its local prices.

In other words, it is an external user j ∈ M who triggers the integration
process, investigating whether joining the REC will benefit her own objectives.
The community then has the possibility of modifying its tariffs for the import
and export of energy from the local pool, in order to compensate for this new
user integration and her energy profile. The user j’s LT decision variables set is
defined as Ξ1

j , and the one of the REC is denoted by Ξ1
rec, such as Ξ1 = (Ξ1

j ,Ξ
1
rec).

We define the feasible set of LT decisions for this approach by Ω1
LT.

We integrate the uncertainty linked to long-term retail import prices λtimp

evolutions over the time horizon, through distinct scenarios with associated
probabilities. For the sake of representation, this work assumes an example of
a set of three scenarios Ωc = {Ψ1,Ψ2,Ψ3} defined as follow:

• Ψ1: The price increases slightly each year,
• Ψ2: The price increases moderately each year,
• Ψ3: A price crisis scenario.

Each scenario represents a plausible trajectory for the import price, with an
associated probability (p1, p2, p3). Note that the method has no restrictions on
the number of possible scenarios, as long as it remains finite. It is possible to
extend the problem to infinite cases, but this is not discussed here. For each
scenario Ψ, we associated a function ψ that models the price λimp over the
long-term horizon Y = {1, . . . , Y }.

The short-term time horizon is considered as one day. Each ST decision is an
action in a ST problem, dependent on production and consumption profiles.
This ST problem is solved daily over the entire horizon (see Fig.6.2). According
to the actions Ξ1

j chosen by user j, the ST problem gathers one or two day-ahead
resources scheduling models. These models are used to provide an estimate
of operational costs (OPEX). Given Ξ1 ∈ Ω1

LT, the ST problem is defined as
follows:

• If Alone ∈ Ξ1
j , then daily operations for the user j are modeled by a linear

optimization problem, minimizing her own energy bill fj without being
in the community

fj(Θj) =
∑
t∈T

(
Ct

ret,j −Rt
ret,j + Ct

gr,j

)
+ Cp,j. (6.6)

The REC remains with its initial composition and solves the day-ahead
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energy resources scheduling model in (6.3) at subsection 6.2.2.
• Otherwise, user j joins the community and can also purchase or sell

surplus production from the REC pool. The REC must therefore adjust
ST recommendations to reflect its new dynamism. Then, the REC solves
the day-ahead energy resources scheduling problem in (6.3) for all the
N+1 members of the set N ∪{user j}, considering the new energy profile
of the community.

The investment profile chosen by user j also has an impact on the short-term
problem. The user has a basic energy profile, possibly with an initial PV
capacity of Qpv,j kWp. For an investment qk ∈ Q, she will possess a total panel
capacity of Qpv,j + qpv,k kWp and/or a storage battery. This modifies her energy
profile and impacts the daily consumption and production behavior of the user
j. If this user joins the community, the REC’s energy profile must now take
into account the new member’s profile and its impact on that of the original
members N . In addition, the REC can adjust local tariffs λiloc and λeloc, which
also modifies the basic setting of the ST problem. Finally, the market purchase
prices λimp for the day are set by the function ψ for the scenario and year in
effect.

In conclusion, the short-term problem is parametrized by agents’ LT decisions
and the retail price evolution scenario. Given Ξ1 ∈ Ω1

LT, Ψ ∈ Ωc and a year
y ∈ Y , the results of the short-term problem are ζj(Ξ1, ψ(y)) and ζrec(Ξ1, ψ(y)),
representing respectively the individual daily bill of user j and the one of the
initial members of the community defined in 6.2 (even if user j has entered).
The total operational cost for the Y years is simply the sum of the daily bills
over the entire LT horizon Y :

ζSTj (Ξ1,Ψ) :=
Y∑

y=1

365∑
h=1

ζj(Ξ
1, ψ(y)), (6.7)

ζSTrec (Ξ
1,Ψ) :=

Y∑
y=1

365∑
h=1

ζrec(Ξ
1, ψ(y)). (6.8)

Then, the agents’ total costs in the NMIP are defined:

Ctot,j = Cinv,j + ζSTj (6.9)

Ctot,rec = ζSTrec . (6.10)
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Case 2: REC selects a new user

In this approach, the community is the initiator of its own expansion. The
REC has a list of candidates fitting the admission criteriaM, and evaluates
their profiles to identify the one that would best contribute to the stability,
energy efficiency and sustainability of the community in alignment with its
objectives2. We also consider the case where no candidate on the list is chosen.
Hence, the community selects at most one user among the M -candidates. For
each candidate j ∈M, the REC decides whether it admits user j directly, or
would agree to accept user j through an investment in new assets.

As in the previous case, each candidate can choose from a finite set of investment
options Q and is charged associated costs (6.5). Further, except when no one
is chosen, the REC can adjust increase, decrease or leave constant local import
and export fees; λtiloc and λteloc. We define the LT decision variables set of a user
j ∈M and the REC as Ξ2

j and Ξ2
rec respectively, such as Ξ2 = (Ξ2

1, . . . ,Ξ
2
M ,Ξ

2
rec).

We denote Ω2
LT the feasible set for this approach of the problem. We also take

into account the uncertainty of retail import price λimp as in the first case. As
the rest of the problem description is similar to the first case, we do not discuss
it further.

The NMIPs decisions for the two levels considered are shown in the Table 6.1.

Agent Long-term decisions Short-term decisions

User
j ∈M

∀ day ∈ [1, 365× Y ],
• (Case 1 only) Alone or enter • Flexible load (xj,a)
• Investment profile qk ∈ Q • Net load (l+j , l

−
j )

• Storage (sj)
• Peak load (pj)
• External exchanges (iretj , eretj )
• Internal exchanges (icomj , ecomj )

REC

∀i ∈ N , ∀day ∈ [1, 365× Y ],
• (Case 2 only) 0 or one user j ∈M • Flexible load (xi,a)
• (Case 2 only) Admitted or invest • Net load (l+i , l

−
i )

• Increase, decrease or constant λiloc, λeloc • Storage (si)
• Peak load (pi)
• External exchanges (ireti , ereti )
• Internal exchanges (icomi , ecomi )

Table 6.1.: Dispatch of NMIP long-term and short-term decisions.

2This paradigm may raise concerns regarding its social implications, as it could limit access
for households experiencing energy poverty, potentially reducing inclusiveness within the
REC. These aspects are not further discussed here.
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6.3. Theoretical modeling of the NMIP

6.3.1. Extensive game formulation, analysis and resolution
Section 6.2 identifies several actions available to each candidate user j ∈ M
and the REC for achieving their objectives based on their respective preferences.
In addition, NMIP decisions have to be taken on different time horizons (see
Table 6.1 and Fig. 6.2). The integration, investment and price adjustment
decisions are made at time 0 with long-term impact, while operational decisions
are made on a daily basis. The NMIP is therefore a multi-agent and multi-time
horizon problem. There are many methodologies for modeling and solving such
problems. Game theory describes and analyzes strategic interactions between
different rational agents, who make decisions to optimize their own individual
objectives. Then, we use the concept of noncooperative games to model and
solve new member integration problems.

As mentioned, the timing and order of decisions are essential elements of the
problem framework. However, the strategic (or normal-form) games presented
in Chapters 3 and 4 are mainly static, with players choosing their strategies
simultaneously. They do not allow us to represent this notion of succession
in the decision-making process. In order to capture the sequential structure
of the decision-making process, we represent the NMIP as an extensive-form
game, as detailed in Section 5.2 of Chapter 5. We observed in subsection 6.2.3
that, depending on the approach used to handle the problem, the order and
LT decisions are not the same. We therefore formulate two games, one for each
approach.

Extensive games

Each game is an extensive-form game with exogenous uncertainty (Section
5.2.4) and simultaneous moves (Section 5.2.3) in the lower level, structured as a
sequential decision tree. We define the game related to the NMIP with the first
approach, i.e., when an external user j ∈M initiates the integration process.

For the case 1 and a user j ∈ M, the extensive game Γ1
j associated to the

NMIP, is represented in Figure 6.3 with:
• The set of players is N 1

j = {user j,REC}, but we note that the gray
diamond in Fig.6.3 corresponds to nodes where chance determines the
action taken,

• The action set is Ω1
LT,c := Ω1

LT,j × Ω1
LT,rec × Ωc such as

– The action set of user j is Ω1
LT,j := {Alone, Enter} ∪ Q,

– The REC’s actions set is Ω1
LT,rec := {Increase, Decrease, Constant},
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– The set of actions available to chance is Ωc := {Ψ1,Ψ2,Ψ3}.
• The set of terminal nodes of the game is noted Z1

• A set of functions φ1 : Z1 → R that associates the total costs for players
at each corresponding terminal node z ∈ Z1.

Exogenous uncertainty introduces probabilities associated with the evolution of
the market’s electricity import price over the Y years. Each branch representing
this uncertainty is marked by a probability.

Figure 6.3.: The new member integration game with a new user’s point of view.

For the remainder of this work, we do not explicitly indicate the exponent in
the notations for the sake of clarity.

The terminal nodes of this tree are associated with a function φ that determines
the players’ total costs ((6.9)-(6.10)) over the Y years. We noted in the Section
6.2.3 that the total costs include notably operational costs for the Y -year
period. They are provided by ζST, which is actually the sum of daily invoices
over the entire horizon Y. As a reminder, the energy management decisions
(third column of Table 6.1) must be taken on a ST time horizon of one day.
For each day of the years studied, the daily bills are the results of the ST
problem defined according to the terminal node z ∈ Z and the ongoing year
y ∈ Y. Thus, the user j’s individual bill ζj is either the optimal result of an
optimization problem (if Alone ∈ z), or the outcome valued at an equilibrium
of a GNEP (6.3). Whereas, the total bill of the initial members of the REC
ζrec is the result obtained at an equilibrium from a GNEP (6.3).
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In summary, for each terminal node z ∈ Z, the ST problem (GNEP and
possibly optimization problem) is solved daily for each day of the time horizon
Y , and the results are accumulated as each run is completed. In addition to LT
decisions, ζSTj and ζSTrec directly influence the utilities attached to each terminal
node z ∈ Z:

φj(z) = Cinv,j + ζSTj (z), (6.11)

φrec(z) = ζSTrec (z), (6.12)

which represents total costs over the entire period.

We are only describing the specific aspects of the second game to avoid repetition.
In the case 2, the REC evaluates a list of candidates for its expansion. The
extensive game Γ2 associated to the NMIP is displayed in Figure 6.4 with

• The set of players is N 2 =M∪ {REC}, again the gray diamonds in Fig.
6.4 are the nodes where chance determines the action taken,

• The action set is Ω2
LT,c := (

∏
j∈M Ω2

LT,j)× Ω2
LT,rec × Ωc such as

– For all j ∈M, the actions set of user j is Ω2
LT,j := Q (:= (qk)

K
k=1),

– The REC’s set of actions is
Ω2

LT,rec :=M∪ {No-one, Admitted, Invest, I, D, C}
– The set of actions available to chance is Ωc := {Ψ1,Ψ2,Ψ3}.

• The set of terminal nodes of the game is noted Z2

• A set of functions φ2 : Z2 → R that associates the payoff for players at
each corresponding terminal node z ∈ Z2.

The rest is similar to the case 1.

The subgame perfect equilibrium (SPE) is an appropriate solution concept for
this type of game. The formal definition is set out in Definition 5.4, it is based
on the idea that each player adopts an optimal strategy not only for the whole
game, but also for each sub-part of it (called subgame). In other words, a
strategy profile is a SPE if it induced a Nash equilibrium at every decision node
of the game, regardless of the previous choices that led to that stage. In our
cases, a strategy profile is a SPE if every LT decision is optimal conditionally
on future decisions, while respecting the local equilibria of the GNEPs and the
global minima of linear optimization problems. Remember that the result of a
strategy profile is a probability distribution on the terminal nodes because of
the exogenous uncertainty. Hence, players minimize their expected total costs
rather than their certain invoices (see Section 5.2.4). We note SPE(Γ1) and
SPE(Γ2) the SPEs set of the game Γ1 and Γ2 respectively.
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Figure 6.4.: The new member integration game when the REC selects a user.

NMIPs analysis and resolution

We study the SPE existence and resolution of the games Γ1 and Γ2. We begin
by examining the equilibria of the short-term problem for one day.

Lemma 6.1. Let Γ1 and Γ2 be extensive-form games. For each terminal
node and every day for years of the total horizon, the short-term problem has
at least one solution.

Proof. Let a terminal node z ∈ Z. According to z ∈ Z, the daily ST problem
is as follows:

• If a user j ∈M does not joint the REC, he solves a linear optimization
problem independent of the REC’s actions. We are therefore guaranteed
to obtain a global minimum.

• Otherwise, user j joins the community. Further, the REC solves the day-
ahead energy resources scheduling problem for all the N + 1 members of
the set N ∪{user j}, considering the new energy profile of the community.

In the case of the REC with or without a new user, a GNEP must be solved.
In fact, the game G in (6.3) corresponds to a GNEP under T2 pricing with
the continuous allocation method [CB] discussed in Chapter 4 and in the
Appendix B. Then, we know that our GNEP G has at least one generalized
Nash equilibrium (GNE) by Theorem 4.4. In conclusion, we can guarantee the
existence of ST solution for each representation of the ST problem. ■
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The Lemma 6.1 states that for each day of the years considered and for each
previous action, and scenario, there always exists a solution to the ST problem.
This means that intermediate decisions and the price evolution scenario only
influence the initial conditions of the ST models. They have no impact on the
solutions analysis of the ST problems, which can then be solved independently.
This greatly simplifies the analysis of games SPEs.

The optimal solutions from successive ST problem solving are then included
in the cost functions φ via ζST in (6.11) and (6.12). For each user j ∈M, the
function ζSTj in (6.7), corresponds to the sum of operational costs minimized
(if the user is alone) or evaluated at GNE (if the user joins the REC), over
the complete horizon. For the community, ζSTrec in (6.8) is the accumulated
operational costs of the REC’s initial members N valued at a GNE, over the
period. Thereby, the games Γ1 and Γ2 turn out to be finite extensive games with
perfect information conditional on the realization of uncertainty. Consequently,
we can establish the following result through Kuhn’s Theorem 5.1.

Theorem 6.1. Given extensive-form games with chance and simultaneous
moves Γ1 in Fig. 6.3 and Γ2 in Fig.6.4. There always exists a Subgame
Perfect Equilibrium.

Actually, we can provide more details about the GNEs of GNEPs. In fact, we
have a jointly convex GNEP (see Definition 3.20), for which we can characterize
the set of variational equilibria VE(G) (see Definition 3.25), a subset of GNEs.
Thanks to Theorem 4.5.4 and Corollary 4.2.2, we can establish that the set of
variational equilibria coincides with the social optimum set of the centralized
optimization problem (6.1). Thus, each VE is a social optimum, and finding
a VE is equivalent to calculating a global minimum of (6.1). So for each day
of the year under consideration, we can be sure that an efficient GNE can be
reached, i.e., a GNE that corresponds to a social optimum. So, if the REC
has no new members, it is possible to find a strategy profile inducing a VE for
each day. This means that the payoff function of the REC for the process ζSTrec
corresponds to the sum of the community’s optimal daily costs.

Short-term problems can be solved independently for each terminal node z ∈ Z
and each price scenario ψ ∈ Ψ. We can use standard algorithms to perform
linear optimization problems [94, 129]. Given the configuration of a GNEP G,
we have from the Theorem B.2 on page 225, the sequence generated by the
Proximal Decomposition Algorithm (PDA) with shared constraints, converges
to a VE of the game G. Assuming that duplicates are not counted, a number
of models can be solved depending on the game studied:

1. For the extensive game Γ1
j , given a user j ∈M,
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• The number of linear optimization problems is 365× Y × 3×K,
• The number of GNEPs is 365× Y × 3× (1 + (K × 3)).

2. For the extensive game Γ2,
• The number of linear optimization problems is 365× Y × 3×M ,
• The number of GNEPs is 365× Y × 3× (1 + (M ×K × 3)).

After this step, SPEs can be obtained through the backward induction procedure
for both games (see Sections 5.2.2 and 5.2.4). It is important to point out that
with this methodology, backward induction does not obtain all the SPEs of
the games, but rather the SPEs set conditioned by the VEs and social optima
obtained in the simultaneous nodes!

6.3.2. Modeling the heterogeneous preference criteria of
actors

A large body of literature dedicated to local markets focuses on minimizing
participants’ costs. However, focusing solely on this aspect does not capture the
full range of motivations that drive end-users to participate in a REC. Indeed,
the growing end-user awareness of environmental challenges tends to suggest
that end-users may adopt decisions that do not fully optimize their total costs,
but which are more in line with their ecological principles, including other
concerns such as social, reliability, etc. It would also overlook other benefits of
RECs, which can provide environmental and social benefits as well as economic
ones to the REC’s members. Furthermore, end-users may exhibit differences in
terms of their energy preferences within a single REC. To better represent this
diversity and heterogeneity of motivations, we propose that external users and
community preferences can adopt different criteria or objectives, driving their
long-term decisions.
Remark 6.1. We consider the community as a single entity when making long-
term decisions; thus we only regard the preferences of the REC as a whole.
Future research could consider the study of all the individual preferences of
each member. In addition, the REC evaluates each criterion in respect of its
original members, even if a new user has joined the community.

Four criteria based on financial indicators as well as one environmental criterion
are identified. As an illustration of the impact of the LT decision criterion on
games, we use the extensive game Γ1

j in Fig.6.3 for a user j ∈M (bearing in
mind that it’s the same for the other game).

1. Total costs. The benchmark case involves minimizing the total costs
over the time horizon. The aggregate operating costs for the considered
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period are noted as Cop. The total costs are

Ctot := Cinv + Cop. (6.13)

Note that for the REC, we look at the total operational costs of the REC
without the new member to make the LT decisions, then there are no
investment costs and Cop,rec =

∑
i∈N Cop,i. This is our basic assumption,

so in our game Γ1
j , the functions φj and φrec are defined by (6.11) and

(6.12) respectively.

2. Net Present Value (NPV). This criterion maximizes the LT profitabil-
ity of energy investments by integrating the time values of money. The
NPV is the discounted sum of all cash-flows associated with an investment
project over a period Y . For each user j ∈M

NPVj := −Cinv,j +
Y∑

y=1

Cy+
j − C

y−
j

(1 + κ)y

= −Cinv,j −
Y∑

y=1

Cy
op,j

(1 + κ)y

(6.14)

where Cinv,j is the investment costs, Cy+
j and Cy−

j are the positive and
negative financial flows respectively; and κ is the discount rate. In our
game Γ1

j , we can consider that each division in the sum of the equation
(6.14) is the result ζj of the ST problem. Thus, ζSTj is the sum over the
entire LT period Y . Let z ∈ Z, the payoff function of user j is defined:

φj(z) = −Cinv,j −
Y∑

y=1

365∑
h=1

Cy,h
op,j

(1 + κ)y︸ ︷︷ ︸
ζj(z,y)︸ ︷︷ ︸

ζSTj (z)

, (6.15)

with the day h ∈ {1, . . . , 365}. Note that the equation is similar for the
REC considering only its original members, but with the investment costs
equal to 0.

3. Return on Investment (ROI). This criterion is applied specifically
to new usersM, aiming to maximize the ROI on investments made in
the integration process. It is the ratio between net income (over a given
period) and the investment costs. A high ROI means that investment
gains compare favorably with investment costs. It is a way of relating
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profits to capital invested. For each user j ∈M

ROIj =
Net profit of user j

Cinv,j

. (6.16)

The net profit generated by the investment corresponds to the difference
between user j’s operational costs in the initial case (i.e., Alone and
without investment q1) and those obtained in the case studied z ∈ Z.
Note that we are comparing the elements for the same price scenario
realization. Hence, let Ψ ∈ Ωc, z0 =(Alone, q1,Ψ), and z ∈ Z such as
Ψ ∈ z, the payoff function of user j is:

φj(z) =
ζSTj
Cinv,j

=
1

Cinv,j

Y∑
y=1

365∑
h=1

(ζj(z0, y)− ζj(z, y)). (6.17)

4. Carbon Dioxide Emissions (CDE). This criterion aims to minimize
carbon dioxide emissions associated with electrical unit consumption.
The daily CDE of the initial members of the REC (even if user j decides
to join) is defined as follows:

CDE := γCO2
pv

(∑
t∈T

∑
i∈N

icom,t
i

)
+ γCO2

mix

(∑
t∈T

∑
i∈N

iret,ti

)
, (6.18)

where γCO2
pv and γCO2

mix measuring greenhouse gas emissions from photo-
voltaic electricity generation and the national energy mix respectively
in [gCO2eq/kWh]. We then consider that the result ζrec of a daily ST
problem corresponds to (6.18) evaluated at equilibrium. So, for all z ∈ Z,

φrec(z) = ζSTrec (z) =
Y∑

y=1

365∑
h=1

ζrec(z, y). (6.19)

The reasoning is similar for user j. However, if Alone∈ z, then all the
icomj are equal to zero and iretj actually correspond to l+ in (6.18).

5. Price per kWh [PkWh]. This criterion aims to reduce the cost of
energy per kilowatt-hour to keep energy affordable and accessible to all
members

PkWh :=
Total operational costs over the entire horizon

Positive net charge over the entire horizon
. (6.20)
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Given the REC, we need to retrieve two daily results in the ST prob-
lem. We have ζrec = (ζrec,1, ζrec,2) with ζrec,1 the total cost and ζrec,2 the
aggregated net positive load of the REC members. Then, for z ∈ Z, the
REC’s payoff is defined by

φrec(z) =

∑Y
y=1

∑365
h=1 ζrec,1(z, y)∑Y

y=1

∑365
h=1 ζrec,2(z, y)

. (6.21)

The case is similar for the user j.

Through the use of these criteria, our method aims to express the economic
and environmental motivations of the existing REC, while taking into account
the specific preferences of potential newcomers.
Remark 6.2. Heterogeneity in player preferences only occurs at the global
level of NMIPs. For the ST problem, the objective functions used in linear
optimization problems and GNEPs remain the same for all players. They
consist of minimizing daily total bills. Thus, individual preferences do not
modify the dynamics of daily decisions, but they do influence the cumulative
results associated with the terminal nodes of the tree, integrating long-term
results.

6.3.3. Modeling the bounded rational behaviour of actors
using Prospect Theory

Currently, most of the literature adopts the hypothesis of the rationality of
economic agents, and relies more generally on the expected utility theory (EUT)
[8]. However, this theory fails to predict an individual’s real decision-making
when facing uncertainty. Kahneman and Tversky have proposed the Prospect
Theory (PT) as an alternative way of modeling a bounded rational individual’s
decision-making in the presence of uncertainty. We refer to the Section 5.3 in
Chapter 5 for a fuller introduction.

In this work, we apply PT only for the long-term decision-making under retail
import price uncertainty. As a reminder, LT decisions involve an analysis of
cumulative outcomes associated with the terminal nodes of the tree. In this
framework, end-users and RECs are faced with uncertainty over several years,
and must consider different alternatives according to their preferences and their
perceptions of risks and probabilities. We assume that short-term decisions are
taken rationally, and that LT decisions solely may exhibit bounded rational
behaviors. This is first justified by the fact that most of ST decisions may
be computed and implemented by a controller without human intervention.

171



Chapter 6. New Member Integration Decisions in Renewable Energy
Communities under Prospect Theory

Furthermore, the ST problem is mainly used to model the operational costs
over the whole horizon, so that the influence on LT outcomes of possible
bounded rational behaviors in ST decisions is a priori limited. This justifies
the methodological separation from LT studies.

Although we represent the REC as a single entity to simplify long-term modeling,
its decisions remain the product of interaction between the members and
possibly a community manager, each with their own preferences, objectives and
biases. These interactions, combined with often complex collective decision-
making procedures (e.g., voting, consensus, delegation) could induce features
of bounded rationality on a collective scale. Thus, it would not be astonishing
if a REC could adopt behaviors analogous to those observed in individuals. As
a result, we consider that the REC can be modeled as a boundedly rational
entity and justify the PT framework.

To illustrate this approach, we consider the first case, where a user j ∈M is
planning to join an energy community, represented by the extensive-form game
Γ1 in Fig.6.3. We also assume that both the user j and the community, want
to minimize their total costs (6.13). Once again, for the sake of clarity, we no
longer mention the exponent. Let Ξ ∈ ΩLT, we define the terminal nodes set in
the subgame Γ|Ξ as

Z|Ξ := {z ∈ Z | Ξ ⊑ z} . (6.22)

The basic formulation of PT for assessing the global value of an alternative
z ∈ Z|Ξ, given Ξ ∈ ΩLT, is a combination of two elements: a subjective value
function (Section 5.3.3) and a probability weighting function (Section 5.3.4),
which we summarize in the following.

According to PT, each player perceives an outcome as a gain or loss relative
with respect to an individual reference point. This is called the framing effect.
An outcome is regarded as a gain if it is greater than the reference point, while it
is perceived as a loss if it is smaller than the reference point. Hence, each player
has a subjective value function, capturing the subjective perception of outcomes
given the reference point. The subjective value function v : R× R → R of a
player, established in [81] is given by

v(−φ(z), r) :=
{
((−φ(z))− r)ηa if (−φ(z)) ⩾ r

−ηc(r − (−φ(z)))ηb if (−φ(z)) < r,
(6.23)

with φ(z) the total cost at the terminal node z ∈ Z, r is the reference point,
the coefficients ηa and ηb captured the diminishing sensitivity effect, and the
coefficient ηc reflects the player’s loss aversion.
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Remark 6.3. For preference criteria to be maximized, such as (6.14), (6.16)
and (6.20), the subjective value function directly evaluates the outcome φ(z)
without the minus.

In this study, the individual reference point corresponds to the initial situation
before any decision is taken. It reflects the current state in terms of energy asset
ownership, the cost associated with their operations, and any other relevant
variables. We investigate the impact of the reference point choice on players’
strategic behavior in two cases:

1. Fixed reference point. The reference point is determined as the worst
possible outcome among the three import retail prices scenarios Ωc for
the initial situation, and denoted rmax.

2. Stochastic reference point. The reference point varies according to
the scenario under consideration, reflecting fluctuations in the costs of
the initial situation linked to the uncertainty of the import price. This
approach, noted rstoc, was introduced in [167] and has already been
applied to energy investment problems [150].

The second element of PT is the probability weighting effect. In contrast
to EUT, in which probabilities are evaluated objectively, experiments reveal
that individuals tend to overestimate low probability and underestimate high
probabilities. The weighting function reflects these distorted perceptions by
assigning a subjective decision weight to each objective probability. Based on
experimental results, the probability weighting function w : [0, 1]→ [0, 1] given
in [81] is mathematically formulated by

w(p) :=
pηd

(pηd + (1− p)ηd)
1
ηd

, (6.24)

where p is the objective probability of the scenario Ψ ∈ Ωc, and ηd is the
probability weighting parameter.

Therefore, the prospect theory equation to calculate the global value of an
alternative Z|Ξ, given Ξ ∈ ΩLT, is defined as

V (Z|Ξ) :=
3∑

ϵ=1

w(pϵ)v(φ(zε), r). (6.25)

In Section 6.7, we compare results from the application of PT with the base
case where players are assumed to be rational in the sense of EUT. The EUT
postulates that rational players make decisions which maximize their expected
utility. Then, the expected utility of an alternative Z|Ξ, given Ξ ∈ ΩLT, is
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defined as

U(Z|Ξ) :=
3∑

ϵ=1

pϵu(φ(zε)), (6.26)

with u : R → R the player’s utility function. We assume that each player is
not biased by risks, such as u(φ(zϵ)) = φ(zϵ).

6.4. Benchmark model

We present here the heuristic method based on two performance metrics,
established by Mustika et al. in [20] to discriminate new member candidates
to joint an existing REC. The framework studied by the authors seems at
first sight to be in line with our NMIP (see case 2 in Section 6.2.3). The
authors distinguish two different status for the existing REC: the need for more
production or consumption and the need for more storage assets.

The two proposed metrics are the matching score energy (MS) and the collective
self-consumption energy (CSC), which are used to investigate the need for
production and consumption. They are calculated at each time step t ∈ T on
a day h ∈ {1, . . . , 365}, and the sum over the Y years corresponds to the total
contribution.

6.4.1. Matching score

This metric relies on the so-called “community mismatch profile” (CMP). For
a day h, on each time step t ∈ T , the CMP is calculated from the net energy
balance of the REC, either a surplus of a deficit.

CMPt
rec =

∑
i∈N

gti −
∑
i∈N

(
dti +

∑
a∈Ai

xti,a

)
. (6.27)

The CMP is developed to facilitate the comparison of the net load curve of
new member candidates inM. For each candidate j ∈M, the net load curve
of the user j is defined as the candidate’s consumption minus production at
each time step. This is given by:

Pnet−load,t
j = dtj +

∑
a∈Aj

xtj,a − gtj. (6.28)

A scoring system is introduced to evaluate the matching degree between the
REC’s needs and the users’ profile (via Algorithm 1 in [20]). For a user j ∈M
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and every t ∈ T of a day h, we note this score as MSt
j. Given CMPt

rec and
Pnet−load,t
j , we have

• If the REC has a production deficit (CMPt
rec < 0) and the user j has a

surplus (Pnet−load,t
j < 0), then the score corresponds to the production

excess (MSt
j = Pnet−load,t

j );
• If the REC has an excess of production (CMPt

rec > 0) and the user j is
lacking energy (Pnet−load,t

j > 0), then the score is the value of the net load
(MSt

j = −P
net−load,t
j );

• Otherwise, MSt
j = 0.

The contribution of the candidate j ∈M is founded on the total score at each
time step t ∈ T , accumulated for each day of the Y years considered:

MSj =
Y∑

y=1

365∑
h=1

T∑
t=1

MSt
j. (6.29)

6.4.2. Collective self-consumption

The second metric relies on the collective self-consumption energy. It is defined
as the part of the REC’s consumption covered by local generation, as defined
by

CSC =
Y∑

y=1

365∑
h=1

∑
t∈T

(
min

(∑
i∈N

gti ,
∑
i∈N

(
dti +

∑
a∈Ai

xti,a

)))
. (6.30)

The CSC energy is affected by the addition of a new member j, depending on
this user’s energy profiles. Consequently, the update CSC is calculated as

CSC′
j =

Y∑
y=1

365∑
h=1

∑
t∈T

(
min

(∑
i∈N

gti + gtj,
∑
i∈N

(
dti +

∑
a∈Ai

xti,a
)
+ dtj +

∑
a∈Aj

xtj,a

))
.

(6.31)
Hence, the user j’s contribution ∆CSCj is measured as the difference between
the existing REC’s CSC energy before and after the integration of this new
member.

∆CSCj = CSC′
j − CSC. (6.32)

6.4.3. Battery energy storage

Beyond the demand for increased energy production or consumption in an
established energy community, the integration of storage systems can also prove
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interesting for managing the balance between local energy production and use.
We describe the approach used in [20] to assess battery requirements.

The need for batteries in the existing REC depends on the amount of energy
that can be stored to enhance independence from the main grid (i.e., to increase
the self-sufficiency ratio). The additional battery requirement, noted by ∆Ebat

rec

in [kWh], is defined as the minimum daily average energy between the REC’s
surplus and deficit, considering the usable storage capacity of the existing
battery systems. We have

∆Ebat
rec = max

(
0,
(min(Esur

rec , E
def
rec )

∆SOC
,−Ebat,init

rec

))
, (6.33)

with ∆SOC the battery’s real usability factor (generally 0.9-0.2=0.7). The
daily average energy surplus in the REC Esur

rec is calculated as the total surplus
from each member:

Esur
rec =

∑Y
y=1

∑365
h=1

∑
t∈T max

(
0,
∑

i∈N (gi − dti −
∑

a∈Ai
xti,a)

)
365× Y

. (6.34)

In addition, the daily average energy deficit in the REC Edef
rec is computed as

the total deficit from each member:

Edef
rec =

∑Y
y=1

∑365
h=1

∑
t∈T max

(
0,
∑

i∈N (dti +
∑

a∈Ai
xti,a − gi)

)
365× Y

. (6.35)

Finally, the contribution made by a user j ∈M is based on her battery capacity
and the needs of the REC:

Sbat
j = min(∆Ebat

rec , E
bat
j ). (6.36)

Lastly, we combine the value contributions from both production/consumption
and the battery system:

SMS
j = MSj + 365× Y × Sbat

j , (6.37)

SCSC
j = ∆CSCj + 365× Y × Sbat

j . (6.38)

In this work, we assume that the candidates inM do not initially own a storage
battery. So, for each user j ∈M, we have Ebat

j = 0. As ∆Ebat
rec is always greater

than or equal to 0 by definition (6.33), we thus have that Sbat
j = 0 in (6.36).
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6.5. Case-study
We study various instances on the NMIP which are simulated on a representative
year replicated through a 20-year horizon (Y = 20). The basic year is built on
8 representative days, i.e., 1 week day and 1 weekend day for each season. We
study the NMIPs for three renewable energy communities, each composed of
five members connected behind the same MV-LV feeder. The purpose is to
represent communities with various electrical profiles in order to simulate the
NMIP in different situations. These profiles include:

• A REC with an annual energy deficit (see Table 6.2), where consumption
significantly exceeds local production,

• A REC with an annual energy surplus (see Table 6.3), where production
exceeds consumption,

• An energy-balanced REC (see Table 6.4), where production and con-
sumption are approximately equal on an annual basis. For the sake of
concision, we do not present the results of this community in Sections 6.6
and 6.7.

Remark 6.4. Note that we have also simulated communities of 55 members,
similarly as in Section 4.5. However, for facilitating the analysis, we present
here communities with 5 members.
Further, a set of 11 candidates is also considered with varying profiles in terms
of production capacity (Qpv,j kWp), energy consumption and flexibility. They
are displayed in Table 6.5. Two profiles stand out among them. Candidate
profile 7 represents a pure supplier profile, without any consumption. On the
other hand, candidate profile 11 was specifically designed for the community in
surplus (Table 6.3). This profile only includes non-flexible consumption that
aligns perfectly with the time steps during which the community experiences
surplus production. Hence, this candidate should theoretically be able to her
entire energy needs using the REC’s surplus alone. While this makes profile 11
an ideal candidate, it is not a realistic one.

PV
(kWp) ESS Prod.

(MWh)
Non-flex.

cons. (MWh)
Flex. cons.

(MWh)
Total

cons. (MWh)
Flex.

level (%)
Cons.-prod.

(MWh)
1 0 1 0 3.131 11.88 15.012 112.7 15.012
2 3 1 3.511 3.131 0.720 3.852 149.5 0.341
3 2 0 2.340 7.532 9 16.532 54.44 14.191
4 0 0 0 1.084 2.232 3.316 67.31 3.316
5 0 0 0 5.473 6.552 12.025 54.5 12.025
REC 5 2 5.851 20.351 30.384 50.735 79.75 44.884

Table 6.2.: Composition and annual energy profile of a 5-member REC in
deficit.
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PV
(kWp) ESS Prod.

(MWh)
Non-flex.

cons. (MWh)
Flex. cons.

(MWh)
Total

cons. (MWh)
Flex.

level (%)
Cons.-prod.

(MWh)
1 20 1 23.406 3.131 11.88 15.012 112.7 -8.393
2 4 1 4.681 3.131 0.720 3.852 149.5 -0.829
3 9 1 10.532 4.992 1.44 6.432 100.7 -4.101
4 15 0 17.553 1.084 2.232 3.316 67.31 -14.237
5 10 0 11.702 5.473 6.552 12.025 54.5 0.322
REC 58 3 67.873 17.811 22.824 40.635 93.38 -27.238

Table 6.3.: Composition and annual energy profile of a 5-member REC in
surplus.

PV
(kWp) ESS Prod.

(MWh)
Non-flex.

cons. (MWh)
Flex. cons.

(MWh)
Total

cons. (MWh)
Flex.

level (%)
Cons.-prod.

(MWh)
1 14 1 16.383 3.131 11.88 15.012 112.7 -1.372
2 4 1 4.681 3.131 0.720 3.852 149.5 -0.829
3 9 1 10.532 4.992 1.44 6.432 100.7 -4.101
4 0 0 0 1.084 2.232 3.316 67.31 3.316
5 10 0 11.702 5.473 6.552 12.025 54.5 0.322
REC 37 3 43.298 17.811 22.824 40.635 93.38 -2.663

Table 6.4.: Composition and annual energy profile of a 5-member balanced
REC.

User PV
(kWp) ESS Prod.

(MWh)
Non-flex.

cons. (MWh)
Flex. cons.

(MWh)
Total

cons. (MWh)
Flex.

level (%)
Cons.-prod.

(MWh)
1 0 0 0 25.98 0 25.98 0 25.98
2 10 0 11.702 1.084 11.88 12.964 91.64 1.262
3 0 0 0 1.084 0 1.084 0 1.084
4 10 0 11.702 25.98 9 34.98 25.73 23.278
5 0 0 0 5.473 6.552 12.025 54.5 12.025
6 1 0 1.17 9.933 8.352 18.285 45.68 17.115
7 20 0 23.405 0 0 0 0 -23.405
8 7 0 8.192 2.89 5.112 8.002 63.88 -0.19
9 4 0 4.681 2.907 0.720 3.627 19.85 -1.054
10 5 0 5.851 2.383 10.44 12.823 81.41 6.972
11 0 0 0 46.928 0 46.928 0 46.928

Table 6.5.: Annual profiles of new user candidates.

For each user candidate j ∈ M, there are K = 22 LT investment options
available. They can choose to invest in solar panels with a capacity ranging
from 0 kWp to 10 kWp, in 1 kWp increments and/or also install a domestic
battery with a capacity of 14 kWh and a power setting of 5 kW. As a reminder,
we also consider that a user may not invest (q1). The photovoltaic price is fixed
at λpv = 1500e/kWp, while the tariffs for the ESS are λcap = 300e/kWh and
λpow = 300e/kW. The community can adjust its local tariffs λiloc and λeloc, as

178



Chapter 6. New Member Integration Decisions in Renewable Energy
Communities under Prospect Theory

Figure 6.5.: Import retail price evolution.

part of its LT decision-making process. Three options are available: increase or
decrease the local tariffs by 0.01e/kWh or keeping them constant.

We assume three scenarios for the evolution of retail import prices over the
next 20 years (see Fig. 6.5):

• Ψ1: The price increases by 0.005 e/kWh each year,
• Ψ2: The price increases by 0.01 e/kWh each year,
• Ψ3: The price follows the electricity price trends on the Belgian market

during the energy crisis3

with their associated probability p1 = 1/6, p2 = 1/3 and p3 = 1/2.
Thus, the tree of the extensive game Γ1

j in Fig. 6.3 is made up of 264 terminal
nodes (|Z1| = 264) for each user j ∈M. For the extensive game Γ2 in Fig.6.4,
we have 2181 terminal nodes (|Z2| = 2181).

For the non-flexible loads , hourly electricity consumption profiles are extracted
from the Pecan Street Project dataset [131] and generated for whole days,
with T = 24. We assume these profiles remain unchanged over the simulation.
Community members and candidate users may own different flexible devices:
dishwashers, washing machines, clothes dryers, electrical vehicles and heat
pumps. For the heat pumps, different energy needs are applied according
to the season. The initial and final battery state-of-charge are fixed at 50%.
We consider bi-hourly commodity tariffs: λtimp = 0.08 e/kWh (at year 0),
λtexp = 0.02 e/kWh, λtiloc = 0.065 e/kWh and λteloc = 0.032 e/kWh between
21pm and 4am, and λtimp = 0.16 e/kWh (at year 0), λtexp = 0.04 e/kWh,
λtiloc = 0.13 e/kWh and λteloc = 0.05 e/kWh elsewhere. We assume constant
network tariffs with α = 0.027 e/kWh and a discount of γ = 50%, and β = 0.11
e/kW.

In Section 6.3.1, we restated that any variational equilibrium (VE) of the

3based on formulas used to calculate Engie’s import tariffs [168], which vary month by
month with the EPEX DAM index [169].

179



Chapter 6. New Member Integration Decisions in Renewable Energy
Communities under Prospect Theory

GNEP, calculated for the ST problem, corresponds to a social optimum. So,
every VE of the game is efficient. Furthermore, for this specific billing structure,
we observed numerically in Chapter 4 that the individual bills obtained with
the GNEP and via the ex-post distribution of a social optimum show only
marginal differences (with a maximum deviation of 1.8% in Table 4.6 on
page 113 (D2, tariff T2 and [CB])). As a result, performing the centralized
optimization problem is equivalent to finding the VEs of the GNEP. Therefore,
we solve the ST problem using a classical centralized algorithm, treating it
as a convex centralized optimization problem to speed up the computational
process. The distributed algorithm argument is not really necessary in this
case, as we are looking at long-term scenarios to define a new user’s investment
(the REC members do not necessarily need to reveal their real operational
data). Given a user j ∈M, to build the extensive game Γ1

j , we need to solve
20× 8× 3× (22 + 1 + (22× 3)) = 42 720 optimization problems, whereas the
extensive game Γ2 requires solving 20× 8× 3× (1 + 11 + (11× 22× 3)) = 354
240 optimization problems.

Short-term problems are coded in the open source language Julia 1.8 [22]
using the JuMP package, and solved using Gurobi [23]. Extensive games are
implemented and analyzed using Python 3.11.6 [21] with the nutree library.
The trees terminal nodes store the players’ gains or costs, calculated from
the short-term simulations, according to the specified preference criterion. In
order to determine subgame perfect equilibria, we implemented the backward
induction method: starting from the terminal nodes, optimal strategies are
calculated back to the root. The case study is conducted on an Intel(R)
Core(TM) i7-1260P 2.10 GHz with 325 Go of RAM. The whole range of short-
term simulations for a REC and a candidate user fromM, were solved with a
maximum time of 147.20s.

We have simulated various combinations of preference criteria, which are
described in Section 6.3.2: total costs (6.13), NPV (6.14), CO2 emissions
(6.18), ROI (6.16) and the price per kWh (6.20). For the NPV, we consider two
cases, one with an discount rate of κ1=4.14% (Statbel July 2023 [170]), denoted
NPV1, and another with a rate of κ2=0.36% (Statbel October 2023 [170]), noted
NPV2. We assume that candidate users adhere to the same preference. Thus,
the heterogeneity arises between the candidates setM and the community. As
a summary, we tested 25 combinations of extensive games and users j ∈ M.
For clarity, we do not present the results of every combination. Instead, we
focus on describing the most relevant cases.
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Deficit Surplus
NPV1 -144 253.34e -43 524.35e
NPV2 -212 943.88e -65 448.51e
Ctot 221 640.703e 68 231.05e
CDE 137.564 tCO2eq 69.016 tCO2eq
PkWh 0.239e/kWh 0.147e/kWh

Table 6.6.: Expected utilities Urec of existing communities without new members
for each criterion.

6.6. Results for perfectly rational agents
In this section, we analyze the results obtained from the simulations under the
assumption that all agents are perfectly rational in the sense of the expected
utility theory (Section 5.3.1). This establishes a baseline for evaluating the
decisions made in our models. Subsection 6.6.1 observes whether the result
obtained by the heuristic methods advanced by Mustika et al. [20], can help to
predict the new member selected by the REC in the NMIP formulated by the
extensive game Γ2 (Fig. 6.4). The impact of the order of decision-making in
the NMIP on SPEs and stakeholders’ behavior, is studied in subsection 6.6.2.
A comparison is presented between extensive games Γ2 (Fig. 6.4) and Γ1 (Fig.
6.3), from the point of view of the candidates.

6.6.1. Heuristic vs equilibrium
The results of the heuristic methods proposed by Mustika et al. in [20] are
shown and compared with the SPEs’ outcomes of the extensive game Γ2 in Fig.
6.4, when it comes to selecting a potential candidate for the RECs studied. As
a reminder, this game models the NMIP where the community aims to expand
by integrating a new member from a list of potential candidatesM. We start
by establishing homogeneous criteria before simulating heterogeneous criteria.
For each metric (MS and CSC) described in Section 6.4, the contribution values
are normalized by dividing each user’s contribution by the maximum valued
observed, so as to clearly distinguish the performance of each method [20].

REC in deficit

We study the case of the REC in an annual energy deficit situation as represented
by Table 6.2. The CSC energy of the existing REC with five members is 5.677
MWh, which we take as a reference to calculate the improvement in CSC energy
with an additional candidate j ∈M in the community. The Table 6.7 shows
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the candidate results for both metrics, together with their normalized values.
The shaded boxes indicate the maximum value for each metric. The normalized
value for each candidate user ofM with MS and CSC methods, is displayed in
Figure 6.6.

User MS ∆CSC
(kWh)

Normal
MS

Normal
CSC

1 1 142.54 173.77 0.062 0.016
2 5 298.12 6 568.99 0.288 0.595
3 34.46 34.37 0.002 0.003
4 887.61 11 044.25 0.048 1
5 205.54 124.72 0.011 0.011
6 309.79 1 315.37 0.017 0.119
7 18 423 5 085.56 1 0.46
8 2 439.304 6 161.7 0.132 0.558
9 2 549.72 2 705.02 0.138 0.245
10 1 701.17 4 735.54 0.092 0.429
11 10 753.93 173.77 0.584 0.016

Table 6.7.: Net and normalized MS
and CSC values of po-
tential candidates inM,
for the energy-deficit
REC.

Figure 6.6.: Normalized values for both
metrics for each user in
M and the energy-deficit
REC.

Results differ depending on the metric. The rankings in descending order of
MS and CSC, are given by

MSdef : {7, 11, 2, 9, 8, 10, 1, 4, 6, 5, 3}, (6.39)
CSCdef : {4, 2, 8, 7, 10, 9, 6, 1, 11, 5, 3}. (6.40)

Profiles 1, 3, 5 and 11 are consumers only, and we can see that the value
provided by these candidates when using MS is higher than with CSC in this
case. Profiles 2, 4, 8 and 10 had a large amount of individual self-consumption,
which is considered in the CSC metric, but not in the MS. User 4 is still a
heavy consumer (see Table 6.5). In terms of both metrics, users 5 and 3 are
suitable in their current state for this REC. Since profile 7 is a large producer,
it is pretty obvious that it is the one that is going to get the biggest MS in the
situation where the community is short of energy. He can make her production
available to other members of the community, but it may be advantageous to
export some of it to retail markets.

We investigate the results of the extensive game Γ2 in Fig. 6.4. In fact, across
all tested combinations of preference criteria, including heterogeneous ones,
the REC always selects candidate 7, while other actions vary depending on
the preferences. This result is not surprising, given that user 7 represents a
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pure producer profile. This observation is in line with expectations, suggesting
that the model does indeed seem to identify the most logical and optimal
choice under these conditions, validating its behavior to some extent. Given the
particular nature of the profile 7, we have decided to remove it from the list of
candidates for the remainder of the analysis: M′ =M\{7}. Readers interested
in the full set of results, including candidate 7, can refer to the Appendix C.1.

We first analyze the results of the extensive game Γ2 in Fig. 6.4 with the
candidate list M′ by considering scenarios in which all agents adopt the
same preference criteria. In particular, the maximization of NPV (6.14), the
minimization of total costs (6.13) or the reduction of CDE (6.18). These
homogeneous scenarios enable direct comparison with previously calculated
heuristic methods, while highlighting specific characteristics of subgame perfect
equilibria in this context. Given the uncertainty associated with retail import
prices evolution, the results presented in Table 6.8 correspond to the expected
utilities U in (6.26) of rational agents.

Criteria Num. User PV Stor. Local Exp. utility Exp. utility
UsersM REC SPE (kWp) prices user REC

1 NPV1 NPV1 1 2 +0 0 D -21 071.6e -134 319e
2 NPV2 NPV2 1 2 +0 0 D -31 328.9e -197 895.7e
3 Ctot Ctot 1 2 +0 0 D 32 628.88e 205 942.1e
4 CDE CDE 1 2 +10 +1 D 18.556 tCO2eq 109.65 tCO2eq

Table 6.8.: Expected utilities of SPEs obtained for the NMIP Γ2 of the REC in
deficit with the candidates setM′ and for homogeneous preference
criteria. The rationality of agents is assumed.

In Table 6.8, we observe that for each combination, there is only one SPE, and
the "User" column shows that the REC selects user 2. The community directly
accepts user 2 without additional investment and reduces its local prices, in the
case of financial combinations 1-3. In case 4, if user 2 has more production and a
storage battery, he will be able to increase her self-consumption or inject surplus
into the community pool, thus reducing the CO2 linked to retail imports. It is
therefore in the community’s interest to demand more investment. According
to both metrics (6.39) and (6.40), user 2 emerges as the most likely choice after
candidate 7. Then, the selection of user 2 is in line with the expectations given
the characteristics of the profile (see Tab. 6.5) and aligns with the underlying
principles of heuristic methods.

We consider scenarios where the candidates set M′ and the REC prioritize
different preferences. Table 6.9 provides the full results, capturing the diversity
of selected actions across the tested combinations of preferences. Despite this
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variety, candidate 2 remains the preferred choice in all cases due to its profile
(Table 6.5).

Criteria Num. User PV Stor. Local Exp. utility Exp. utility
UsersM REC SPE (kWp) prices user REC

1 NPV1 NPV1 1 2 +0 0 D -21 071.6e -134 319e
2 NPV2 NPV2 1 2 +0 0 D -31 328.9e -197 895.7e
3 Ctot Ctot 1 2 +0 0 D 32 628.88e 205 942.1 e
4 CDE CDE 1 2 +10 +1 D 18.556 tCO2eq 109.65 tCO2eq
5 ROI (financial) 1 2 +0 0 D 0%
6 ROI CDE 1 2 +2 0 I 0.764% 119.91 tCO2eq
7 NPV1 PkWh* 243 2 +1 0 I -20 007.2e 0.216e/kWh
8 NPV2 PkWh* 243 2 +0 0 I -28 982.94e 0.219e/kWh
9 Ctot PkWh* 243 2 +0 0 I 30 191,1e 0.219e/kWh
10 NPV1 CDE 1 2 +2 0 I -20 565.1e 119.91 tCO2eq
11 NPV2 CDE 1 2 +2 0 I -29 240.79e 119.91 tCO2eq
12 Ctot CDE 1 2 +0 0 C 31 410.6e 123.56 tCO2eq
13 CDE (financial) 1 2 +10 +1 D 18.556 tCO2eq
14 PkWh* (financial) 3 2 +10 +1 D 0.12 e/kWh
15 PkWh* CDE 6 2 +9 0 I 0.115e/kWh 110.073 tCO2eq

Table 6.9.: Expected utilities of SPEs obtained for the NMIP Γ2 of the REC
in deficit with the candidates setM′ and the rationality of agents
is assumed. The (financial) notation indicates that the results are
valid if one of the three criteria: NPV1, NPV2 and Ctot is used. We
have used the lexicographical order in the case of PkWh.

In order to avoid a combinatorial explosion, we used the lexicographic order
(Definition 5.5) for agents with the PkWh criterion (6.20). Despite the lexico-
graphical order on the REC, we still obtain 243 SPEs if users have one of the
financial criteria (NPV1, NPV2 and Ctot) and the community minimizes the
price per kWh (combinations 7, 8 and 9). Nevertheless the results and actions
remain the same for each SPE. We can see that the expected values of users
2 are better than in the homogeneous cases (1, 2 and 3). We also note the
difference between the NPV1 and NPV2 cases, confirming that the discount
rate has an impact on the decision-making process. When the community
minimizes the CDE (i.e., combinations 10, 11 and 12), the user 2’s expected
utilities are better than in the homogeneous case (1, 2 and 3), but not as good
as compared to the case where the community follows the PkWh criterion. For
scenario 12 in particular, the distinction with case 3 is explained by the fact
that the REC keeps its prices constant. Given the lexicographical order for the
users, we have 3 SPEs with the same result and actions, where candidate 2
invests in 10 kWp and a battery in combination 14. Similarly in case 15, we
observe 6 SPEs with the same result and actions, but user 2 invests only in 9
kWp and her expected value is better than for the previous case.
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At first glance, the outcomes of our models and the rankings based on the
metrics seem to align, but we are faced with a case where a particular candidate
is suitable for all combinations.

REC in surplus

We proceed in a similar way for the REC in an annual energy surplus situation
as represented by Table 6.3 and with a CSC energy of 13.663 MWh. The
Table 6.10 shows the candidate results for both metrics and their normalized
values. Again, the shaded boxes indicate the maximum value for each metric.
The maximum value for both metrics is associated with candidate 11, so the
normalized values for each candidate user ofM, presented in Figure 6.7, are
based on those of profile 11 for each method.

User MS ∆CSC
(kWh)

Normal
MS

Normal
CSC

1 7 499.2 7 308.96 0.16 0.156
2 1.496 4 778.64 (3.2).10−5 0.102
3 310.14 310.14 0.007 0.007
4 1 101.4 11 717.93 0.023 0.25
5 1 651.15 1 651.15 0.035 0.035
6 2 413.2 3 583.42 0.051 0.076
7 590.4 563.66 0.013 0.012
8 0.81 5 109.64 (1.73).10−5 0.109
9 14.92 1 252.2 0.00032 0.027
10 24.89 3 856.68 0.00053 0.082
11 46 927.7 46 927.7 1 1

Table 6.10.: Net and normalized
MS and CSC values
of potential candidates
in M, for the energy-
surplus REC.

Figure 6.7.: Normalized values for both
metrics for each user in
M and the energy-surplus
REC.

Then, the rankings in descending order of MS and CSC, are provided by

MSsur : {11, 1, 6, 5, 4, 7, 3, 10, 9, 2, 8}, (6.41)
CSCsur : {11, 4, 1, 8, 2, 10, 6, 5, 9, 7, 3}. (6.42)

User 11 is clearly distinguished for the energy surplus community. In fact,
profile 11 was custom-built for the REC in energy surplus. Then, it only has
non-flexible consumption that coincides with time steps when the community
has excess production. It should therefore be able to cover all the needs with
the entire REC surplus pool. Profile 1 is a large consumer without flexibility.
Nevertheless, part of her needs are calibrated to moments of surplus, resulting
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in a high MS. If we were to exclude candidate 11, user 1 would surely be the
best candidate to select.

Once again, profile 3 appears unsuitable according to the metrics. This position
in the rankings could be explained by comparison with other users with signifi-
cantly higher consumption value (Tab. 6.5). For this REC, the MS calculation
process mechanically favors profiles with high consumption (see Section 6.4.1),
giving these users a higher MS than profile 3. In addition, user 3’s low demand
also leads to lower self-consumption than the others. A possible solution to
improve the performance could be to invest in a battery. This observation raises
an important question: is it relevant to compare all users with each other? An
alternative approach would be to define categories to better reflect the specific
characteristics of each profile.

As for the REC in energy deficit, profiles 2, 4, 8 and 10 show a high level of
individual self-consumption, taken into account in the CSC, but not in the
MS. Actually, these users contribute slightly to the collective effort to consume
the REC’s surplus. Given the definition of CSC (see Section 6.4.2), we can
conclude that these candidates provide an artificial high contribution to the
REC’s CSC. This somehow biases the ranking (6.42).

We examine the results for the extensive game Γ2 in Fig. 6.4. We have found
that the REC systematically selects producer 7 to minimize its CDE. Otherwise,
it selects user 11, tailor-made to meet the REC’s specific needs in a surplus
situation. These results confirm that our model yields consistent and expected
actions in terms of user selection. However, due to the particular characteristics
of these two profiles, we decided to remove them from the list of candidates for
the remainder of the analysis: M =M\{7, 11}. Note that the complete table
of combinations with the initial setM can be found in Appendix C.2.

As in the previous case, we first consider the results of the extensive game Γ2 in
Fig. 6.4 with the candidate listM by considering homogeneous combinations
of preference criteria. We assume the rationality of the users and the REC, so
the actions and expected utilities U (6.26), related to the SPEs, are presented
in Table 6.11.

There is only one SPE for each homogeneous combination in 6.11. The REC
directly includes user 1 without additional investment and increases its local
prices, in the case of financial combinations 1-3. In the CDE case, we have the
same set of actions as found with the energy deficit REC at Tab. 6.8. After
excluding profile 11, both heuristic methods (6.41) and (6.42) identify user 1,
as it stands, as the most suitable candidate to join the community. However,
the metrics were unable to predict model’s selection of user 2, given that neither
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Criteria Num. User PV Stor. Local Exp. utility Exp. utility
UsersM REC SPE (kWp) prices user REC

1 NPV1 NPV1 1 1 +0 0 I -77 573.5e -42 231.2e
2 NPV2 NPV2 1 1 +0 0 I -113 682.02e -63 680.4e
3 Ctot Ctot 1 1 +0 0 I 118 248.66e 66 403.65e
4 CDE CDE 1 2 +10 +1 D 18.556 tCO2eq 68.554 tCO2eq

Table 6.11.: Expected utilities of SPEs obtained for the NMIP Γ2 of the REC in
surplus with the candidates setM and for homogeneous preference
criteria. The rationality of agents is assumed.

metric incorporates CO2 emissions.

This difference in users selection also encourages further study of heterogeneous
preference combinations. The complete array of actions and expected utilities
at SPEs for each combination, is provided in Table 6.12. Note that to avoid
combinatorial explosion of backward induction, we use the lexicographical order
(Definition 5.5) for the individual with the PkWh* (6.20).

Criteria Num. User PV Stor. Local Exp. utility Exp. utility
UsersM REC SPE (kWp) prices user REC

1 NPV1 NPV1 1 1 +0 0 I -77 573.5e -42 231.2e
2 NPV2 NPV2 1 1 +0 0 I -113 682.02e -63 680.4e
3 Ctot Ctot 1 1 +0 0 I 118 248.66e 66 403.65e
4 CDE CDE 1 2 +10 +1 D 18.556 tCO2eq 68.554 tCO2eq
5 ROI (financial) 1 1 +0 0 I 0%
6 ROI CDE 1 2 +0 +1 C 0.415% 68.786 tCO2eq
7 (financial) PkWh* 1 ∅ / / / / 0.146e/kWh
8 NPV1 CDE 1 2 +0 +1 C -21 553.8e 68.786 tCO2eq
9 NPV2 CDE 1 2 +0 +1 C -29 291.5e 68.786 tCO2eq
10 Ctot CDE 1 2 +0 +1 C 30 272.4e 68.786 tCO2eq
11 CDE (financial) 1 1 +0 0 I 60 561 tCO2eq
12 PkWh* (financial) 1 1 +0 +1 I 0.214e/kWh
13 PkWh* CDE 1 2 +10 +1 D 0.12e/kWh 68.554 tCO2eq

Table 6.12.: Expected utilities of SPEs obtained for the NMIP Γ2 of the REC
in surplus with the candidates setM and the rationality of agents
is assumed. The (financial) notation indicates that the results are
valid if one of the three criteria: NPV1, NPV2 and Ctot is used.
We have used the lexicographical order in the case of PkWh.

We have in Table 6.12 that each time the REC aims to minimize its CDE, it
selects user 2 with investment. The candidate 2 invests in at least one battery
regardless of her criteria. An intriguing outcome occurs for combination 7: the
community decides not to select any candidate on the list. Note that this is an
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action resulting from a SPE obtained with the lexicographic order assumed for
the REC. It is therefore possible that other SPEs, leading to different results,
have been ignored.

Observations summary

We summarize the observations arising from the comparison between the results
of heuristic methods and those of subgames perfect equilibria of the NMIP Γ2

(Fig.6.4), where the community moves first.

1. The characteristics of preferences and their combinations directly in-
fluence the outcome of the problem, highlighting the importance of
strategic choices for each stakeholder.

2. For each preference criterion of the candidates set, if the REC adopts
a strictly financial preference (such as NPV1, NPV2 or total cost Ctot),
heuristic methods can help forecast the new member selected by the
community.

3. When the community pursues objectives that are not purely financial
such as minimizing the CDE or the price of kWh, heuristic methods are
not always able to anticipate the REC’s choice. In such cases, decisions
depend on the specific features of the SPEs and on the candidates’
preferences.

We have also raised some points to consider in the metrics of the heuristic
methods. Some candidates who consume part of their own initial production
make an artificial contribution to the REC’s CSC, which can distort the ranking.
The case of profile 3 suggests that comparing all candidates collectively may
not be the most appropriate approach.

6.6.2. Impact of the decisions order

We continue our analysis, still assuming the perfect rationality of all stakeholders.
We now study the impact of the order of decision-making on equilibria and
outcomes. We adopt the point of view of a user j ∈M and compare the results
obtained in the first extensive game Γ1

j (user j moves first) in Fig.6.3 with
those obtained in the second game Γ2 in Fig.6.4 (REC moves first). Given the
size of the work, we focus on the users who were selected in a SPE of the game
Γ2 at the previous subsection 6.6.1, excluding special profiles 7 and 11.
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REC in deficit

As previously observed, for each combination of preferences, the energy-deficit
REC (in Tab.6.2) always selected user 2 as the new member. So to assess
the impact of the order of decision-making, we compare the results obtained
for this user in the two games frameworks. Table 6.13 shows the actions and
expected utilities U in (6.26), associated with the SPEs from the extensive
game Γ1

2, while Table 6.9 covers the results obtained in Γ2.

Criteria Num. In PV Stor. Local Exp. utility Exp. utility
User 2 REC SPE REC (kWp) prices user 2 REC

2’ NPV2 NPV2 1 1 +0 +1 D -29 316.5e -200 652.46e
3’ Ctot Ctot 1 1 +0 +1 D 30 298.4e 208 822e

4’ CDE CDE 2 0 +10 +1 \ 18.556 tCO2eq 137.564 tCO2eq
1 D 109.65 tCO2eq

5’ ROI (financial) 2 0 +0 +1 \ 0.409%1 D
7’ NPV1 PkWh* 1 1 +0 0 I -19 453.4e 0.219e/kWh
8’ NPV2 PkWh* 1 1 +0 +1 I -27 456.6e 0.221e/kWh
9’ Ctot PkWh* 1 1 +0 +1 I 28 366.51e 0.221e/kWh
10’ NPV1 CDE 1 1 +0 0 C -20 262.8e 123.556 tCO2eq
12’ Ctot CDE 1 1 +0 +1 D 30 298.4e 126.527 tCO2eq

13’ CDE (financial) 2 0 +10 +1 \ 18.556 tCO2eq1 D

14’ PkWh* (financial) 2 0 +10 +1 \ 0.12e/kWh1 D

Table 6.13.: Expected utilities of SPEs obtained for the NMIP Γ1
2 of the REC in

deficit where the rationality of agents is assumed. The (financial)
notation indicates that the results are valid if one of the three
criteria: NPV1, NPV2 and Ctot is used. We have used the lexico-
graphical order in the case of PkWh.

Since the outputs are identical for preference combinations 1, 6, 11 and 15
in Tab. 6.9, for both games, we do not include them in Tab. 6.13. At first
glance, the user 2 seems more inclined to invest in a battery when he makes
the decision first, rather than in game Γ2 (see combinations 2’, 3’, 5’, 8’, 9’
and 12’). We observe two SPEs for combinations 4’, 5’, 13’ and 14’. In these
conditions, user 2 is indifferent between staying alone or joining the community.
In addition, they present the same actions and outcomes as in the second game
when the user decides to integrate the REC, with the exception of case 5’.
It appears that, for all combinations of preferences, the value of the REC’s
expected utility is always less than or equal to that observed in Table 6.9, but
greater than it would have been if the REC had chosen not to pick any users
(see Table 6.6). So, although these strategies are not necessarily optimal, they
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still offer an advantage to the community.

REC in surplus

In the case of the energy-surplus community (in Tab. 6.3), we found earlier
that the REC could choose either user 1, user 2 or to take no candidate at all.
So, we focus on the profiles 1 and 2.

User 1. The Table 6.14 presented the actions and user 1’s expected utilities at
SPEs from the extensive game Γ2. It is important to note that the community
results, shown in the last column, represent the values achieved if the REC
selected user 1! The shaded boxes indicate the SPEs where the REC actually
chooses this user at SPEs of the game Γ2 (Tab. 6.12). In comparison, Table
6.15 reports the outcomes when solving the extensive game Γ1

1, where user 1
moves first.

Criteria Num. PV Stor. Local Exp. utility Exp. utility
UsersM REC SPE (kWp) prices user REC

1 NPV1 NPV1 1 +0 0 I -77 573.5e -42 231.2e
2 NPV2 NPV2 1 +0 0 I -113 682.02e -63 680.4e
3 Ctot Ctot 1 +0 0 I 118 248.66e 66 403.65e
4 CDE CDE 1 +10 +1 D 48 846 tCO2eq 69.183 tCO2eq
5 ROI (financial) 1 +0 0 I 0%
6 ROI CDE 1 +0 0 D 0% 70.401 tCO2eq
7 (financial) PkWh* 1 +8 +1 D 0.186e/kWh
8 NPV1 CDE 1 +7 +1 D -71 233.513e 69.183 tCO2eq
9 NPV2 CDE 1 +8 +1 C -96 849.48e 69.183 tCO2eq
10 Ctot CDE 1 +10 +1 D 100 008.54e 69.183 tCO2eq
11 CDE (financial) 1 +0 0 I 60 561 tCO2eq
12 PkWh* (financial) 1 +0 +1 I 0.214e/kWh
13 PkWh* CDE 1 +0 +1 D 0.207e/kWh 69.105 tCO2eq

Table 6.14.: Expected utilities of user 1 at the SPEs from NMIP Γ2 with the
REC in surplus and the candidates set M. The rationality of
agents is assumed. The (financial) notation indicates that the
results are valid if one of the three criteria: NPV1, NPV2 and
Ctot is used. We have used the lexicographical order in the case of
PkWh.

The outputs are identical for preference combinations 4, 7, 8, 9, 10, 12 and
13 (in Tab. 6.14) for both games, we do not include them in Tab. 6.15. The
results can differ between the two games, regardless of whether the community
selects user 1 or not. User 1 always has an interest in joining the community
in both games. Furthermore, he also shows a tendency to invest more when he
is the first to make a decision. The different situations observed are as follows:
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Criteria Num. In PV Stor. Local Exp. utility Exp. utility
User 1 REC SPE REC (kWp) prices user 2 REC

1’ NPV1 NPV1 1 1 +8 +1 I -71 533.4e -43 263.4e
2’ NPV2 NPV2 1 1 +8 +1 I -97 070.7e -65 070.8e
3’ Ctot Ctot 1 1 +9 +1 I 100 268e 67 903.6e
5’ ROI (financial) 2 1 +1 0 I 14.505%
6’ ROI CDE 2 1 +1 0 D 16.288% 70.457 tCO2eq
11’ CDE (financial) 1 1 +10 +1 I 48.846 tCO2eq

Table 6.15.: Expected utilities of SPEs obtained for the NMIP Γ1
1 of the REC

in surplus where the rationality of agents is assumed. The (fi-
nancial) notation indicates that the results are valid if one of the
three criteria: NPV1, NPV2 and Ctot is used. We have used the
lexicographical order in the case of PkWh.

• The community chooses user 1 in the game Γ2 (Tab. 6.14), then either
– User 1 adopts the same actions in the game Γ1

1, as in 12,
– Even if the actions in the game Γ1

1 are not optimal for the REC,
they are still advantageous for the community, as in 1’, 2’, 3’, 5’ and
11’.

• In both games, there are configurations where the REC has no interest
in integrating user 1, as in 4, 6, 6’, 7, 8, 9, 10 and 13.

User 2. The Table 6.16 shows the actions and user 2’s expected utilities at
SPEs from the extensive game Γ2. Once again, the REC outcomes, shown in
the last column, represent the values achieved if the REC selected user 2! The
shaded boxes indicate the SPEs where the REC actually chooses this user at
SPEs of the game Γ2 (Tab. 6.12). Further, Table 6.17 indicated the outcomes
for the extensive game Γ1

2, where user 2 is the first to take an action.

For preference combinations 2, 3, 6, 9 and 10 (shown in Tab. 6.16), the results
of the two games are equivalent, which is why these cases are not listed in Tab.
6.17. On the other hand, variations may appear depending on whether or not
the community chooses candidate 2. The different situations identified can be
summarized as follows:

• In both games, one of the stakeholders will be better off staying alone
and not investing (in the case of the user 2). These are combinations 1,
1’, 8 and 8’; given user 2’s initial NPV1 value of -21 175.02e and the
REC’s initial values in Tab. 6.6.

• User 2 chooses the same investment option in both games, further either:
– This user is indifferent between staying alone or joining the REC,

for the latter, either
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Criteria Num. PV Stor. Local Exp. utility Exp. utility
UsersM REC SPE [kWp] prices user REC

1 NPV1 NPV1 1 +0 +1 D -21 570.3e -43 413.1e
2 NPV2 NPV2 1 +0 +1 D -29 316.4e -65 274.8e
3 Ctot Ctot 1 +0 +1 D 30 298.4e 68 049.3e
4 CDE CDE 1 +10 +1 D 18 556 tCO2eq 68.554 tCO2eq
5 ROI (financial) 1 +0 +1 D 0.409%
6 ROI CDE 1 +0 +1 C 0.415% 68.786 tCO2eq
7 (financial) PkWh* 1 +0 +1 I 0.156e/kWh
8 NPV1 CDE 1 +0 +1 C -21 553.8e 68.786 tCO2eq
9 NPV2 CDE 1 +0 +1 C -29 291.5e 68.786 tCO2eq
10 Ctot CDE 1 +0 +1 C 30 272.4e 68.786 tCO2eq
11 CDE (financial) 1 +10 +1 D 18.556 tCO2eq
12 PkWh* (financial) 1 +10 +1 D 0.12e/kWh
13 PkWh* CDE 1 +10 +1 D 0.12e/kWh 68.554 tCO2eq

Table 6.16.: Expected utilities of user 2 at the SPEs from NMIP Γ2 with the
REC in surplus and the candidates set M. The rationality of
agents is assumed. The (financial) notation indicates that the
results are valid if one of the three criteria: NPV1, NPV2 and
Ctot is used. We have used the lexicographical order in the case of
PkWh.

Criteria Num. In PV Stor. Local Exp. utility Exp. utility
User 2 REC SPE REC [kWp] prices user 2 REC

1’ NPV1 NPV1 1 1 +0 0 I -20 928.7e -43 573.3e

4’ CDE CDE 2 0 +10 +1 \ 18.556 tCO2eq 69.016 tCO2eq
1 D 68.554 tCO2eq

5’ ROI (financial) 2 0 +0 +1 \ 0.409%1 D
7’ NPV1 PkWh* 1 1 +0 0 C -20 846.6e 0.16e/kWh
8’ NPV1 CDE 1 1 +0 0 I -20 928.7e 69.214 tCO2eq

11’ CDE (financial) 2 0 +10 +1 \ 18.556 tCO2eq1 D

12’ PkWh* (financial) 2 0 +10 +1 \ 0.12e/kWh1 D

13’ PkWh* CDE 2 0 +10 +1 \ 0.12e/kWh 69.016 tCO2eq
1 D 68.554 tCO2eq

Table 6.17.: Expected utilities of SPEs obtained for the NMIP Γ1
2 of the REC

in surplus where the rationality of agents is assumed. The (fi-
nancial) notation indicates that the results are valid if one of the
three criteria: NPV1, NPV2 and Ctot is used. We have used the
lexicographical order in the case of PkWh.
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∗ The community chooses user 2 in game Γ2, as in 4’ and 13’;
∗ There is a better candidate, but the user 2 strategy still benefits

the community, as in 5’, 11’ and 12’.
– User 2 has every interest in joining the community, for the latter,

either
∗ The community chooses user 2 in game Γ2, as in 6, 9 and 10:
∗ There is a better candidate, but the user 2 strategy still benefits

the community, as in 2 and 3.
• In both games, the community has no interest in accepting candidate 2,

who would be disadvantaged by the investment profile required by the
REC in game Γ2, as combinations 7’.

This also highlights the fact that the discount rate used to calculate the net
present value (6.14), can have a significant impact on agents’ behavior.

Observations summary

This subsection explored the impact of decision order in NMIP on strategies,
subgame perfect equilibria and decision-maker behavior. We summarize the
conclusions established by comparing the actions and outcomes obtained in
game Γ2 (Fig. 6.4) and game Γ1

j (Fig. 6.3) equilibria, for each combination of
preference criteria.

1. In the NMIP, the order of decisions influences the equilibrium and
behavior of stakeholders. Depending on whether the community or
a user chooses first, the agents anticipate the reactions of the other
participants differently, which modifies the optimal strategies and
therefore the SPEs, as well as the interests of the stakeholders.

2. Preference criteria and their parameters (e.g., the discount rate in-
fluencing the net present value (NPV)), play a decisive role in the
decision-making process. These combinations of preferences can lead
to differences in actions and results for the community and users.

These conclusions underline the importance of the decision-making sequential
and preference criteria in the modeling of strategic interactions of energy
communities and external end-users on the new member integration problem.

6.7. Results with prospect theory
In this section, we explore the long-term consequences of decisions made in the
NMIP under the assumption of bounded rationality. This analysis complements
the previous study (Section 6.6) by comparing the results obtained in the case

193



Chapter 6. New Member Integration Decisions in Renewable Energy
Communities under Prospect Theory

of perfect rationality with those obtained from simulations using Prospect
Theory [77, 81], presented in Section 6.3.3, and Section 5.3.2 in Chapter 4.

Prospect theory involves identifying two functions: a utility or subjective value
function v (6.23) and a probability weighting function w (6.24), capturing
the perceived probabilities. In order to carry out this evaluation, we consider
different parameterizations of stakeholders’ PT functions. This theory was
originally developed by Kahneman and Tversky to model end-user behavior.
They estimated in the experimental paper [81], a set of parameter values that
are widely used: ηa = ηb = 0.88, ηc = 2.25 and ηd = 0.65 (PT1 in Table 6.18).
However, recent empirical works have suggested that PT can also be applied to
corporate levels, with alternative parameterizations, for instance ηa = ηb = 0.45,
ηc = 1.96 and ηd = 0.65 in [143] (PT2 in Table 6.18). To our knowledge, no
study has investigated so far the experimental estimation of PT parameters
in the context of energy communities. This task remains, however, out of the
scope of the present thesis work. We therefore test the two aforementioned
parameter sets in order to provide a comparative assessment.
The choice of reference point also plays a crucial role in modeling behavior. We
therefore compare two approaches, using a fixed reference point rmax and a
stochastic reference point rstoc defined in Section 6.3.3, to assess their impact on
stakeholder decisions. For clarity of analysis, we assume that all the potential
new members in M and the REC follow the same reference point selection
method (homogeneity of selection approach).

Finally, Table 6.18 presents a summary of utility and PT functions parameteri-
zations in different cases: perfectly rational agents, homogeneously boundedly
rational agents, heterogeneously boundedly rational agents, and mixed scenarios
with one rational and one boundedly rational agent. This enables in-depth
analysis of the combined effects of rationality assumptions and reference point
on the strategic and behavioral results of the simulations.

6.7.1. Community new member selection
We compare the SPEs’ outcomes of the extensive-form game Γ2 in Fig. 6.4
for each preference combination, between the parameters set out in the Table
6.18. The game Γ2 models the NMIP where the community aims to expand
by integrating a new member from a list of potential candidatesM, because
users 7 and 11 are eliminated from the initial listM. For each community, we
simulated a total of 450 cases, covering all combinations of preference criteria,
the possible parameterization scenarios in Table 6.18, and the two types of
reference points (fixed and stochastic). We illustrate the most significant
combinations of preference criteria in this context.
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Num. PT parameters of users PT parameters of REC
Scenar. UsersM REC ηa ηb ηc ηd ηa ηb ηc ηd
1 EUT EUT
2 PT1 PT1 0.88 0.88 2.25 0.65 0.88 0.88 2.25 0.65
3 PT1 PT2 0.88 0.88 2.25 0.65 0.45 0.45 1.96 0.65
4 PT2 PT1 0.45 0.45 1.96 0.65 0.88 0.88 2.25 0.65
5 PT2 PT2 0.45 0.45 1.96 0.65 0.45 0.45 1.96 0.65
6 PT1 EUT 0.88 0.88 2.25 0.65
7 PT2 EUT 0.45 0.45 1.96 0.65
8 EUT PT1 0.88 0.88 2.25 0.65
9 EUT PT2 0.45 0.45 1.96 0.65

Table 6.18.: Scenarios of subjective value functions and probability weighting
functions parameters for candidates and RECs.

REC in deficit

We begin with the REC in an annual energy deficit situation (Tab. 6.2). It
is worth pointing out that, for many combinations of preference criteria, the
application of prospect theory increases the number of resulting subgame perfect
equilibria, whatever the nature of the reference point used (fixed or stochastic).

We present the actions and outcomes for the two stakeholders maximizing
NPV1 (6.14) in Table 6.19. The first row corresponds to the results obtained
under the perfect rationality hypothesis, already studied above. For cases
with bounded rationality, decisions are made on the basis of the global value
specific to PT (6.25). However, to enable direct comparison with the rational
case, we express these results in terms of expected utility (6.26), in the table.
This allows us to better observe and analyze the differences induced by the
application of PT.

Ref. Num. Num. User PV Stor. Local Exp. utility Exp. utility
point Scenar. SPE (kWp) prices user REC
\ 1 1 2 +0 0 D -21 071.6e -134 319e

rmax 2,3,6,8,9 1 2 +0 0 D -21 071.6e -134 319e
4,5,7 1 +1 -21 840.9e -133 300.55e

rstoc 2-9 1 2 +0 0 D -21 071.6e -134 319e

Table 6.19.: Actions and outcomes of SPEs from game Γ2 of the energy-deficit
REC, for the two stakeholders maximizing NPV1. Results obtained
under PT are also shown in terms of expected utility to enable
direct comparison.
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The calculations include different parameterizations of PT functions and refer-
ence points. With the fixed reference point rmax, if boundedly rational user
2 follows the PT2 parameters (enterprise level [143]), then the community
requires that he invests in an additional PV panel, which implies better results
in terms of expected utility for the REC, but not for the user. We do not note
any changes in the other cases.

Table 6.20 shows the actions and results when candidates in M minimize their
total costs Ctot (6.13) and the REC minimizes its CDE (6.18).

Ref. Num. Num. User PV Stor. Local Exp. utility Exp. utility
point Scenar. SPE (kWp) prices user REC
\ 1 1 2 +0 0 C 31 410.6e 123.556 tCO2eq

rmax

4,7 1 2 +2 0 I 30 341.12e 119.912 tCO2eq5 8
2,6,8 1 2 +0 0 C 31 410.6e 123.556 tCO2eq3,9 8

rstoc

2,4,6,7 1 2 +2 0 I 30 341.12e 119.912 tCO2eq3,5 32
8 1 2 +0 0 C 31 410.6e 123.556 tCO2eq9 32

Table 6.20.: Actions and outcomes of SPEs from game Γ2, for candidates mini-
mizing Ctot and the energy-deficit REC minimizing its CDE. Re-
sults obtained under PT are also shown in terms of expected utility
to enable direct comparison.

For the maximum reference point rmax, if user 2 is boundedly rational with
PT2 parameters (corporation level [143]), we have that REC will require that
user 2 invests in two additional PV panels. Which leads to better expected
utility compared to the rational case, for both stakeholders. Note that if the
REC also follows PT2 (scenario 5), then we get 8 SPEs with the same actions.
We have the same deviation with the stochastic reference point, but in all cases
where user 2 is irrational (PT1 and PT2)! If, in addition, the REC follows PT2,
then we have 32 SPEs. Otherwise, we observe the same actions and outcomes
as the rational case, with sometimes more SPEs.

REC in surplus

Apart from the situation where NPV1 is the candidate preference criterion and
the CDE is the one for the REC, we do not observe any deviations between
the different scenarios and combinations of simulated criteria for the REC in
energy surplus (Tab. 6.3). We sometimes note one or two additional SPEs.
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The actions and outcomes for this special combination are displayed in Table
6.21.

Ref. Num. Num. User PV Stor. Local Value Value
point Scenar. SPE (kWp) prices user REC
\ 1 1 2 +0 +1 C -21 553.8e 68.786 tCO2eq

rmax 2-7 1 ∅ \ \ \ \ 69.016 tCO2eq
8,9 1 2 +0 +1 C -21 553.8e 68.786 tCO2eq

rstoc
2,4,6,7,8 1 2 +0 +1 C -21 553.8e 68.786 tCO2eq3,5,9 2

Table 6.21.: Actions and outcomes of SPEs from game Γ2, for candidates maxi-
mizing NPV1 and the energy-surplus REC minimizing its CDE.
Results obtained under PT are also shown in terms of expected
utility to enable direct comparison.

For the fixed reference points rmax case, if the candidates are bounded rationally
(PT1 or PT2), then the community chooses no one and stays with its original
composition. This is actually a better situation for user 2, as the investment
option required by the REC in the rational case (1 in Tab. 6.21) will degrade
her expected utility of NPV1. There will be no change if the reference points
are stochastic, except that we have 2 SPEs in the case where the community
follows the PT2 parameters.

Observations summary

We summarize the conclusions of this subsection.

In the context of the extensive game Γ2 in Fig. 6.4:
1. Stakeholders’ behavior and decisions may differ between cases of perfect

rationality and those subject to bounded rationality via PT.
2. The choice parameters is a fundamental element of PT to capture the

behaviors. It seems crucial to use a parameterization suited to the
type of user or entity under study, whether individuals, organizations
or energy communities.

3. The selection of the reference point is also decisive.
4. The combinations of preferences can lead to differences in actions and

results for the community and users.

These deviations emphasize the necessity of considering more nuanced behav-
ioral models. Further, they also call for experimental studies with energy
communities to estimate suitable parameters for this new mechanism, and thus
refine the relevance of behavioral models applied to these specific contexts.
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6.7.2. Impact of the decisions order with PT framework

We now consider the point of view of a user j ∈M by comparing the actions
and results of the SPEs for various system configurations in Table 6.18. In
addition, we analyze the impact of decision order in this context, by examining
the differences between the extensive games Γ2 in Fig. 6.4 (REC moves first)
and Γ1

j in Fig. 6.3 (user j moves first) for each preference combination. For
each community, we simulated a total of 3600 cases, covering all candidates
inM, combinations of preference criteria, parameterization scenarios in Table
6.18, and the two types of reference points (fixed and stochastic). Once again,
we illustrate the most significant users and combinations.

REC in deficit

In Section 6.7.1, we found that the REC in annual energy deficit (Tab. 6.2)
still selects user 2 (Tab. 6.5) as a new member. Two configurations emerged as
particularly interesting: 1) stakeholders seek to maximize NPV1 (6.14); and 2)
users minimize their total costs (6.13) while the community aims to reduce its
CDE (6.18). We focus on the study of user 2’s actions and outcomes in these
two configurations, for both extensive-form games.

We begin with the homogeneous combination NPV1. In fact, no change is
observed in the games Γ1

2: all parameterization scenarios and the two reference
points always lead to the same strategies as in the rational situation. Thus, user
2’s strategies remain identical in both games Γ1

2 and Γ2, with the exception of
the case where the reference point is fixed and user 2 follows the PT2 parameters
(see Table 6.19). In this specific configuration, the investment option required
by the REC turns out to be unfavorable for user 2, who would benefit more by
choosing to remain outside the community.

We examine the second situation, where user 2 minimizes her total cost (Ctot),
while the community optimizes its CDE. The actions and outcomes at SPEs
of the game Γ1

2 are provided by Table 6.22. The outcomes obtained under the
perfect rationality assumption are displayed in the first row. As a reminder,
the decision-making process is based on the global value (6.25) for the bounded
rationality hypothesis. Nevertheless, we express the outcomes in terms of
expected utility (6.26) in the table, in order to enable direct comparison with
the perfectly rational case.
We note that user 2’s strategy in the rational case differs between the two
extensive games (see the first line in Tables 6.20 and 6.22). In the game Γ1

2, when
the reference points are fixed and user 2’s parameters follow PT2 (organization
level [143]), the results diverge from those obtained in the rational framework.
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Ref. Num. Num. In PV Stor. Local Exp. utility Exp. utility
point Scenar. SPE REC (kWp) prices user 2 REC
\ 1 1 1 +0 +1 D 30 298.4e 126.527 tCO2eq

rmax 4,5,7 1 1 +2 0 I 30 341.12e 119.912 tCO2eq
2,3,6,8,9 1 +0 +1 D 30 298.4e 126.527 tCO2eq

rstoc

2,4,6,7 1 1 +2 0 I 30 341.12e 119.912 tCO2eq3,5 4
8 1 1 +0 +1 D 30 298.4e 126.527 tCO2eq9 4

Table 6.22.: Actions and outcomes of SPEs from game Γ1
2, for user 2 minimizing

Ctot and the energy-deficit REC minimizing its CDE. Results
obtained under PT are also shown in terms of expected utility to
enable direct comparison.

In this configuration, although the REC’s expected utility is improved, that
of user 2 is lower. Despite this, user 2 still chooses to join the community.
These results are repeated in Γ2 for the same parameterization scenarios (Tab.
6.20). In other cases, the strategies adopted vary between the two games. If the
reference point is stochastic, the observations remain similar for a non-rational
user 2 (PT1 or PT2). In all cases, the community would benefit from selecting
user 2.

REC in surplus

We are interested in the community with an annual energy surplus (Tab. 6.3),
with a priority focus on users 1 and 2.

Profile 1. Table 6.23 presented the actions and outcomes at the SPEs of the
game Γ1

1, where user 1 maximizes the NPV2 and the REC optimizes its CDE.
For the fixed reference point rmax, we observe differences with the rational
scenario when the bounded rationality of the community is expressed with
PT2 (organization-level [143]). In this case, if user 1 is irrational with PT1
(individual-level [81]) then he invests in 9 panels, whereas if this user follows
PT2 or is considered rational, he chooses 10 panels. We now discuss the
stochastic reference point rstoc. If the boundedly rational REC is based on the
PT1 parameters (individual-level [81]), then it will lower its local tariffs λiloc
and λeloc, resulting in an increase of the user’s expected value of NPV2. In
fact, user 1’s strategies are identical in both games Γ2 and Γ1

1. However, the
community has no interest in selecting candidate 1.

Profile 2. In Section 6.7.1, we found an interesting combination for user 2. In
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Ref. Num. Num. In PV Stor. Local Exp. utility Exp. utility
point Scenar. SPE REC (kWp) prices user 1 REC
\ 1 1 1 +8 +1 C -96 849.48e 69.183 tCO2eq

rmax
2,4,6,7,8

1 1
+8

+1
C -96 849.48e 69.183 tCO2eq

3 +9 C -96 802.4e 69.183 tCO2eq
5,9 +10 D -96 899.35e 69.183 tCO2eq

rstoc
3,5,6,7,9 1 1 +8 +1 C -96 849.48e 69.183 tCO2eq

2,4,8 D -96 627.98 69.183 tCO2eq

Table 6.23.: Actions and outcomes of SPEs from game Γ1
1, for user 1 maximizing

NPV2 and the energy-surplus REC minimizing its CDE. Results
obtained under PT are also shown in terms of expected utility to
enable direct comparison.

this situation, user 2 optimizes the NPV1 and the REC minimizes its CDE. We
compare results from the game Γ2 at Table 6.21 with those of the game Γ1

2. For
both reference point selections and each parameterization scenario, candidate 2
chooses to enter the REC without investment, which is not advantageous for
the community. Then, SPEs of the extensive-form games Γ2 and Γ1

2 are strictly
different with the stochastic reference point rstoc. In the case of the reference
point set at the initial maximum value rmax, we have that if the candidates
are irrational in Tab. 6.21, then user 2 will not invest, so we have the same
strategy as in the game Γ1

2.

Profile 10. We observed an intriguing combination for user 10 (Tab. 6.5).
Table 6.24 shows the actions and outcomes at the SPEs of the game Γ1

10, where
user 10 minimizes her total cost while the REC optimizes its NPV1.

Ref. Num. Num. In PV Stor. Local Exp. utility Exp. utility
point Scenar. SPE REC (kWp) prices user 10 REC
\ 1 1 0 +3 +1 \ 36 464.54e -43 524.35e

rmax
2,3,6,8,9 1 0 +3 +1 \ 36 464.54e -43 524.35e

4,5,7 2 0 +3 +1 \ 36 464.54e -43 524.35e
1 +3 +1 D 36 465.09e -43 441.1e

rstoc
2,3,6,8,9 1 0 +3 +1 \ 36 464.54e -43 524.35e

4,5,7 1 D 36 465.09e -43 441.1e

Table 6.24.: Actions and outcomes of SPEs from game Γ1
10, for user 10 min-

imizing Ctot and the energy-surplus REC maximizing its NPV1.
Results obtained under PT are also shown in terms of expected
utility to enable direct comparison.

In any case, user 10 is always well advised to invest in 3 additional solar panels
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and a battery. In the majority of parameterization scenarios, user 10 is more
inclined to remain independent. An exception occurs when candidates adopt
the PT2 parameters (enterprise-level [143]). In this setting, user 10 is either
indifferent between remaining alone or joining the REC if rmax, or he chooses to
integrate the REC if rstoc. Note that the difference between the expected values
for the user is 0.554e, which could be negligible. In the game Γ2 framework,
the community always benefits from bringing in this user with this investment
profile.

Observations summary

This subsection measured the impact of the order of decision-making in the
NMIP on SPEs and behaviors in different stakeholder bounded rationality
parameterization scenarios (Tab. 6.18). We summarize our observations.

1. In NMIP, the order of decisions influences the SPEs and behavior of
stakeholders even under prospect theory assumptions.

In the context of the extensive game Γ1 in Fig. 6.3 for any user j ∈M:
2. Stakeholders’ behavior and decisions may differ between cases of perfect

rationality and those subject to bounded rationality via the prospect
theory.

3. The reference point selection and an appropriate parameterization
scenario for the type of entity studied, are decisive elements in the
behavioral decision-making process.

4. The combinations of preference criteria can also influence the results.
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6.8. Conclusion
This chapter proposed an original approach to a rather unexplored topic: the
integration of a new member into an existing renewable energy community
(REC). The New Member Integration Problem (NMIP) is defined for a collabo-
rative community built on a demand-side management (DSM) scheme, allowing
the valuation of excess generation in the REC pool and on the retail markets
(design D2 in Chapter 4). This problem addresses strategic decisions with both
long-term implications, such as investment choices or local price adjustments;
and short-term ones, through daily operational decisions linked to energy and
financial flow management. In addition, long-term uncertainties concerning the
evolution of retail import tariffs have been integrated through three scenarios
in the NMIP. We use extensive-form game theory to model the different time
horizons of the decision-making process. In particular, short-term decisions
of the day-ahead energy scheduling, are modeled using the generalized Nash
equilibrium problem studied in Chapter 4. To capture the complex dynamics of
the process, two distinct extensive games have been established, each reflecting
a different sequence in the order of decision-making. This enabled analysis
of the influence of the decision order on the strategies and subgame perfect
equilibria. In the first case (Γ1 in Fig. 6.3), an external user is interested in
joining a REC, therefore modeling a situation where the user acts with limited
knowledge of the community’s reactions. In the second case (Γ2 in Fig. 6.4),
the community is the instigator of its own expansion and selects a new member
among a candidates setM.

One of the strengths of our contribution lies in the flexibility and manageability
of the proposed models. The theoretical formulation can be extended to
encompass a variety of scenarios and stakeholder preference criteria, for instance
the minimization of the total cost, carbon emissions or the kWh price; and the
maximization of the net present value or the return of investment. Furthermore,
it can incorporate both perfect and bounded rationality hypotheses, allowing
variation in the parameters of the prospect theory as well as in the selection
method of the reference point. This adaptability paves the way for potential
extensions, which are discussed in the continuation of the section and in Chapter
7.

We applied our models to a detailed case study, setting three types of renewable
energy communities: one in energy deficit, one in surplus, and one close to
energy balance on an annual basis. Each community was studied through a
set of simulations, including 11 potential candidates willing to join the REC
and 25 combinations of preference criteria for both extensive games. We first
analyzed the results of heuristic methods proposed by Mustika et al. in [20],
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and compared them with the SPEs obtained from the game Γ2 (community
moves first). For each candidate preference criterion, if the REC prioritizes
financial objectives (e.g., net value or total cost), the heuristic methods can
effectively predict the next member selected by the community. However, when
the community focuses on carbon emissions or the price per kWh, they may fail
to reliably anticipate the REC’s decision. In these cases, choices are influenced
by the specific characteristics of the SPEs and the preferences of the candidates.

We then explored the impact of the order of decisions, comparing the outcomes
obtained from SPEs of the games Γ1 and Γ2. The simulations reveal that the
sequence of decisions affects the SPEs and the stakeholders’ behavior. Indeed,
the agents anticipate the reactions of the other participants differently, which
influence the strategies adopted. In particular, game Γ2 (where the community
decides first) favors decisions that are more consistent with the objective of
the whole community, sometimes to the detriment of the new member, while
game Γ1

j (where user j moves first) reflects the individual interests of user j
and thus perhaps to the community’s disadvantage. In addition, the nature
of preferences, their parameters and their combinations directly influence the
NMIP’s actions and results, highlighting the significance of strategic choices
for all stakeholders.

Finally, we investigated the long-term consequences of decision-making process
under risk with the bounded rationality assumption. To this end, prospect
theory was used to capture elements of bounded rationality in the models and
assess their potential impacts. We tested two sets of parameters for prospect
theory, namely at the individual-level and the corporate-level, enabling us to
investigate nine different parameterization scenarios. We also compared two
reference point selection methods in order to assess the impact of the reference
point dependency. Simulations results show that non-rational behavior of stake-
holders can generate deviations from the rational cases. These deviations seem
particularly sensitive to the reference point selection used and the parameters
category chosen for the prospect theory. For example, specific configurations
can lead to situations where some users are incentivized to join the community,
even though their expected utility is lower. This highlights the importance of
properly calibrating model parameters to reflect actual stakeholders’ behavior.
In conclusion, this analysis suggests the importance of taking into account the
individual objectives and subjective perceptions of each stakeholder, whether
community or candidates, to better reflect the underlying strategic dynamics
and achieve a decision-making process that represents actual behavior under
risk.

In this chapter, we have considered that investments are individual, so a natural
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extension would be to address the case where investments are made jointly.
Similarly, we could study the problem of a member leaving a community, for
both types of investment. We have assumed finite number of actions available
at each LT node, for example, a finite range of investment profiles. Therefore,
another extension of our models lies in broadening the set of possible actions.
An extension to larger, continuous or infinite action sets, and more complex
probabilistic distributions would enable to explore a wider spectrum of possible
behaviors and better represent real uncertainties. Nonetheless, there are already
a number of opportunities for further research with the models established here.
Although our simulations have focused on a specific case study, the proposed
framework is flexible enough to handle a wide variety of scenarios. For instance,
varied preference criteria, alternative scenarios of retail import price evolution
and exogenous uncertainties, other parameters for the prospect theory could
be tested, as well as different reference point selections. A logical development
would be to diversify preferences within the set of potential new membersM,
where so far we have considered homogeneity. In addition, we have assumed
that the REC and all candidates adopt the same reference point setting, but
this element is a subjective notion specific to each individual or entity. An
interesting direction would be to examine situations in which this assumption
of uniformity is lifted, thereby expanding consideration of the heterogeneity of
perceptions and decisions. Despite deploying prospect theory to model decisions
in this context, an empirical study applied to energy communities would be
required to validate the applicability of this theory and estimate parameter sets
suitable for the community mechanism. This empirical approach could offer
a more operational insight for actors in the sector. Lastly, from a regulatory
point of view and in terms of energy community governance, a key question
remains to be clarified: how to define the preferences of an energy community
composed of consumers and prosumers with heterogeneous targets, perceptions
and priorities? As such, our approach has considered the existing community
as a single entity with well-defined collective objectives for long-term decision-
making. An in-depth exploration could provide interesting perspectives both
for theoretical modeling and for the development of adapted regulations.
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CHAPTER 7.
Conclusions and Perspectives

This final chapter summarizes the main contributions of the thesis and provides
some perspectives for further research.

7.1. Conclusions

This thesis addresses different problems in the context of renewable energy
communities modeling and implementation, through convex optimization and
noncooperative game-theoretical frameworks. In this respect, it covers a wide
range of interdisciplinary fields, including energy markets, mathematics, opera-
tions research and economics. Thus, we proposed specific chapters dedicated to
contextualization (Chapter 2) and presentations of fundamental concepts and
theoretical results used in this report (Chapters 3 and 5). We first explored the
optimal day-ahead scheduling of energy exchanges and members’ appliances
within RECs using (generalized) Nash equilibrium problems in Chapter 4. We
then exploited this approach to develop a theoretical model for the integration
of a new member into an existing energy community, presented in Chapter 6.
Chapters 4 and 6 are summarized below, providing an overview of the proposed
research contributions and findings.

Above all, it should be noted that rather than proposing tools that can be
directly used as such, this thesis is rather part of a wider approach aimed at
the development and detailed analysis of theoretical models. When possible,
our models are backed by numerical results; further, they are flexible enough
to be adapted to other configurations or parameters.

In Chapter 4, we compared two market designs for the day-ahead energy
resources scheduling problems in RECs. The two models, D1 (collaborative
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management scheme) and D2 (valuing local green surplus production in com-
munity and the retail markets), are analyzed under two grid tariff structures T1
(quadratic costs) and T2 (linear costs). Member costs are allocated according
to four billing methods. These designs have been formulated as centralized
optimization problems and as noncooperative normal-form games, with an
analytical and empirical study. The results show that D2 model valuing excess
generation, improves REC performance in terms of costs, self-consumption and
peak-to-average ratio, with additional savings of 8.36% compared to D1, which
already saved 30.14% compared to the case without community. We obtained
several theoretical results, such as theorems of equilibria existence, formulations
equivalence, efficiency (through the price of anarchy and price of stability)
and convergence results that are summarized in Table 4.6 on page 113. We
showed that the community total bill obtained with the centralized and decen-
tralized approaches are equivalent (or exhibit a negligible difference, maximum
to 1.49%) for the studied cost allocation methods. Similarly, we showed that
the individuals’ bills obtained ex-post from the faster centralized formulations
and from the decentralized models are similar in most studied configurations,
except for the continuous billing allocation with the T1 grid tariff. So, this
last setting required a solution based on variational inequality. We also studied
the impact of retail electricity prices and the two grid tariff structures on the
operation of a REC with design D2. We revealed that there is a threshold in
the retail import price, a function of the difference between community and
retail import/export prices, beyond which the economic gains of operating as a
REC increase significantly, for both tariff structures. Thus, REC mechanisms
can offer partial protection against price volatility, but it is crucial to define an
appropriate network cost structure and cost-sharing method.

The Chapter 6 covers a fairly new topic: the integration of a new member
into an existing renewable energy community (NMIP). The problem has been
modeled through extensive-form game theory to reflect strategic decisions taken
at the initial time (t=0), which will have long-term consequences (investments,
local price adjustments), as well as short-term operational decisions (day-ahead
scheduling). Uncertainty related to the retail import price’s evolution over
the complete horizon, was also included via three distinct scenarios. Two
decision-making sequences were studied: (1) an external end-user suggests
joining the REC, and (2) the community selects a new member from a set of
potential candidates. The theoretical models developed in this chapter, offer
a high degree of flexibility and manageability, making it possible to integrate
different long-term preference criteria (total cost, carbon emissions, price of
the kWh, etc.) and rationality hypotheses, ranging from perfect rationality
to bounded rationality leverage by prospect theory (PT). A case study with
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three types of RECs (energy deficit, surplus and equilibrium) was applied to
our models. Each REC was studied through a series of simulations, including
11 potential candidates and 25 combinations of preference criteria. An analysis
was carried out on the results of heuristic methods from the literature [20],
designed to rank potential new users according to their fit with the existing
community. Compared to the subgame perfect equilibria (SPEs) obtained when
the community initiates integration, these metrics can effectively predict the
selected profile when the REC has financial criteria such as cost reduction, etc.
However, their reliability decreases if the REC follows criteria such as carbon
emissions or price per kWh. Simulations show that the order of decisions
has a significant influence on SPEs and stakeholders behavior. When the
REC decides first, choices promote the collective objective, sometimes to the
detriment of the potential new member. Conversely, when users act first,
decisions reflect their individual interests, sometimes to the disadvantage of
the REC. Given bounded rationality via prospect theory, we noted that the
non-rational behavior of stakeholders can generate significant deviations from
rational cases. These deviations depend on the type of parameters used for
PT, i.e., whether they are based on the individual or organizational level; and
on the reference point selection method. In summary, this analysis illustrates
the necessity of considering individual preferences and subjective perceptions
of each stakeholder, whether candidate or REC, into the models, in order to
better capture the underlying strategic dynamics and ensure a decision-making
process that reflects actual behavior under risk.

7.2. Perspectives
Several directions for further research on an extended framework could be
investigated.

7.2.1. Chapter 4: day-ahead scheduling - outlook
The Chapter 4 has explored the day-ahead scheduling inside renewable energy
communities. It is essential to examine the limitations of the approaches
adopted and to identify research and application perspectives to extend and
refine this work.

Technical considerations. Throughout this work, simplified designs have
been assumed to represent technical constraints. These models need to be
adapted to incorporate more operational details. The inclusion of energy losses
in storage would add a layer of realism, although they should not alter the
theoretical results demonstrated in the Chapter 4. Some appliances can have
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a working duty cycle (e.g., dishwasher) that generally cannot be stopped and
restarted at any time. Managing such loads often requires considering binary
variables, and therefore representing the demand-side management model
as a Mixed-Integer Linear Programming (MILP) Problem, see e.g., [28]. A
significant extension of our model would be to integrate the physical constraints
associated with the network in our analysis. It would then be relevant to take
into account the Optimal Power Flow (OPF) equations adapted to LV radial
networks. To overcome the non-convex nature of the original equations, a
possible approach is to recast the original OPF problem into a Second Order
Cone Programming (SOCP) formulation. This relaxation offers an effective
compromise, considering power losses while maintaining good computational
performance [171, 76]. With this in mind, other grid costs structures could be
studied.

Real-time deviations from the optimal schedule. The work in Chapter
4 schedules in day-ahead the optimal energy exchanges and usage of energy
assets. However, in real time, deviations with respect to the optimal day-ahead
schedules may occur, due to (1) errors in the forecast of renewable generation
and to the consumption of nonflexible appliances (exogenous factor), and
(2) the actual behavior of the members, who may not necessarily follow the
recommendations (by mistake, by lack of interest, etc.) even if the possible
existence of game-theoretical equilibria should guarantee their adhesion to the
solution (endogenous factor). Such deviations may have a significant impact
on the whole community welfare, and must thereby be anticipated.

1. In this thesis, we adopted a deterministic point of view. Uncertainty
would make the analysis established here more complex, but there are
possible frameworks to study these aspects. The day-ahead model could
be formulated as a stochastic generalized Nash equilibrium problem
(SGNEP) [172], a robust game [173], or a stochastic game [86, 17].

2. We could design appropriate penalty mechanisms to deal with optimal
schedule deviations, by e.g., charging the "faulty" member with the
cost of desoptimization due to his deviation, or impacting her electricity
supply, etc. These mechanisms should be aligned with existing regulatory
policy guidelines. A study of regulations on the management of energy
communities and an assessment of the social acceptability of penalties,
would be essential to ensure their effective and equitable implementation.

Heterogeneity of objectives within the community. Apart from data
privacy issues, the use of decentralized approaches for modeling communities
remains of practical significance if community members pursue individual
objectives of different natures (e.g., bill minimization for member 1, CO2
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emissions minimization for member 2, etc.). This kind of diversity in members’
objectives could complicate optimal coordination within the REC, but could
also lead to results that are more tailored to each individual’s specific needs.
This would increase the interest of end-users in getting involved in energy
communities. It would, therefore, be useful to develop theoretical results that
take this heterogeneity of objectives into account.

Bounded rationality and risk attitudes. In Chapter 4, we have assumed
that REC’s members are rational economic agents. However, as Kahneman
and Tversky show, individuals are not actually rational and the expected utility
theory (the basis of game theory, [8]) cannot predict the actual behavior of
decision-makers under risk [77, 81]. To ensure active participation from end-
users, it would be relevant to incorporate the bounded rationality into our
models. In this regard, prospect theory [77, 81], which provides a model of real
decision-making under risk, could offer an interesting approach. Although we
applied it to model a long-term problem in Chapter 6, the application of this
theory in this short-term setting presents some challenges. In particular, the
parameterization of the members’ subjective value and weighting functions,
as they do not necessarily address the same attitude to risk, nor the same
perception of values, and these can evolve over time! Another reason lies in
the non-convexity and non-concavity of the individuals’ global value function,
which could complicate the analysis compared to the convexity assumed in our
theoretical results. However, a recent paper [174] proposes an approach that
could provide a basis for overcoming this theoretical limitation.

7.2.2. Chapter 6: NMIP - outlook

Although Chapter 6 proposed an innovative theoretical framework for inte-
grating new members into an existing renewable energy community, certain
assumptions and simplifications were necessary to scope the problem. These
choices raise several potential directions for further research, and highlight
certain limitations that deserve further thorough treatment in future studies.

Natural extension. In Chapter 6, we assumed that investments were made
on an individual basis. So, a first natural extension would be to adapt the
proposed models considering joint investments [175]. In parallel, another
research direction would be to study the opposite problem, i.e., the departure
of a member from an energy community, for both investment configurations.
Finally, we could also consider that investments are not only made at t=0.

Infinite tree. The models developed in Chapter 6 offer finite branching trees.
We have limited the investment options to a finite number and considered
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a finite probability distribution for the evolution of the retail import tariff.
An extension of this work is to consider infinite branches where the user can
optimize her investment and consider more complex probability distributions,
thanks notably to Stackelberg games. We have also restricted to finite horizons,
choosing to treat the problem for a finite number of years. If we want to avoid
predefining the duration of a process or collaboration, it becomes necessary
to consider an infinite horizon tree. In repeated game theory, a distinction is
made between infinitely repeated games and discounted infinitely games [176,
177]. However, in such games, strategies can become exceedingly complicated
and overly complex for users to implement. One perspective is that end-users
will learn their profiles over the course of repetitions. Therefore, it could be
worthwhile to study the existence of equilibria for simpler strategies and their
computations [178, 179].

Interaction with other actors. Although this thesis has focused on the
internal interactions in RECs, it is obvious that they do not operate in isolation.
In Chapter 2 we described the multiple actors involved in the electrical power
system, such as electricity suppliers, aggregators, DSO, etc. These external
actors may then find themselves interacting with energy communities and have
their operations and decisions directly impacted. For example, an electricity
supplier interacting with day-aheard markets, could adjust the tariffs offered
to customers who are members of a REC (e.g., [160, 13, 161]), while a DSO
might have to adapt its tariffs or infrastructure to integrate local fluctuations
in energy injections and offtakes (e.g., [84]). An interesting research direction
would be to model strategic interactions between energy communities and other
system actors using Multi-Leader-Follower Stackelberg games [180]. These
complex games could be designed to improve knowledge of the impact of RECs
on the power system and to formulate recommendations to facilitate their
implementation into the regulatory and operational framework. The tree-based
formulation proposed in Chapter 6 could serve as an initial foundation for such
models.

Cooperative game. In this thesis, we have only mobilized noncooperative
game theory to model strategic interactions between members, the REC and
external end-users. An interesting approach for the integration of a new member
could be to consider the cooperative game framework [7]. Indeed, it would
enable to study this problem from the point of view of the formation of new
coalitions between candidates and the already established energy community,
using concepts such as the core, the Shapley value, coalition stability, etc.

Sociological studies to calibrate prospect theory parameters. A re-
striction lies in the absence of empirical data to calibrate the parameters of
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prospect theory in the context of energy communities. These parameters, such
as diminishing sensitivity coefficients, the loss aversion coefficient or probability
weights, were set in our simulations using standard values from the litera-
ture [81, 143, 150]. However, their relevance to energy communities remains
uncertain. Sociological and behavioral studies to estimate these parameters
contextually would better represent stakeholders’ actual behavior, improve
model consistency and so ensure that results reflect not only abstract theories,
but also the social and psychological dynamics observed in energy communities.
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APPENDIX A.
Nash Equilibrium Problem

A.1. Proof Theorem 4.2 and 4.3

We prove the two theorems of Chapter 4 by relying on specific properties of our
Nash equilibrium problem (4.25), and by resorting to results from Potential
Game theory and Variational Inequality theory presented in Chapter 3.

Let G = (N ,Ω, (bi)Ni=1) such as Ω :=
∏

i∈N Ωi, be the NEP in (4.25) with tariff
T1. It can first easily be shown that the following properties hold:
P1. Each bi is continuously differentiable on Ω.
P2. Each Ωi is closed and convex.
P3. Each Ωi is bounded.
P4. For any Θ−i, bi(·,Θ−i) is convex on Ωi.

We can exhibit that NEP G in (4.25) is a Potential Game for the four cost
distribution methods described in Section 4.3.2. Specifically, the NEPs with
[EB,NET,VCG] are weighted potential games (WPGs), with the potential
function P = fD1 in (4.17) and ω = (Ki)i∈N . In other words, by the Definition
3.27, for all i ∈ N , given Θ−i ∈ Ω−i,

bi(Θi,Θ−i)− bi(Θ′
i,Θ−i) = Ki(f

D1(Θi,Θ−i)− fD1(Θ′
i,Θ−i)), ∀Θi,Θ

′
i ∈ Ωi.

Note that [EB] can also be written as a PG, since for all i ∈ N , Ki = 1/N .
The NEP G with [CB] is an exact potential game, with the potential function
defined as:

P (Θ) = fD1(Θ)− α

2

∑
t∈T

∑
i∈N

lti.L
t
−i, ∀Θ ∈ Ω.
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For the remainder of this work, we name a potential game any game with a
weighted or exact potential function.

Given properties P2 and P3, we have that the feasible set of each player is
compact, moreover the potential functions are continuous, hence we assert that
the NE set of G is nonempty by applying Theorem 3.11, proving the first point
of Theorem 4.2.

It can easily be shown by definitions of potential game and Nash equilibrium
(4.26), that an optimal solution for the centralized optimization problems (4.19)
and (4.31) is a NE of the game G with [EB,NET, VCG] and [CB] respectively.
Conversely, as the potential functions are continuously differentiable and convex
on Ω, a NE is an optimal solution of the problem (4.19) for [EB, NET, VCG]
or problem (4.31) for [CB], by Theorem 3.10. In conclusion the characteristics
of our NEPs can be obtained by solving standard optimization problems. In
the case of the daily distribution methods, we have proved that the set of Nash
equilibria coincides with the optimal solutions’ set of the centralized problem
(4.19), i.e.,

NE(G) = Xopt(P1). (A.1)

In addition, each member’s individual bill is given by the total energy costs
(=social cost) times a strictly positive constant Ki. Besides, for all the cost
distribution methods (even [CB]), we have for any profile Θ ∈ Ω that SC(Θ) =
fD1(Θ). Therefore, for each member, all the NEs lead to the same payoff
function value under [EB,NET,VCG]:

∀Θ∗,Θ′ ∈ NE(G),∀i ∈ N , bi(Θ∗) = bi(Θ
′).

Even if there are multiple NEs, we can state that the individual bill for each
player is constant over the NE set of the game G, showing Theorem 4.3. From
this, we can deduce for [EB,NET,VCG] that:

PoA(G) :=
maxΘ∗∈NE(G) SC(Θ

∗)

minΘ′∈Ω SC(Θ′)
=

maxΘ∗∈NE(G) f
D1(Θ∗)

minΘ′∈Ω fD1(Θ′)
=

(A.1)
1.

In conclusion, all Nash equilibria are efficient.

We further resort to the theory of finite-dimensional Variational Inequalities
(VIs), in order to prove the second point of Theorem 4.2.
For each player i ∈ N , the strategy set Θi verifies P2 and is assumed nonempty.
The payoff functions bi verify P1 and P4. Hence, the NEP G is equivalent to
the VI problem VI(Ω, F ), with F (Θ) := (∇Θi

bi(Θ))Ni=1, by Proposition 3.1. In
other words, the set of Nash equilibria coincides with the variational solutions,
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i.e., NE(G) = SOL(Ω, F ). Since each Ωi verifies P3, hence so is Ω. Thus, by
Theorem 3.5, the Theorem 4.2 is also established.

A.2. PDA Convergence
The Proximal Decomposition Algorithm (PDA) is described by Algorithm 2 in
Section 3.4 of Chapter 3. As a reminder, instead of a single NEP, we solve a
sequence of strongly convex sub-problems with a particular structure which
are guaranteed to converge under some technical conditions.

We consider a regularization of the original VI(Ω, F ), given by VI(Ω, F + τ(I −
yk)), where I is the identity map, yk is a fixed vector in Rn at the iteration
k, and τ is a positive constant. At each iteration k + 1, the players update
their strategies simultaneously (via a Jacobi scheme) by minimizing their bill
while perceiving the recently available value of the aggregate net load. The
regularized VI is therefore equivalent to the following regularized game Gτ,Θk

where each player i ∈ N solves:

min
Θi

bi(Θi,Θ
k
−i) +

τ

2
||Θi −Θk

i ||2

s.t. Θi ∈ Ωi.
(A.2)

If the regularization parameter τ > 0 is sufficiently large, then the game Gτ,Θk

is a strongly monotone NEP with a unique equilibrium that can be computed
by the best-response algorithm. The connection between the solution of the
regularized game and our NEP G is given by Proposition 3.4.

Convergence of PDA is studied in Theorem A.1.

Theorem A.1. Let G = (N ,Ω, (bi)Ni=1) be a NEP as in (4.25), with tariff
T1 and a nonempty set solution. If

1. the regularization parameter τ satisfies for [EB,NET,VCG]:

τ > 4α(N − 1)max
i∈N

Ki (A.3a)

and for [CB]:

τ > 2α(N − 1) (A.3b)

2. a ρ is chosen such that ρ ⊂ [Rm, RM ], with 0 < Rm < RM < 2,
then, any sequence {Θk}∞k=1 generated by PDA converges to a Nash equilibrium
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of the game G.

This section describes how the sequence generated by the proximal decomposi-
tion algorithm converges to a solution of the game G for [CB]. To do this, we
exploit the equivalence between NEPs and VIs, following similar arguments
than in [11, 122].

Let G = (N ,Ω, (bCB1
i )Ni=1) be a NEP (4.25), with tariff T1 and the continuous

cost allocation method (4.24a). We showed in the previous section A.1 that the
NE set of the game is non-empty, compact and coincides with the solution set of
the VI problem VI(Ω, F ), with F (Θ) = (∇Θi

bCB1
i (Θ))Ni=1. By Theorem 3.14, we

need to show that: (a) the mapping F is monotone on Ω; (b) the regularization
parameter τ is large enough such that the N ×N matrix ΥF,τ = ΥF + τIN is a
P -matrix (i.e., all principal minors are positive). The matrix ΥF,τ is related to
the regularized VI(Ω, F + τ.(I − yk)), with ΥF defined by

[ΥF ]ij :=

{
υmin
i if i = j

−υmax
ij if i ̸= j

(A.4)

υmin
i := min

Θ∈Ω
λleast(JiFi(Θ)) (A.5)

υmax
ij := max

Θ∈Ω
||JjFi(Θ)|| (A.6)

where JiFi(Θ) and JjFi(Θ) are partial Jacobian matrices of F , and λleast(.) is
the smallest eigenvalue of the symmetric part1 of the argument matrix. We say
that JjFi(Θ) is the Jacobian of Fi(Θ) with respect to Θj.

Proof of (a). According to Definition 3.23, a mapping function F : Ω → Rn

with Ω closed and convex, is monotone on Ω when

(Θ−Θ′)⊤(F (Θ)− F (Θ′)) ⩾ 0, ∀Θ,Θ′ ∈ Ω.

In the [CB] setting, F is C1 and its Jacobian matrix JF is symmetric, which
allows us to assert that F is monotone if its symmetric Jacobian is a positive
semidefinite matrix by Proposition A.1 [122].

Proposition A.1 ([99]). Let F : Q ⊆ Rn → Rn be C1 on the open convex
set U . The following statements are valid.

• F is monotone on U if and only if JF (x) is positive semidefinitea for
all x ∈ U ,

1The symmetric part of a matrix A is 1
2 (A + A⊤). So, A is symmetric if and only if

A = 1
2 (A+A⊤).
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• F is strictly monotone on U if and only if JF (x) is positive definiteb

for all x ∈ U ,
aA symmetric matrix A ∈ Mn(R) is said to be positive-semidefinite if: ∀x ∈ Rn \
{0}, x⊤Mx ⩾ 0.

bIf the above inequality is strict.

We show that the Jacobian matrix JF is a positive semidefinite matrix. We
can write the block elements of JF (Θ) for all i, j ∈ N , as

JiFi(Θ) := ∇2
Θi,Θi

bi(Θ) = Diag(H1
i , . . . , H

T
i ,0) (A.7)

JjFi(Θ) := ∇2
Θj ,Θi

bi(Θ) = Diag(JjF 1
i , . . . , JjF

T
i ,0) (A.8)

where 0 denoting zero matrix, H t
i and JjF t

i are defined by

H t
i :=


0 · · · 0 0 0
... . . . ...

...
...

0 · · · 0 0 0
0 · · · 0 2α −2α
0 · · · 0 −2α 2α

 (A.9)

JjF
t
i :=


0 · · · 0 0 0
... . . . ...

...
...

0 · · · 0 0 0
0 · · · 0 α −α
0 · · · 0 −α α

 . (A.10)

After algebraic manipulations, it follows that the Jacobian matrix is a block
diagonal matrix: JF (Θ) := Diag(0, B1, . . . , BT ) with Bt := α(D + E) for all
t ∈ T given by

D :=



1 −1 0 · · · 0 0
−1 1 0 · · · 0 0

0 0
. . . ...

...
...

...
... . . . ...

...
0 0 0 · · · 1 −1
0 0 0 · · · −1 1


(A.11)

E := ((−1)m+v)m,v∈{1,...,2N}. (A.12)
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A block diagonal matrix is positive semidefinite if and only if each diagonal
block is positive semidefinite. Furthermore, the sum of positive semidefinite
matrices is positive semidefinite. Since this is trivial for the null matrix and
α > 0, if we show that D and E are positive semidefinite, then the proof is
complete.

In fact, D is also a block diagonal matrix. The eigenvalues of D are just the
union of eigenvalues of each block. As each block is identical, we can easily
calculate the eigenvalues 0 and 2 which are both nonnegatives. So, D is positive
semidefinite.

The rank of the matrix E is equal to 1, thus its kernel is of dimension 2N − 1
by Rank-nullity theorem. Therefore, 0 is an eigenvalue of multiplicity 2N − 1.
We only need to find a vector that is not in the kernel, see for example:(
1 −1 1 −1 . . . 1 −1

)
, which associated eigenvalue is 2N . Therefore,

the matrix E is positive semidefinite. ■

Proof of (b). We determine the value of τ such as ΥF,τ is a P -matrix. The
matrix (A.7) corresponds to the user i’s Hessian matrix. Because bi is convex
on Ωi (P4), its Hessian matrix is positive semidefinite. Therefore, we can state
that υmin

i = 0 in (A.5), for all i ∈ N . It remains to estimate the values of υmax
ij

in (A.6) for all i, j ∈ N , i ̸= j. Considering JjFi(Θ) = Diag(JjF 1
i , . . . , JjF

T
i , 0)

and JjF t
i as in (A.10), we have: υmax

ij ⩽ 2α.

Therefore, ΥF,τ is a P -matrix if the following condition is satisfied [122, Prop.
7] for all i ∈ N ,∑

j∈N\{i}

( υmax
ij

υmin
i + τ

)
⩽

∑
j∈N\{i}

2α

τ
⩽

2α(N − 1)

τ
< 1. (A.13)

Consequently, any parameter τ such as:

τ > 2α(N − 1) (A.14)

holds the criterion (A.13). This completes the proof. ■

The case of [EB] distribution can be verified by a similar reasoning, with
τ > 4α(N − 1).N−1.

Remark A.1. The proof is less straightforward in the case of [NET,VCG]. Using
similar reasoning, we obtain a large enough regularization parameter τ such
that the N -square matrix ΥF,τ is a P -matrix. For every user i ∈ N , we have
that υmin

i = 0 in (A.5). Besides, we can estimate the values of υmax
ij in (A.6)
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for all i, j ∈ N , i ̸= j:

max
Θ∈Ω

||JjFi(Θ)|| ⩽ max
t∈T

(
max
Θ∈Ω

λmax(JjF
t
i )
)

⩽ 4α(N − 1)max
i∈N

Ki. (A.15)

where λmax(.) is the largest eigenvalue of the argument matrix. However, the
function F is not monotone, but it is a P0-function2 on Ω that is convex and
compact. Furthermore, the NE set is non-empty and compact by Theorem
4.2 and we noted convergence to a NE in our case-study framework. We refer
readers interested in nonmonotone VI to [181].

Another way is based on the particular structure of the game. Since we are
dealing with a potential game [116], we know by Theorem 4.3.1 and Theorem
3.9 that solving G = (N ,Ω, (bi)Ni=1) amounts to finding all equilibria of the
game GP = (N ,Ω, (P )Ni=1) with P = fD1 in (4.17). Because ∇P = ∇fD1 is
monotone, we can obtain a Nash equilibrium via the PDA.
Remark A.2. As the mapping function F is monotone for [EB, CB], we can
conclude by Theorem 3.6 that the NE set of the game G is convex.

2F is a P0-function on Ω if for all pairs of distinct tuples x, y ∈ Ω, an index i exists such
that xi ̸= yi and (xi − yi)

⊤(Fi(x) − Fi(y)) ≥ 0. If the inequality is strict, then F is a
P -function.
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Generalized Nash Equilibrium Problem

B.1. Proof Theorem 4.4

Let G = (N , (Ωi)
N
i=1, (bi)

N
i=1) be the GNEP in (4.27). We recall the notation

used in Chapter 4. For each member i ∈ N , we denote Ωi ⊆ Rni as the player
i individual constraints set, which we assume nonempty. We write the shared
internal balance constraints (4.13) as h(Θ) := (

∑
i∈N ecom,t

i − icom,t
i )t∈T . We

have the feasible set of member i given by (4.28)

Ωi(Θ−i) :=
{
Θi ∈ Ωi | h(Θi,Θ−i) = 0

}
.

It can be shown that the following properties hold for both T1 and T2 pricing:
P1. Each bi is continuously differentiable.
P2. Each Ωi and Ωi(Θ−i) are closed and convex.
P3. Each Ωi and Ωi(Θ−i) are bounded.
P4. For any Θ−i, bi(·,Θ−i) is convex.
P5. The function h is continuous and componentwise convex.
Furthermore, we have the joint strategy set (4.29) reads

C :=
{
Θ ∈ Rn | Θi ∈ Ωi ∀i ∈ N , h(Θ) = 0

}
,

which is closed, convex and where all the shared constraints are linear. Then,
the game G belongs to the jointly convex GNEPs subclass by Definition 3.20
and we have for each user i ∈ N

Ωi(Θ−i) = {Θi ∈ Rni | (Θi,Θ−i) ∈ C} .

Since all the hypotheses have been verified, we can apply Proposition 3.3, which
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established a link between our GNEP G and a suitable VI problem. In this
way, an equilibrium of the game G can be calculated by solving the VI problem
VI(C, F = (∇Θi

bi)
N
i=1). Proposition 3.3 states that every solution of the VI(C, F )

is a generalized Nash equilibrium of the GNEP G, i.e., SOL(C, F ) ⊆ GNE(G).
We do not have, however, that any GNE of G is also a solution to the associated
VI. Solutions of the GNEP that are also solutions of the VI are called variational
equilibria (VEs) (see Definition 3.25, [106]). We note VE(G) the set of VEs of
the jointly convex GNEP G.

We then analyze and compute the variational solutions of the original GNEP
(4.27) for both tariff T1 and T2. Since the joint strategy set C holds P3, the
Theorem 3.5 guarantees the existence of a VE and thus ensure the existence of
a GNE for the game (4.27). Theorem 4.4 is therefore established.

B.2. Proof Theorem 4.5

We exploit connections with potential games in the case of GNEPs [118] (see
Section 3.3.2). The jointly convex GNEP G = (N , (Ωi)

N
i=1, (bi)

N
i=1) in (4.27),

for both tariffs T1 and T2, is
1. a WPG with P (Θ) = fD2(Θ) in (4.18) and ω = (Ki)i∈N , for [NET,VCG]

billings.
2. An EPG with P (Θ) = fD2(Θ)/N , for [EB] billing.

An EPG for [CB] with the billing function 4.24b, with

3. In the case of tariff T1

P (Θ) = fD2(Θ)− α

2
.
∑
t∈T

∑
i∈N

lti.L
t
−i (B.1)

4. In the case of tariff T2, P (Θ) = fD2(Θ).

For the sake of clarity, we pose the problem of minimizing the potential function
on C as

min
Θ

P (Θ)

s.t. Θ ∈ C,
(B.2)

without distinguishing between the centralized problems (4.20) and (4.32).

By Theorem 3.12, an optimal solution for the centralized optimization problem
B.2 is a GNE of the GNEP. As a reminder, we have SC = fD2. Thus, we have,
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by definition, that the price of stability is equal to 1, except for [CB] with tariff
1

PoS(G) =
minΘ∗∈GNE(G) SC(Θ

∗)

minΘ∈C SC(Θ)
=

minΘ∗∈GNE(G) f
D2(Θ∗)

minΘ∈C fD2(Θ)
= 1.

As mentioned in Remark 3.2, a GNE Θ∗ of the GNEP G (4.27) does not always
minimize the potential function over the joint strategy set C (4.29), due to
shared constraints.

Nevertheless, it can be shown that the PGs for [EB,CB] have their variational
equilibria set coinciding with the optimal solutions set of B.2. We noted in
Appendix B.1, that VEs correspond to GNEs of the game G, which are also
solution to the associated VI(C, F = (∇Θi

bi)
N
i=1). In fact, (4.20) and (4.32)

are convex optimization problems with continuously differentiable objective
functions, hence a point Θ∗ is a global minimum if and only if

(Θ′ −Θ∗)⊤∇P (Θ∗) ⩾ 0, ∀Θ′ ∈ C (B.3)

by the minimum principle 3.10. Because∇P = F , the equation B.3 is equivalent
to

(Θ′ −Θ∗)⊤F (Θ∗) ⩾ 0, ∀Θ′ ∈ C, (B.4)

and so Θ∗ ∈ SOL(C, F ). Hence, the VEs can be obtained by solving a standard
optimization problem. For both [CB] under tariff 2 and [EB], this optimization
problem corresponds to the centralized problem (4.20); we have: Xopt(P2) =
VE(G) ⊆ GNE(G). In this way, the price of anarchy restricted to game’s
variational equilibria is equal to 1:

PoA(G|VE) =
maxΘ∗∈VE(G) f

D2(Θ∗)

minΘ∈C fD2(Θ)
= 1.

In addition, each member’s individual bill is given by the total energy costs
(= social cost) divided by the number of members with [EB] cost allocation
method. Therefore, for each member, all the VEs lead to the same cost function
value under [EB]. This proves Theorem 4.5.

B.3. PDA with shared constraints convergence
We focus on the distributed computation of the GNEs, especially the VEs.
Inspired by the VI framework proposed in [124, 182], we apply the PDA with
coupling constraints.
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Distributed algorithms require the joint strategy set to be a Cartesian product,
so that a VE cannot be computed from the current VI formulation VI(C, F =
(∇Θi

bi)
N
i=1) associated with the GNEP G in (4.27). We decouple the members’

feasible sets by converting the global constraints into penalty terms in the
objective functions. A new player N +1 is also introduced. The extended NEP
reads

Gext :=

min
Θi∈Ωi

bi(Θi,Θ−i) + π⊤h(Θ) ∀i ∈ N

min
π∈RT

− π⊤h(Θ) i = N + 1.
(B.5)

This new player can be considered as a central operator (e.g., a community
manager) controlling a price variable π ∈ RT , that can be interpreted as prices
associated with an imbalance between energy exported to and imported from
the REC pool, represented by the global constraints h(Θ). In fact, π is the
Lagrange multiplier associated with the constraints h(Θ).

We have the following property.

P6. All individual constraint sets Ωi and the joint strategy set C satisfy the
Slater’s constraint qualification (see Section 3.1.3, [94, (5.27)]).

The connection between the solutions of the GNEP G and the NEP Gext is
displayed in the Lemma B.1 [183].

Lemma B.1 (Extended game). A point (Θ∗, π∗) ∈ C × RT is a Nash
equilibrium of the game Gext if and only if Θ∗ is a solution of the VI(C, F )
with multiplier π∗ associated with the shared constraints h(Θ∗) = 0.

We have transformed the VEs computation of the GNEP (4.27) into solving
an extended NEP (B.5). The NEs of Gext coincides with the solutions of an
extended VI problem that can be achieved via distributed algorithms.

Lemma B.2 (Extended VI). A point (Θ∗, π∗) ∈ C×RT is a Nash equilibrium
of the game Gext if and only if it is a solution of the VI(Y , Fext), with
Y := (

∏
i∈N Ωi)× RT and

Fext(Θ, π) :=

[
(∇Θi

bi(Θi,Θ−i) +∇Θi
π⊤h(Θi,Θ−i))

N
i=1

−h(Θ)

]
(B.6)

We summarize the previous results with Theorem B.1.

Theorem B.1. A point Θ∗ is a variational equilibrium of the GNEP (4.27)
if and only if a π∗ exists such that (Θ∗, π∗) is a solution of the extended
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VI(Y , Fext).

We have decoupled the members’ constraints by incorporating the global
constraints h(Θ) into the objective function. Thanks to the reformulation
in Theorem B.1, we obtain the set Y as the Cartesian product of individual
feasible sets. Hence, as in A.2, we solve a regularized sequence of VI(Y , Fext +
τ(I − (yk, ηk))) with (yk, ηk) in Rn+T .

Convergence of the algorithm is studied in Theorem B.2.

Theorem B.2. Let G = (N , C, (bi)Ni=1) be a GNEP as in (4.27) with a
nonempty set solution. If

1. the regularization parameter τ satisfies τ > τ̃ , such as:
• if tariff T1 is in effect, for [EB]

τ̃ =
2α(N − 1)

N
+ 2.

√
α2(N − 1)2

N2
+N (B.7)

and for [CB]

τ̃ = α.(N − 1) +
√
α2.(N − 1)2 + 4N. (B.8)

• if tariff T2 is in effect, for all cost distribution methods

τ̃ =
√
2N. (B.9)

2. ρ is chosen such that ρ ⊂ [Rm, RM ], with 0 < Rm < RM < 2,

then, any sequence {(Θk, πk)}∞k=1 generated by PDA converges to a variational
equilibrium of the GNEP.

The convergence proof of the PDA with shared constraints is based on the
relation between the extended NEP and VIs. We check the result for a GNEP
under T1 tariff and continuous billing. The other cases follow a similar reasoning.
The proof follows the lines of argument in [124, 182, 184]. Recalling Lemma B.2,
solving the extended NEP Gext in (B.5) is the same as solving the VI(Y , Fext),
with Y := (

∏
i∈N Ωi)× RT and

Fext(Θ, π) :=

[
F (Θ) + π⊤∇Θh(Θ)

−h(Θ)

]
. (B.10)
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Then, we solve a regularized sequence of VI(Y , Fext + τ(I − (yk, ηk))) with
(yk, ηk) in Rn × RT . According to [122, Th. 17], we need to show that: (a) the
mapping Fext in (B.10) is monotone on Y ; (b) the regularization parameter τ
is large enough such that the N + 1 square matrix ΥF,τ is a P -matrix

ΥF,τ :=

(
ΥF + τIN −µ
−µ⊤ τ

)
(B.11)

µ :=
(
max
Θi∈Ωi

∥∇Θi
hi(Θi)∥2

)N
i=1

(B.12)

with ΥF defined in (A.4)-(A.6).

Proof of (a). If F is monotone on
∏

i∈N Ωi, so is Fext on Y [182, Prop. 4.4].
Since the matrices are similar to those obtained with model D1 in Appendix
A.2, we can directly conclude that F is monotone. ■

Proof of (b). We determine the value of τ such as ΥF,τ is a P -matrix. In fact
ΥF,τ is a Z-matrix (i.e., all off-diagonal elements are non-positive). We write
ΥF,τ ⩾ Υ̃F,τ , where ⩾ indicates component-wise ⩾, and

[Υ̃F,τ ]ij :=


τ if i = j

−2α if i ̸= j and i, j ̸= N + 1

−2 otherwise
(B.13)

If Υ̃F,τ is a Z and P -matrix, then ΥF,τ is P -matrix [185, Thm. 3.11.10]. We
have that Υ̃F,τ is a P -matrix if and only if the spectral radius of the matrix
ΓF,τ is less than 1 [122]:

[ΓF,τ ]ij :=


0 if i = j

υmax
ij /τ if i ̸= j and i, j ̸= N + 1

µ/τ otherwise
(B.14)

where the spectral radius is the maximum of the absolute values of its eigenvalues.
According to the Gershgorin circle theorem, every eigenvalue of ΓF,τ is contained
in at least one of the Gershgorin disks D(0, Ri) with Ri =

∑
j ̸=i |[ΓF,τ ]ij|. Hence,

ΥF,τ is a P -matrix if for some ω > 0, the conditions

τ > 2α(N − 1) + 2ω (B.15)

τ >
2N

ω
, (B.16)

226



Appendix B. Generalized Nash Equilibrium Problem

are verified. The ω value minimizing τ is a solution of the second-degree
equation

2α(N − 1) + 2ω =
2N

ω
⇔ 2ω2 + 2α(N − 1)ω − 2N = 0. (B.17)

By incorporating this data into (B.15), we have

τ > α(N − 1) +
√
α2(N − 1)2 + 4N. (B.18)

■

Remark B.1. The case of [NET,VCG], under tariff T1, is more sensitive. We
calculate a regularization parameter τ larger enough such that the N + 1
square matrix ΥF,τ is a P -matrix. Let i, j ∈ N , if i ̸= j, we have [Υ̃F,τ ]ij =
−4αmaxiKi and so

τ > 2α(N − 1)max
i∈N

Ki + 2
√
α2(N − 1)2max

i∈N
K2

i +N.

However, the function Fext is not monotone, but it is a P0-function on Y which
is closed and convex. Furthermore, the VE set is non-empty and compact, and
in our use-case we observe convergence with low inefficiency (see Section 4.6.2
on page 106 and Table 4.6 on page 113).

Even though G is a potential game, the structure of its set of strategies is
non-Cartesian, so that we cannot use the same arguments as in the NEP case
in Remark A.1. Nevertheless, we can apply the method of [118], being aware
that convergence to a VE is not guaranteed, although the generated sequence is
on C and each limit point is a GNE. In fact, there are no proofs or indications
concerning the type of equilibrium (VE or not) one could get depending on the
initial inputs. In [NET,VCG] case, there is no theoretical guarantee that VEs
offers the cost optimal value, but we have Theorem 4.5.1.
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SPE outcomes

C.1. REC in deficit

Criteria Num. User PV Stor. Local Exp. utility Exp. utility
UsersM REC SPE [kWp] prices user REC
NPV1 NPV1 1 7 +1 0 D 11 695.05e -124 731.46 e
NPV2 NPV2 1 7 +1 0 D 17 435.87e -183 098.96 e
Ctot Ctot 1 7 +1 0 D -18 159.8e 190 482.01e
ROI (financial) 10 7 +1-+10 0 D -0.376%
ROI CDE 1 2 +10 0 I 0.032% 104.79 tCO2eq

(financial) PkWh* 243 7 +0 0 I 0.185 e/kWh
NPV1 CDE 1 7 +1 0 D 11 695.05e 105.59 tCO2eq
NPV2 CDE 1 7 +5 0 C 17 938.6e 105.227 tCO2eq
Ctot CDE 1 7 +10 0 I -19 204.31e 104.79 tCO2eq

Table C.1.: Expected utilities of SPEs obtained for the NMIP Γ2 of the REC
in deficit with the candidates setM and the rationality of agents
is assumed. The (financial) notation indicates that the results are
valid if one of the three criteria: NPV1, NPV2 and Ctot is used.
We have used the lexicographical order in the case of PkWh.
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C.2. REC in surplus

Criteria Num. User PV Stor. Local Exp. utility Exp. utility
UsersM REC SPE [kWp] prices user REC
NPV1 NPV1 1 11 +0 0 I -106 859.6e -31 048.7 e
NPV2 NPV2 1 11 +0 0 I -153 351.6e -47 560e
Ctot Ctot 1 11 +0 0 I 159 213.19e 49 660.1e
CDE CDE 1 11 +10 0 C 25.575 tCO2eq 68.478 tCO2eq
ROI (financial) 10 11 +0 0 I 0%
ROI CDE 1 7 +1 0 I -0.175% 67.610 tCO2eq

(financial) PkWh* 1 7 +1 0 I 0.101 e/kWh
NPV1 CDE 1 7 +1 0 I 11 895.42e 67.610 tCO2eq
NPV2 CDE 1 7 +1 0 I 17 727.52e 67.610 tCO2eq
Ctot CDE 1 7 +1 0 I -18 462.97e 67.610 tCO2eq
CDE (financial) 21 11 +0 0 I 33.788 tCO2eq

PkWh* (financial) 231 11 +0 0-+1 I 0.17 e/kWh

Table C.2.: Expected utilities of SPEs obtained for the NMIP Γ2 of the REC
in surplus with the candidates setM and the rationality of agents
is assumed. The (financial) notation indicates that the results are
valid if one of the three criteria: NPV1, NPV2 and Ctot is used.
We have used the lexicographical order in the case of PkWh.
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